EDQNM model of a passive scalar with a uniform mean gradient
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Dynamic equations for the scalar autocorrelation and scalar-velocity cross correlation spectra have
been derived for a passive scalar with a uniform mean gradient using the Eddy Damped Quasi
Normal Markovian(EDQNM) theory. The presence of a mean gradient in the scalar field makes all
correlations involving the scalar axisymmetric with respect to the axis pointing in the direction of
the mean gradient. Equivalently, all scalar spectra will be functions of the wave nimapet the

cosine of the azimuthal angle designatedab spite of this complication, it is shown that the cross
correlation vector can be completely characterized by a single scalar fur@tion The scalar
autocorrelation spectrum, in contrast, has an unknown dependenceHmwever, this dependency

can be expressed as an infinite sum of Legendre polynomials aé first suggested by Herring
[Phys. Fluidsl7, 859(1974]. Furthermore, since the scalar field is initially zero, terms beyond the
second order of the Legendre expansion are shown to be exactly zero. The energy, scalar
autocorrelation, and scalar-velocity cross correlation were solved numerically from the EDQNM
equations and compared to results from direct numerical simulations. The results show that the
EDQNM theory is effective in describing single-point and spectral statistics of a passive scalar in
the presence of a mean gradient. 196 American Institute of Physi¢§1070-663(96)00205-X]

I. INTRODUCTION quasinormal theory for a passive scalar, it appears to repre-

sent the data from direct numerical simulations reasonably
It has long been recognized that the behavior of a paswell over the parameter range considered.

sive scalar differs significantly from that of the velocity field There have been a wide range of experimental investi-

for profound and fundamental reasons. Close examination afations of a passive scalar with a uniform mean gradient over

the two fields shows that while the velocity field organizesthe years. For example, the study by Tavoularis and

itself into long tubes at high vorticity, the scalar field more Corrsin**?introduced a mean gradient in temperature across

closely resembles a rolled up pancake at equivalent levels @jrid-generated turbulence and measured the spectrum of sca-

scalar dissipation. The origin of this difference can be tracedar fluctuations that resulted. More recently, Warhaft and

to the convective term in the transport of each propertyseveral co-workers have considered in great detail the behav-

which in the case of the scalar is simply the velocity dottedior of a passive scalar in a series of paperClassical scal-

into the scalar gradient while advection in the momentuming arguments set forth by Kolmogorbvfor the energy

equation is modified by the pressure field. This subtle changspectrum and subsequently by ObukHoand Corrsif® for

is responsible for significant qualitative differences in thethe scalar spectrunthereafter referred to as KQQstab-

features of the two fields. Recently the scalar field has relished that the scalar spectrum should have the following

ceived increased experimental attentiohas investigators form in the so-called inertial-convective rantfe:

continue to catalog the important characteristics of the scalar E (K= Be~ 13, k513 1

field and its derivatives. Indeed, the scalar in the presence of s(k)=Be T ' @

a uniform mean gradient has been the subject of several revhereEg(K) is the three-dimensional scalar spectrunand

cent article$™'° One question that can be asked is whethery are the average rate of dissipation of energy and scalar,

theories that have been successful in describing the behaviggspectively, ang is a universal constaraccording to the

of the turbulent energy can be applied to the scalar. Weheory). Jayestet al2 observed that the presence of a mean

consider this question in the present study by applying theyradient improved the agreement between the observed sca-

Eddy Damped Quasi-Normal Markovian thediyDQNM)  |ar spectrum and the KOC theory. Indeed, quantitatiie

to the dynamics of a passive scalar with a uniform meamgreementwith KOC theory has occurred only for the case

gradient in stationary isotropic turbulence. Our results indi-of anisotropic decaying scalar introduced downstream from

cate that although one can postulate several objections tothe grid-generated turbulence. The explanation appears to be

that at moderate to low Reynolds numbers there are system-

3present address: Occidental Chemical Corporation, Ashtabula, Ohio.  atiC deviations from KOC unless there are strong correlations

PElectronic mail: LXC12@CAC.PSU.EDU. between the initial velocity and scalar fluctuations. Scalar
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fluctuations that arise from the presence of a mean gradiefiield must be generalized to take this into account. This ap-
are, by definition, strongly correlated with the velocity field, parently minor extension of the EDQNM theory significantly
hence KOC scaling is valid for that case. This is confirmedincreases the complexity of the computation, although the
by most of the experimental investigations and our theoretifinal form of the integral equation remains essentially the
cal results. One aspect that was not discussed by Jayeshme as that for an isotropic scalar field. The approach taken
et al® but has been discussed by othérg., Ref. 6is how is equivalent to the one described originally by Batch@lor
the change from isotropy to axisymmetry manifests on theand Chandreshekaf,and more recently by Nakauéfiand
scalar spectrum. This is one focus of the present analysis. Herring in studies of sheared turbulence. In the analysis by
From the preceding discussion, you might conclude thatierring, the geometric dependence on the angle to the mean
the scalar field can be completely characterized by the simplgradient was accounted for by expanding the functions in a
KOC theory(assuming the Reynolds number is sufficiently polynomial series in cosines of that angle. We adopt a simi-
large; however, closer examination reveals that there ardar approach. In addition, comparisons of the results from the
significant discrepancies that still require explanation. FoEDQNM theory are made with direct numerical simulations
example, measurements of the probability density functiorperformed on a 178lattice over very long time$60 eddy
(pdf) for the scalar and scalar gradient show well-definedurnover timeg This allowed us to fix the two unknown
exponential tails, particularly at large positive deviationscoefficients that result from the theory.
from the meafi*>®1’(as opposed to the Gaussian form im- ~ The paper is organized as follows. The equations of mo-
plied by KOQ. These tails appear to be connected to ramption are summarized in Sec. Il, followed by derivations of
cliff structures in the scalar field that result from the anisot-the EDQNM model equations for the energy specti(@ac.
ropy introduced by the presence of the mean gradient. All), velocity-scalar spectruriBec. IV) and scalar autocorre-
comprehensive discussion of the exponential tails has bedation spectruniSec. ). The cross correlation is considered
given by Jayesh and Warh4ftTong and Warhaft, and first because many of its terms are duplicated in the autocor-
Pumir® Recently a theory has been developed by Pumirelation equation. In Sec. VI we give a brief description of
et al’ to explain these structures. Given the strongly nonihe numerical method used to solve the integrodifferential
Gaussian character of the scalar fluctuations, the questigfluations that result from the EDQNM analysis. Details of
becomes whether theories based on Gaussian or nedpe direct numerical simulations are then provided in Sec.
Gaussian statistics have any range of validity for a scala¥!l- Model results, discussion, and comparisons between di-
with a uniform mean gradient. rect numerical simulations and the EDQNM model are given
EDQNM theory® has been used to describe a variety ofin Sec. VIII, followed by conclusions in Sec. IX.
turbulent systems, including the classical studies of the en-
ergy and isotropic scalar spectrdfit’to more exotic prob- !l GOVERNING EQUATIONS

lems involving mean flow inhomogeneiti€s.** The theory The fluid is considered to be incompressible with a con-

relies on near Gaussian statistics for all fourth-order mostant kinematic viscosity, thus the governing equations are
ments. As noted above, experimental measuremenisoef
tropic scalar fluctuations have pdfs that are nearly Gaussian @ -0 (2a)
supporting the theoretical approach, however, the presence X '
of a mean gradient appears to make this assumption some- U a1 ap 2u
what more tenuous. Our results indicate that the EDQONM  — 4y, —+ = —=p — +F;, (2b)
theory can successfully represent the spectrum of a passive Jt i p X 2
scalar with a mean gradient, despite these objections. Aherev; is the fluctuating fluid velocitythere is no mean
explanation may be that the exponential tails in the pdf of thglow), p is the pressurep is the densityv is the kinematic
scalar fluctuations are low-probability events, and as suchiscosity, andF; is a solenoidal forcing function introduced
while they may alter the higher-order statistics significantly,to maintain stationary turbulence. In the simulations, forcing
their contribution to second-order statistics is negligible.is introduced over a narrow band of small wave numbers
Thus, the important features of the modeled fourth-order scainder the assumption that its net effect on the turbulent en-
lar statistics are represented sufficiently well by the EDQNMergy transfer process is negligible. Consequently, the effect
approximations, such that the second-order correlations argf the forcing is modeled as a source term at small wave
predicted accurately. For example, it may be sufficient thahumbers, and its influence on energy transfer is neglected
the pdf be nearly symmetric ensuring that odd-order mo{although it should be noted that our results provide evidence
ments are small as compared to even-order moments. In athat the forcing function enhances the rate of transfer over
dition, built in corrections for the effect afumulantsmay  the forcing range—see Sec. VIII A for detqilsThe precise
also compensate for the non-Gaussian statistics in the casefofm of the forcing in the EDQNM model will be discussed
a mean gradient. in greater detail in Sec. Ill. It is possible and convenient to

In this paper we consider the dynamics of a passive scaliminate the pressure from Eq&a) and (2b) by taking
lar with a uniform mean gradient advected by stationaryadvantage of the continuity relationsifpThe resulting ex-
isotropic turbulence. The presence of a mean gradient rgression is
duces the symmetry of all correlations involving the scalar 5
from isotropic(as found for a freely decaying scaldo axi- % 1 U= ﬂ _

p y ying + 5 PijmUjup=v —x +Fj, (3@

symmetric. As a result, the theoretical treatment of the scalar 9t 2 Im X]
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where the operatoP;;y, is given by ,
s 2 2 Rij(kvp):f f Rij (X1, Xp)e” (KXt PXa)dy, dxy, (8a)
Pijm:5ij m‘f‘@imﬁ—xj*‘?m. (3b) '
. . , Rij(xl,x2)=J J Rij(k,p)etikxatrxldk dp, (8b)
The transport equation for a passive scalar with constant

physical properties in an incompressible system is ShOWtheredk and dp refer to dk/(2m)° and dp/(2m)?, respec-

below: tively. [Fourier transforms of higher-order correlations are
od o D obtained from a straightforward generalization of E@a
ot Y (9_)(]_:" a2 (4)  and(8b).] It can be shown that for a homogeneous energy
i

field, the Reynolds stresR;j(k,p) is proportional to the
Without loss of generality, the scalar is assumed to have ghree-dimensional Dirac delta functiod(k+p). Further-
uniform mean gradient with a magnitudfepointing in thee;  more, the assumption of isotropy and no helicity implies
direction (e; is a unit normal pointing in thex; direction. -
The system is still homogeneous under this circumstance, Rij(k,p)= (k+p)R(K)P;; (k), (93
although correlations involving the scalar field will no longer \yere
be isotropic. The resulting governing equation for the scalar

fluctuation defined a®’'=®—®d (whered is the mean sca- P (K)= & — kik; (o)

lar concentration given by =1"x3) is as follows: g K2
P’ P’ e PP’ is the projection operator and; refers to the Kronecker
at +U; IX; tUsl =k Ix2 ®)  gelta function[Note that the energy spectrum, often desig-

_ . ! _ o nated byE(k), is related toR(k) by E(k)=k?R(k)/272.]
At this stage, it is convenient to nondimensionalize theg,5ed on the definitions shown in E8a and (8b), it can

equations based on the integral length stalthe turbulence e ghown that the turbulent intenstiye., root mean square
intensityU s, the large eddy turnover time/U s, and the ¢ 1o velocity fluctuationsis related toR(k) by
characteristic scalar fluctuatidnL, resulting in the follow-

. 1 0
g U5z f R(k)k? dk. (10)
(9Ui+1p _1 &zui+F 6 7T 0
ot 2 DimUtm TR T (63 As shown by Lesieuf® the EDQNM model transport
2 equation forR(k) for a statistically stationaryjturbulent sys-
P’ P’ 1 979’ tem i foll .
— U — U= — —, (6b) em is as follows:
at Iax Pe ox;
where the Reynolds numberf = U ,,J/v, the Peclet num- ZR[lsz(k)ZJ j OV R(Q)R(p)
ber is Pe=R_P, and the Prandtl number is defined By v/ A
«. Note, for the sake of maintaining a manageable nomen-
clature, that we have designated the nondimensional +VoR(q)R(k)]Jdp da+F(k), (113

variables with the same symbols as the dimensional oneghere
with the understanding that hereafter all variables should be
assumed to be nondimensional unless specified otherwise. _QIO2

LA _ 53
Furthermore, it should be noted that the only parameters that "1 272 [xy=27], (11b
remain in the problem arB,_ andP because the magnitude
of the mean gradient is effectively scaled out of the problem. V2=~ Va1, (119
Egs. (6a and (6b) now become the basic equations from 1
which the spectral model shall be derived. ®qu:;@’ (110
R

while the eddy damping coefficienis? is given by

pI=Colmct ppt pg) +ROICTPPHGY) (119
Derivations of the EDQNM closure for the energy spec- ) i i o
trum have been discussed in numerous publications; hendd the time scalgy is determined from the following inte-
we will only highlight the relevant features for the present9rak
calculations. The reader is referred to the book by Le&teur

IIl. EDQNM THEORY FOR ENERGY

k 1/2
for a more detailed description. The energy spectrum is most  p,=—— ( f s4R(s)ds) . (119
easily derived from the two-point Reynolds stress shown be- ™\ /0
low: The coefficientx, y, andz refer to the cosines of the interior
Ryj (X1, %2) = Ui (Xq) Uj(Xp). ) angles of the triad, and are defined as shown below:

Forward and reverse Fourier transforms are designated with __ P-d _ k?—p*-q?

: S X=—=—F—, (119
the following convention: p 2pq
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k-q p?>—k?®-—q? in the direction of the mean gradient, i@; = u;®’'. From

y= k_q = Tq (11h Lhe definitions of the spectf&qs.(12) and(13)], Qs is given
y
k- 2_ k2_ 2
z= P u. (11 — 1 (=
p 2kp Qz=uzd’'= 37 f Q(k)k? dk. (14)
0

The constant; is usually assigned the value 0.36 to ensure
that the energy spectrum at infinite Reynolds number obeyA. Exact equation
the classical Kolmogorov scaling arguméhtThe forcing

) We begin with the transport equation f@;(x;,X,),
term is assumed to have the form

which is found by manipulating the governing equations for
Fo, k=2, the velocity and scalar fluctuatiofggs. (6a and(6b)],

FK=10, Kk>2'

J

Y p-lv2_pslv2|lA
where the constants; andF, are set to match the condi- | gt R Vi—Pe VZ)Q'(Xl'XZ)
tions of the direct numerical simulatiorisee Sec. VIl for

i a
details. = Pijn(X0) Tjn(X1,X1,X2)
in

J
IV. SCALAR-VELOCITY CROSS CORRELATION I |1 X2:X2) ~ Ria(Xe,Xa), (153

We must recognize from the outset that the variable  where
which is isotropic for the decaying scalar case, is rap
symmetriqabout thee, axis) in the present system. It there- Tin(X1,X2,X3) = Uj (X)) Un(X2) D' (X3). (15b)

fore f%”o?’s that all ]Ewrc:—pomt corr elazpnsggt r']nVONEI The operator§’s and V5 signify Laplacian derivatives with
must be functions o .t e separation dista the ange respect tox, and X, respectively. Fourier Transforming the
between the se_paratlon vector and the mean gradient. T}}fbove equation and taking advantage of @) yields
correlations of interest to the present study are the scalar
autocorrelation B(xy,X)=®'(x)®’'(x,) and scalar- d _ B

velocity cross correlationQ;(xq,X5) =U;(x)®'(X5). The E’L(RLl”LPe l)kz)Q(k)
objective of this section is to derive a transport equation for

. | . i
the Fourier transform o®;(x;,x,) shown below: . e f f (knPjg(k)Tjn(k,p,q)
Qi(k,p):J J Qi(Xq ., Xp)e kX" PX2) dy, dxy, (12 1
, 3 stn(k)TJn(q,p,k)>dp dg—R(k), (16)
in closed form.

Homogeneity, axisymmetry, and the continuity relation-\yhere the third-order tensaP;;m (K)=KnyPi; (k) +K; Pim (K).
ship force the cross-correlation vector to have the followingThe nonlinear integral in Eq16) shall be approximated by
form; using the EDQNM theory.

Qi(k,p) = 8(k+Pp)Q(K)Pj3(k), 13

thus reducing the model to a scalar equation for the function i .

Q(k). In general, the scala® is a function of the wave B. EDQNM closure and final equation for  Q(k)

numberk, andu, the cosine of the angle between the wave  Equation 16 is an exact transport equation for the spec-
vector k and the direction of the mean gradient, i.e.,trum Q(k), however, it involves an unknown triple correla-
u=k-e4j|k| However, in the present application, this angletion Tin(k,p,q). The approximate solution foff;,(k,p,q)
dependence is not observed for reasons related to the initiBased on a rigorous application of EDQNM theory is as fol-
conditions of the scalar field. Scalar fluctuatighs.,®') are  lows (see Appendix A for details

initially zero and build up thereafter because of the presence A kpq kapr m akp

of the mean gradient. As a result, the scalar func@gk),  Tin(K.p.@)= =i d(k+p+q) O - O DFR(K)R(p)

whose source term is isotropic, remains independejpt fof 1 DPKIR(KIR(Q) + D*IPR(p)R
all time. More general initializations may introduce anisot- nzRIOR(A)+DinR(PIR(A)]
ropy in Q, however, those circumstances are beyond the +Cﬂ}°kR(p)Q(k)+Dﬁgj"R(k)Q(q)
scope of the present analysis. Incidentally, any anisotropy kpg akp
introduced by the initial conditions will decay in time and +DjnsR(P)Q(a) +C"R(K)Q(P)}, (1739
therefore will not affect the steady-state solutions. where
Physically, the single-point cross-correlation vec@r
=u;P’ is the turbulent flux of scalar passing through the C}qu: Cij(k,p,q) =kaPia(p)P;3(q), (17b
system due to the random velocity fluctuations. The only kg
nonzero component of this vector in the present system lies  Dijm = Dijm(K,P,a) = Piap(K) Paj(P) Pom(a), (179
Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins 1591
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1_8-#?% the asymptotic form of the cross-correlation spectrum is not

@#pq=—kpq—, 179 known a priori. Instead, the coefficients, andc; were cho-
atl sen to match the results from the numerical simulatices

M_krpq: Col it mp) + Captqt RL Yk2+p?)+Pet g2 Sec. VI for details.
(17e Substituting Egs.(179—(17¢ into Eq. (16) yields a

The geometric factor€P and DR arise from substituting ~ closed form transport equation fQ(k). The nonlinear con-
the tensor relationships for the Reynolds stf&sys.(9a) and  Volution integral over the wave vectopsandq can then be
(9b)] and cross correlatiofEqg. (13)] into the expression for mathematically converted into an integral over the scalar
Tin (k,p,0). Note that the subscripts in the geometric factorswave numberg andq. The details are given in Appendix B.
[Egs.(17b and(179)] indicate the indices of the tensor while Upon performing the integral over the anglg analytically

the superscripts are a shorthand notatio_n of the wave vectqgee Appendix B for the definition ap,), a common factor
dependence. In previous EDQNM applications, the coeffiy (1—u? emerges throughout the equation. This factor is

cients arising_from the eddy damping ter_(n;; andcs) have then canceled out, yielding the following integrodifferential
been constrained by a known asymptotic form for the SPeCLquation forQ(K):
trum valid at high Reynolds numbers, however, in this case, q '

d
5+(RL1+Pe1>k2)Q<k>=—R<k>+H®$F’Q{—kR“p[HlR<k>R<p>+H2R<k>R<q>+H3R<p>R<q>]
A
+H4R(P)Q(K) + HsR(K)Q(q) + HgR(P)Q(a) + H/R(K)Q(p)}
+10PH - @M I R(KR(p) + I,R(K)R(Q) + I3R(PIR(9) ]+ I4R(9) Q(K)
+J5R(P)Q(q) +I6R()Q(P) +I-R(P)Q(K)}dp dg (18)

The 14 geometric cofactotd;—H; andJ;—J; are summa- A. Exact equation
rized in Table I. Note that all coefficients are functions of the
magnitudes of the wave numbeéesp, andq only. They are
expressed in terms of, y, andz, the cosines of the interior
angles of the triad, which, in turn, can be related to the mag
nitudes of the wave numbers through the law of cosfses ——Pe” l(V§+ Vg) B(X1,X5)
. at
Egs.(119—-(11i)].

The transport equation fd(x,,x,) is found by manipu-
lating Eq.(6b), yielding

J J
== 0"X_ Mn(X17X11X2)_ ax_ Mn(X21X11X2)

V. SCALAR AUTOCORRELATION in 2n

The procedure for deriving the transport equation for the ~ Qa(X1.%2) = Qa(X2. X0), (229
autocorrelation is equivalent to the one used for the cross

. . . ; ; Where
correlation described in the previous section. The scalar au-
tocorrelatiorB(x;,X%,) = &' (X)) ®’(X,), like the cross corre- _ ; ;
(axg) = D (x)®' (Xo) Mn(Xg Xz Xa) = Un(x) @7 () B (xg). (220

lation, is axisymmetric with respect to tleg direction. The

Fourier transform oB(x,,x,) is defined as Transforming Eq(223 yields

B(k,p)=f f B(xy,xp)e kxatPX) dy, dx,, (19 9

E+Pe*1(k2+ p?) |B(Kk,p)
however homogeneity and axisymmetry redigk,p) to the
following: -
- =—|6(k+p)JJ[knl\/ln(—p,p,—q)
B(k,p)=d6(k+p)2B(k,p). (20)
It should be noted that the root mean square of the scalar ~ +PnMn(P.k,@)]dp dq—Q5(k,p)—Qs(p.k). (23
fluctuations @ ms= V@' is related toB(k,u) by The integral term is the conservative transfer term discussed
1 w (1 in detail elsewherée.g., Ref. 28 The final two terms are the
(Drzms:ﬁ f f B(k,u)k? du dk. (21)  source terms for scalar fluctuations that arise from the pres-
0/t ence of the mean gradient. Equati®8) can be further re-
A transport equation foB(k,w) is derived below. duced by introducing the relationships shown in E4s9)
1592 Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins
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TABLE . Table of coefficients forQ(k). “Formula” refers to[1/(1—u?)](pa/k)[L/(2m)3]f5(Integrandid ¢, .
Herex, y, andz refer to the cosines of angles between the vectors of the [sizal Eqs(119—11(i)], andN?

is given byN?= z(k+p+q)(k+p—q)(k—p+0q)(—k+p+aq).

Name Integrand Expanded integrand Formula
Hi knPj3(k)Dngnp KnPj3(K)P3ap(@)P4j(K)Ppn(p) 12@ (7 1+y? Xy
87 k p>  kp
H, knP;3(k)DRES KnPj3(K)Prap(p)Paj(K)Py3(a) N2 pq(yz Xy
87 k \pq kp
Hs k PJ?,(k)D:(:?rsJ knPj3(k)Pjab(k)Pa3(q)an(p) N? Pq ((1+y2) yZ)
87 k| p> pq
H, kaPja(k)CIP¥ KnPj3(K)daPra(p)Pjs(k) N%q
47°pk
Hg knPjS(k)Dggjk KnP;3(K)Pran(P)Pas(@)Pp;(k) N2 Eq(y_z_&l
872 k pg kp
He knP;3(k)DPS KnPj3(K)Pjap(K)Pan(P)Py3(a) N2 pq((1+y2) yz)
872 Kk pq
H7 k PJS(k)qup knpj3(k)Qana(k)Pn3(p) quZ
87K2
N stn(k)DJq3knp P3jn(K)P;ap(@)Pa3(K)Ppn(p) 12@( 1+y? Xy xz y_Z)
87° k p? kp kg pq
J; P3jn(k)DﬁJq3k P3jn(k)Pnab(p)Paj(q)PbS(k) lzpq(_ (1+22)_§/ Xz yz
87° k # kp kg pqg
J3 P3in(k)DAIP P3jn(K)P3ap(K)P4j(a) Ppn(p) qu((l+y2)+ (1+22)_ E)
8n k| p° T “pq
Ja stn(k)Dﬁlequ stn(k)Pnab(p)Pas(k)ij(Q) N2 @( (1+22) Xy Xz+y_z)
872 k qi kp kg pg
Js stn(k)crkm?q P3jn(K)KaPna(P)Pj3(Q) N2 p_((1+y2) yz)
872 k pz pPq
‘]6 P3jn(k)cmp P3jn(k)kapja(q)Pn3(p) N2 E ((1+ZZ)7 y_Z)
872 k q2 pPq
J7 stn(k)D?npak P3jn(K)P;ap(Q)Pan(P) Pps(k) 12@( 1+y? Xy xz y_Z)
872 k| p° kp kq pqg

and(20), eliminating the common fact(fi(k+p). and taking B. EDQNM closure and final equations for ~ B(k,u)
advantage of the fact thdl, (—p,—k,—q)=—M,(p.k,q)

and Poy(k)=1— 422, yielding A rigorous application of EDQNM theory yields the fol-

lowing expression for the triple correlatideee Appendix A
for details:

J
EJFZ Pe1k2>B(k,,u)=ffiann(p,k,q)dp dq
—Q(k)(1—u?). (24

Ma(p,k,@) = —i8(k+p+q)(— OFS*P*Y — ORI DIPER(K)R(p) + DRSR(K)R(q) + DEPIR(P)R(A) ]+ CER(p)Q(K)
+CIPR(K)Q(p) + DPIR(K)Q(q) + DEIPR(P)Q(q)} — O PP — @ BY DIPER(K)R(p) + DPSIR(K)R(Q)
+D4PIR(P)R(G) ]+ DIPR(P)Q(K) + DAZER(4) Q(K) + CEIPR(9) Q(p) + CREIR(p) Q(a)}

+ORTCIPQ(K)Q(p) +DPAIQ(K)Q(a) + CEPQ(P)Q(a) + ATPR(p)B(k, 1) + ARPR(p)B(q,1")]), (253
where the definitions fof:kpq and D,‘jﬁf’ given in Egs.(17b and (179 still apply, and

AP=A;(k,p)=2KqPin(P), (25b)
1- e‘”lh(/lpqt
@Kﬂpq=—kpq—, (250)
MM
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1 [(1-emi (eﬂkpq‘—eﬂ?"'q't)]

™ kpq ™ kpg k/p’q'
ooy | FEPE L A (af o= p P ) p T
o) pgK pq _ ) (250)
M’ _ kpqt
1 (1-e *u )_t_ublp kpg_ , k'p'q’
M_IT_,p’q, Ml'fﬂpq e i ,LLM _MT l
k -1 -
Ing 0= Capuit Co(ppt prq) + R K>+ PE 1 (p*+ 7). (250

The coefficients, andcs are empirical constants associated source, and therefore if they are zero initially they will re-
with scalar transfer. Following the analysis of Andre andmain zero for all time. Thus, the angle dependence of the
Lesieur®® the coefficients are assigned the value 0.36. Thiscalar autocorrelation reduces to

ensures mathematical consistency of the proposed model

with earlier isotropic scalar models, in the limit of a vanish- B(K, 1) =Bo(K)Po() +Ba(K)P2(p), @7
ingly small scalar gradient. wherePy(n)=1 andP,(u)=(3u2—1)/2.
The expression foM ,(p.k,q) [Eq. (253] can be substi- Upon substituting Eq(253 into Eq. (24), re-expressing

tuted into Eq.(24) to yield a closed expression f@&(k,u).  the nonlinear integral term as shown in Appendix B, and
However, a complication witB(k, ) is its unknown depen- expanding the scalar functioBfk, ) andB(q,x”) in terms
dency on the anglg. One method of explicitly representing of the Legendre Polynomial€Eqg. (27)], a closed form ex-

this dependency is to expamik, ) in a Legendre polyno- pression for the autocorrelation is obtained. Separate expres-

mial series inu, as shown belo? sions for the spectral coefficienBy(k) andB,(k) are then
o obtained by multiplying the equation by,(w) (1=0 or 2
B(k,,u)=2 Ba;(K)Paj(w). (26) and integrating with respect ta, thereby taking advantage
j=0 of the orthogonal properties of Legendre polynomials,
[BecauseB(k,u) is an even function ofw only the even 1
members of the series are nonzgrEortunately, in the Pj(M)PI(M)dM:(ZlTl) dj - (28

present application, the infinite series can be truncated after
the second term because the higher-order terms have rthe final expression issee Heri® for detail9

vapet kZ)B|(k)= | [ opm - opttriram(p)+ FiR(R(@) + FARDIR(@) T+ FLRBIQMK)
A
+FER(K)Q(p) + F5R(K)Q(q) + FYR(p)Q(a)} — O P — O R G R(K)R(p)
+GHR(K)R(Q) + G5R(p)R(9) ]+ G4R(p)Q(K) + GER(4) Q(K) + GgR(Q) Q(p)
+GLR(p)Q()}+ ORIMIQ(K)Q(p) + M5Q(K)Q(a) + M5Q(p)Q(q) + MyR(p) B (K)
+MgR(p)B(q)dp dg—3(1-1Q(k), (29)

where “|" refers to the index of the Legendre polynom{@  closed triad. This region of the-q space is shown schemati-
or 2). The 19 geometric cofactors that result from the anglecally in Fig. 1 fork=2. The integral was evaluated using a
integrationsF} —F}, G} -G, andM}—M} are summarized trapezoid rule in two dimensions. Each point was weighted
in Table II. by either unity,3, or ; depending on whether the point was in
the center of the domain of integration, on a bounding line,
or a bounding cornefsee Fig. 1 It would be possible to
improve the accuracy of the numerical integration by substi-
The dynamic equations foR(k), Q(k), By(k), and tuting a higher-order approximation for the integrafedg.,
B,(k) [Egs.(11a), (18), and(29), respectively are classified Simpson’s rulg however, a word of caution is required.
as integrodifferential equations, and therefore updating therfome of the quantities transported by the nonlinear terms
requires a numerical procedure for evaluating the convolushould be conserved under the action of the integral. Non-
tion integral at each time step. Homogeneity requires that thaniform weighting of the internal points may compromise
integral be evaluated over values pfand q that form a  the conservation principle, because cancellations required for

VI. NUMERICAL PROCEDURE
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TABLE Il. Table of coefficients in the equation f&;(k), wherel refers to the order of the Legendre seri@s
or 2). “Formula” refers to: [(I+ %)/(277)3’](pq/k)f1_1f§’7<lntegrandP|(,u)dd)q du. Herex, y, andz refer to
the closines of angles between the vectors of the tfisee Egs.(119—(11))], and N? is given by
N?=3(k+p+0a)(k+p—a)(k—p+a)(—k+p+a).

Name Integrand Integran@xpanded Formula

Fi KiDIE  KiP3ap(@)P4i(P)Pp3(k) N? pq (1+y?)  xy
W?“‘”(‘T*@

F) KiDPSE  KiPiap(p)Paa(@)Pp3(k) N2 pq L I((yz) xy'
2% 0 e il

Fy kD33! kiPsan(K)Pai(P)Pps(a) N2 pq (1+y?) yz
WT“*”(T*E)

Fh KCH*  kiaPia(p)Pag(k) N?(1-I)q
- 6rpk

Fy KCI®  KkigaPsa(K)Pis(p) N2 pq z
Wr(l_l)k_p

Fs kiDPS kiPiap(P)Pas(k)Pp3(a) N? pq yz Xy
2 0 )

Fy kD5 KiP3ap(K)Pas(@)Pyi(p) N? pq (1+y?) yz
e

G} KDIE  KiP3ap(@)P4i(P)Pp3(k) N? pq (1+y?)  xy
e 0 - ]

G, kDR KiPiap(p)Paa(k)Py3(a) N2 pq (y2) xy
e 00 G i)

Gh kDS KiPaan(K)P4i(P)Pys(@) N2 pq (1+y?) yz
e 0[]

Gl kDI KiP3an(@)Pas(k)Pyi(p) N2 pq (1+y?)  xy
WT“‘”(‘ p? *@)

Gs KiDPE  KiPiap(P)Pas(@)Pp3(k) N2 pq yz Xy
2 k¢ ">(m‘ k_p)

Gk KiCE®  kikaP3a(@)Pis(p) N? pq yz [ 1} N2
272 K {‘“‘”ﬁ%“i) kzpzqz}

GY KCIPY  kikaPia(P)P3s(@) N? pq +y? I\ N?
e |0 51+ 2]

M} KCI®  kiaPsa(K)Pi3(p) N2 pq z
T g

M kDRSS KiPiap(P)Pas(k)Pys(a) N2 pq 'yz xy
27 % g il

M} KiC5®  KkikaP3a(@)Pia(p) N2 pq yz I\ N2
e |0 a1+ 3)

My KATP 2kigaPia(p) Nq
"~ 277pk

M} KAP  2kikaPia(p) N°q

conservation may be altered by the different weights. FoiThe spectral code was a modified version of that described in
example, if a particular triad is to appear twice in the inte-Chen and Shah for the velocity field. The simulations for
grand, however, it is weighted differently in each case, thehis study were performed on the massively parallel CM-5 at
system may not precisely conserve the transported quantity.os Alamos National Laboratory. The basic algorithm is
We therefore elected to use a trapezoid rule even though it isquivalent to the one described in the textbook by Canuto
less accurate because it ensures uniform weighting of alt al34 The aliasing errors in the pseudospectral simulation
equivalent points. were completely eliminated by truncating all modes with
wave numbers larger than 47(khe two-thirds rule The
VII. DIRECT NUMERICAL SIMULATIONS physical parameters used in the simulations are summarized
Direct numerical simulations of a passive scalar ad4n Table Ill. The fluid viscosity was set to give an average
vected by an incompressible fluid were performed on & 128spatial resolution parametkf,,, 7»=1.56, the temporal reso-
lattice using a standard pseudospectral Galerkin method totion parameter or CFL number was 0.23, and the Prandtl
update the fluid velocity and scalar transport equatfori8. number was 0.5, therefore both the velocity and scalar field
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EDQNM analysis are directly related to the large-scale scalar
field, and there are a limited number of large-scale modes in
the computational domain, it was necessary to carry out the
simulation for at least 60 eddy turnover times. To our knowl-
edge, such long-time simulations have been performed in
only a few studiege.g., Ref. §. Since the focus of this paper
is the EDQNM analysis, the direct numerical simulation was
used to guide the analysis and provide the necessary infor-
mation to estimate some of the model parameierandcs).
We therefore only report one simulation here. A more de-
tailed comparison between the direct numerical simulations
and the EDQNM model, including a parametric study, will
be reported in a future publication.

Single-point averages of the scalar autocorrelation and
velocity-scalar cross correlation were determined by averag-
P ing the values over the calculation grid. Spherically average

spectra for the cross- and autocorrelations were determined
FIG. 1. Schematic of the region of integration for wave numbe2. The  from sums over shells, as shown below:
gray region is the domain of integration. Points in the center of the domain

1

have unity weighting while points on the bounding lines are weighted by 372 2m 1 . "
1 and points in the corners b Q(ky))=—5 2 2 = [us(k)®* (k)
ki ¢=o n="1 2
were well resolved in space and in time in the simulaffon. +ﬁ§(k)(i>(k)] , (303
The velocity field was made stationary by maintaining con- k;— Ak/2=<|k|<k;+Ak/2
stant total energy in each of the first two wave number shells 5 27 1

(0.5<k=1.5 and 1.5sk=2.5), with the energy ratio between 5 \_7 dK)D* (k
the two shells consistent witk 5. Since the nodes are not = K = ,uzz—l [P E™ (k)] - ki2elkl<k + Aki2
evenly distributed in the spherical shells in wave vector ' ' (30b)

space, a smoothing operatfSnwas applied to the energy Th le-d dent tra for th i lati
spectrumE (k). Because the velocity field was stationary, the € angle-dependent spectra for the autocorrelation were
then determined using a conical average, defined by

scalar fluctuations, which were initially set to zero, asymp-

totically approached a constant mean value at long times that a2 2T R

was determined by a balance between the fluctuation source B(Kk; ”“i):F 2 [D(k)D* (k)] k_7g<|k|<k_+%.

due to the mean gradient and the rate of dissipation con- i #=0 P2 b2

trolled by spectral cascade and dissipation. _ i ATMSM%L# AT“
The direct numerical simulation was first run with the (300

velocity field only for about ten eddy turnover times to ob-

tain a statistically stationary hydrodynamic field. The scalaV!ll. RESULTS AND DISCUSSION

field was then introduced and the simulation was continued As mentioned previously, the model contains two adjust-
for an additional 60 eddy turnover times. We assumed thable constantéc, andcy) that arise from the eddy damping
scalar field had achieved a statistically stationary state afteélerms in the cross-correlation spectrum. The constants cannot
30 eddy turnover times, and so the remaining 30 eddy turnbe constrained by imposing an asymptotic form for the cross-
over times were used to compute the average values of theorrelation spectrum at high Reynolds numbers since none
scalar and scalar-velocity correlations. One motivation forexists. Instead, we have elected to fix the constants by fitting
running the simulations for such long times was to achievahe Q spectrum at long times to the time-average spectrum
meaningful statistical measures of the mean scalar quantitigsom the numerical simulations. The figure of merit for the
of interest. Since most of the statistics addressed in theptimization is the mean value of the single-point correlation

TABLE Ill. Parameter values used in direct numerical simulations and model calculations. Dimensional parameters are based on arbitrary Upjts. Here
refers to the turbulence intensityjs the dissipation rate; is the kinematic viscosity;. is the integral scaley is the Taylor Microscaley is the Kolmogorov

scale;T, is the large eddy turnover tim&: is the magnitude of the mean scalar gradient; arbl'? is the root mean square of the scalar fluctuations. As for
the dimensionless parametelRs, andR, are Reynolds numbers based on the integral scale and Taylor microscale, respdetisehe Prandtl number; and
D, is thedimensionlessoot mean square scalar fluctuatiddased on the characteristic scalar vallle).

Dimensional parametefgrbitrary unit$ Dimensionless parameters
Title Uims € v L N 7 Te r o2 R, Ry P D
DNS 0.84 0.19 0.006 1.59 0.58 0.033 1.9 1.0 2.15 223 81 0.5 1.35
EDQNM 0.88 0.19 0.006 1.59 0.61 0.033 1.8 1.0 2.23 233 89 0.5 1.40
1596 Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins
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FIG. 2. Optimal values of the coefficients andc; in the eddy damping  F|G. 3. The turbulent energy spectrum for the mo@elid line) and simu-
terms associated witfl, (k,p,q). The coefficients were determined by fit- |ation (dashed ling The spectrum from the simulation was averaged over
ting theQ(k) spectrum from the model to the equivalent spectrum from the3g eddy turnover times.

direct numerical simulations. The results shown in the paper are based on
the combinatior(0, 1.03.

numerical simulations. There is reasonable agreement over
L most of the wave numbers. The differences are attributed to
uz®’. Figure 2 shows the acceptable pairs of valuegof two causes(i) the imperfect match of the forcing in the two
andc,. The solid line is a least squares fit of the results. It isSystems; andii) neglecting the contribution of the forcing
interesting to note that the relationship between the two coterm to energy transfer in the EDQNM model. The effect of
efficients is linear, which is consistent with the other pair ofthe latter is apparent in the DNS spectrum just beyond the
coefficients in the autocorrelation spectruge., ¢, and  forcing range(indicated with an arrow in Fig.)3 that is,
cs).28 We chose the combinatiay, c;=(0,1.03 for the cal- there is a noticeable bump in the energy spectrum at that
culations shown in this paper, however, the results were relg2oint. Most likely, this results from an enhancement in the

tively insensitive to the particular combination used. rate of energy transfer to the wave number just beyond the
forcing band due to the forcing. This is not accounted for in
A. Energy the EDQNM model. To compensate, the model must over-

Much of the earlier work with the EDQNM model has predict the energy at the second wave number so as to yield
focused on decaying isotropic or axisymmetric turbulencean integral scale in agreement with the simulations. Addi-
The numerical simulations in the present study are mad&gonal work is required to correctly incorporate the effect of
stationary by forcing the low wave number end of the specforcing on the transfer function in the EDQNM equation for
trum, therefore the EDQNM model for the energy must in-the energy. However, despite these objections, we believe
clude forcing terms as well to be consistent. A forcing func-there is sufficient agreement between the predicted energy
tion was added to the standard EDQNM model to supply spectrum and the simulations to achieve meaningful com-
constant(in time) source of energy to the first two wave parisons of the other scalar spectra.
numbergsee Eq(11a), and related equations in the tExAt
steady state, the rate of energy addition to the fluid must ) o
equal the rate of viscous dissipatiog), hence B. Single-point scalar statistics

1 Figure 4a) illustrates the time dependence of the scalar-

€=52 (F1+4F,), (31)  velocity cross correlatiorfturbulent scalar flux The DNS
results are spatial averages over the domain of integration

whereF, is the magnitude of forcing at wave numberThe  (cube of length z) and the EDQNM model results were
dissipation rate in the simulations can be readily determinedetermined from Eq(14). As noted above, the scalar statis-
from the energy spectrum. EquatigB1) provides a con- tics are particularly troublesome, requiring several eddy turn-
straint on the values d¥; andF,. A specific combination of over times to achieve reasonable statistical convergence.
F, andF, satisfying Eq.(31) was chosen so as to match the Nevertheless, there appears to be quantitative agreement be-
integral length scale of the numerical simulation as well.tween the model and simulation results. It should be noted
Figure 3 shows a comparison between the energy spectruthat the coefficientg, and c; were chosen to optimize the
from the EDQNM model and an average spectrum from theagreement at long times, so the test is whether the model
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FIG. 5. Single-point scalar autocorrelation as a function of time. The solid
curve was determined from the model and the dashed curve from the nu-
merical simulation. Simulation values are instantaneous volume averages of
the correlation.

X tion for By(k) (aside from those fixed in earlier studieShe

spatially averaged scalar autocorrelation fluctuates slowly
with a period of several eddy turnover times. A comparison
between the simulation and EDQNM model results shows

02

0 0 ® W, “ % 0 that the time-average value of the scalar autocorrelation is
predicted to within 4% of the simulation value.
FIG. 4. (a) Single-point scalar-velocity correlation as a function of time. Several earlier studies of passive scalars in the presence

The solid curve was determined from the model and the dashed curve fropf a uniform mean gradient have focused on the magnitude
the numerical simulation. Simulation values are instantaneous volume avelsf derivatives in the direction of the mean gradient and in the

ages of the correlatiorib) The same correlation normalized by the product . . 2§ L. .
turbulence intensity . times the root mean square scalar fluctuatigs. transverse directioh® Scalar derivatives differ from the pre-

The correlation is initially very higlii.e., near unity, however, it diminishes ~ Vious statistics in that they explicitly involve the angle de-
in time due to transfer processes that tend to decorrelate the scalar apsendence of the scalar autocorrelation. That is readily appar-

velocity fields. ent from the definitions for the gradients shown below:

, , _[o®\2 1 (2 (= 4 (=

captures the transient behavior. It appears to do well. Figur | =323 f Bo(k)k* dk+ 15 B,(k)k* dk|,
4(b) shows the cross correlation normalized by the Idaal X3 77 0 0

time) value of U, ®P,ms. The Schwartz inequality restricts (323

this normalized correlation to be less than unity. Both the d\2 Tad\2 1 (2 (=
=\—| =5 §f Bo(k)k* dk

DNS and model predict that at early times, the correlation i =—
nearly unity (i.e., the velocity and scalar fluctuations are 2m
strongly correlated but at later times the correlation is di- -
minished, ultimately approaching0.6 as time approaches - — Bz(k)k“dk).
infinity. The strong correlation at early times results from the 15 Jo

d_omlnance of the source terms in the scalar transport eqUiigure Ga) shows a comparison of the square of the gradient
tions that produce scalar fluctuations that are precisely cof, ™ ne longitudinal and transverse directions with the
related to the eddy motion. At later times, this strong COMEEDQNM model result. Again there is reasonable agreement
lation is diminished by the different rates of spectral transfefyanyeen the model and simulation. The literature often con-
of energy and scalar concentration that results from differjqers the ratio of these two derivatives as a measure of the
ences in the convective terms for each quantity. A modakpisotropy of the scalar field. By definition, this ratio in the
analysis developed by Brasseur and ¥/eias used to quali- model is given by

tatively confirm this result. In addition, the DNS results ap-

(’)‘Xl (9X2 0

(32b

pear to corroborate the model prediction of thée of deco- b\ 2 ab\? 1+2A
rrelation of these two fields. A:(a_xa) /((9_)(1) 1A (339
Here®,,was determined from the simulations again by
taking a volume average and from the EDQNM model bywhere
evaluating Eq.(21). The results are summarized in Fig. 5. w 4
This comparison is perhaps a more direct evaluation of the = 1 w
= R (33b
model since there are no adjustable parameters in the equa- 5 [oBo(K)k™ dk
1598 Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins
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x, ' FIG. 7. The scalar-velocity cross-correlation spectrum as a function of wave
Y Y wooy number. The spectrum is definedig(k) = —k*Q(k)/37°. The solid line is
the result from the model and the dashed line is the result from the simula-

tion after averaging over 30 eddy turnover times.

0.8 -

0.6

to the autocorrelation spectrum in Sec. Ill C, and again in
FIG. 6. (a) Average, single-point derivatives of the scalar in the direction of S_ec. i D’_WhICh IS_ a more Complete discussion of the ori-
the mean gradien{d®/ax;]?) and in the transverse directicfud/ax,]?). gins of anisotropy in the EDQNM model.

The subscripie designates the ‘1’ or ‘3’ direction and therefore doex

imply a summation(b) Ratio of the two square derivatives as a function of

time. Notice that both the model and simulation show this value to be belowC, Scalar spectra

unity at short times and greater than unity at long times. This is associated

with an angular redistribution of the scalar autocorrelatie Sec. VIII D. The  velocity-scalar  cross-correlation  spectrum,

Eq(k)=—Q(K)k*/37?, is shown as a function of wave
number in Fig. 7. The spectrum is defined such that the in-
tegral yields the single-point cross correlatiore., uz®").

Figure Gb) is a plot of the predicted and observed ratio of-l;]he average Icro.ss-::ot.rrelatllc))n spectrgm V\ée(l)s obta|tned frorr?
the square of the gradients. It is interesting to note that a € numerical simufations by averaging spectra, eacl

. . A . Separated by an eddy turnover time. Good agreement is
short times this ratio is less than unity, and grows abov

unity at long times. From Eq333 it is apparent that as the efound between the simulation and model results. Further-

ratio increases from a fraction of unity to greater than unit more, although the coefficients, and c were chosen to
) ) ytog . y'op'[imize the fit between the simulated and modeled cross
the variableA must change sigffrom negative to positive

. . - ) oS correlations, the coefficients predominantly control the low-
SinceBy(k) is positive definite, this implies thal,(k) must est wave numbers and have little effect beyond a wave num-

change sign. Indeed, that is what the EDQNM model préyo, o annroximately 3. Therefore much of the agreement

dic_ts. At Iong. times, there is some discrepancy between the,, pe attributed to the performance of the EDQNM model
ratio, A, predicted by the EDQNM modeh=1.08 and the 5, not to the fitting of the coefficients. The equivalent spec-

value found in the direct numerical simulatio’$=1.02.In  yym for the scalar autocorrelation is, by definition,
fact, the anisotropy in the DNS scalar concentration field WaE (k) =B,(k)k¥ =2. Figure 8 shows a comparison of this
barely discernible, especially given the significant statisticakpectrum with the simulation. The model again does very
fluctuations in the DNS. Interestingly, the model predictionye|| in predicting the correct scalar spectrum, except at the
is in closer agreement with earlier experimental measurehjghest wave numbers.

ments by Tong and Warhaftwho found A=1.4 (indepen- A critical feature of the passive scalar in the presence of
dent of Reynolds numbgrand the direct numerical simula- a mean gradient is the reduction in symmetry from isotropic
tions of Pumir? who found values oft ranging from 1.07 to  (no mean gradieitto axisymmetric. This reduction in sym-
1.33. It should be noted that we found this ratio to be somemetry is responsible for the discrepancy in the magnitude of
what sensitive to the Reynolds number and very sensitive tthe derivatives of the scalar in the direction parallel and per-
the Prandtl number. Furthermore, no effort was made in thipendicular to the mean gradient. The anisotropy in the scalar
study to match the conditions of Tong and Warhaft  autocorrelation can be observed directly in the simulations
Pumir® We will return to the topic of anisotropy as it relates by substituting conical averagé&q. (309)] for the shell av-
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_____ 12 k2 3
~——_ JO Eg(k,u)du=5— (5 Bo(k) 1—682<k)), (343
107 s 1 k? (1 3
\ LIZEBW,M)du— 52 (2 Bo(k)+ 75 Ba(K)|. (34D
3 . At long times, the EDQNM model predicts that the second
7 integral[Eq. (34b)] exceeds the first integriEq. (343 ] at all
€ wave numbers. Likewise, most of the DNS points follow this
. i trend. The major exception occurs at the very first wave
10° number, where the trend in the DNS is strongly reversed.
, This reversal may be an artifact of the relatively poor grid
7 resolution in the first shell of wave numbers. Nevertheless,
10% despite the scatter in the DNS data, the trends throughout the
remainder of the spectrum are represented reasonably accu-
10° rately by the model. In particular, the model correctly pre-
dicts that the largest deviation between the two spectra oc-
° 3 43 s E LA B B curs at low wave numbers, and diminishes thereafter with
k increasing wave number.

FIG. 8. The scalar autocorrelation spectrum as a function of wave numbey  Anjsotropy in the EDQNM model

The spectrum is defined & (k) =k?B(k)/72. The solid line is the result

from the model and the dashed line is the result from the simulation after ~ Thus far, we have examined the anisotropy in the scalar

averaging over 30 eddy turnover times. autocorrelation by evaluating derivatives in the directions

parallel and perpendicular to the mean gradiéig. 6) and

. . . by examining partially integrated spectffaig. 9). Now that

e e o e Tave Some cofence  h modesabiy o predc e

the siyrhulations makes it difficult to observegthe angle de enscalar correlations, it is insightful to consider the mecha-
9 PeNisms responsible for anisotropy in the model. The mecha-

dence directly, however, we can calculate the spectrum inte-. : '
’ ' hisms suggest physical explanations for the effects observed
grated over ranges of the angleso that we may look for ggest phy b

systematic deviations from the isotropic case. For examplein the direct num_erical s?mulati(_)ns presented here and else-

Fig. 9 illustrates the scalar autocorrelation integrated ove\rNhere _and exp_erlments in the literature.

ranges ofu. defined by 8=u<3 and i=u=1. The individual _,_~" o0 oPY In the EDQNM modle! for the scalay autocor-
2 2=H=2 relation is represented entirely By (Kk); that is, if B,(k) =0,

sg;gtr;?nrg dt?reo;utrngr:rilStlirgzll?g(r)nmsjIzg(irtgsvr?(ﬂlglolwgs ar‘ta‘ne scalar spectrum is, by definition, isotropic. Recall in the
y : governing equation foB(k,u) [Eqg. (24)], the anisotropic
source term is

> Qa(k)=Q(k)P33(k)=Q(K)(1— u?). (35)
. o ey Thus, Q5(k) is not only a source of scalar fluctuations, but
. £ NS (oo vorr) also a source of anisotropy in the scalar spectrum as well.

Upon expanding Eq24) in terms of Legendre polynomials,
the anisotropy in the source tefag. (35)] is manifested in

the two separate source terms in the equations governing
By(k) andB,(k) that are equal in magnitude but opposite in
sign[see Eq(29)]. This can be illustrated by considering the
behavior of Eq(29) in the limit that the source terms domi-
nate the nonlinear transfer terms and dissipation. In this
limit, the coefficientsBy(k) and B,(k) would be equal in
magnitude and opposite in sigh.e., B,(k)=—By(k)],
yielding an autocorrelation of the form

B(k, 1) =Bo(k) +Ba(K) (3% = 2) = 3Bo(K) (1~ u?).
(36)

The source term, therefore, attempts to impose its anisotropy
on the scalar spectrum. Furthermore, close examination of
FIG. 9. Partially integrated scalar autocorrelation spectra from the EDQNMTable Il shows that most of the coefficients in E9) as-

model (solid and dashed lingsand numerical simulationésymbols. The ; ; : e
coefficients(a,b) are either(0. 3 or (1,1). Notice that the model predicts sociated with nonlinear transfer of the scalar are also consis

that the latter integrated spectrum exceeds the former integrated spectrum &@Nt With the source term, i.e.,' they only change sign. when
long times. A similar result is observed in most of the DNS points as well.changes from 0 to 2. All coefficients that are proportional to

0.1

o4
8
74
6
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b
[E, ey

24
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FIG. 10. Two-dimensional contour plots Bik,x) and its source terr5(k,u) as a function of the wave numbeks andk; at early timequpper left and
upper right, respectivelyand after steady state has been reaclmuer left and lower right, respectivelyThe mean gradier{t3’ direction) is pointing in the
vertical direction. It is apparent that at short times the topological shape &f(the.) surface is similar to that foQ;(k,«), however, at long times, angular
rearrangement occurs causing the autocorrelation spectrum to become nearly isotropic.

a factor (1-1I) fall into this category. By definition, these either source term cross thg axis. Likewise, the autocorre-
terms reinforce the anisotropy introduced by the source termation contours are strongly anisotropic at short times, par-
The reason thaB,(k) # — By (k) for all time is that some ticularly at small wave numberdarge scales however, at
of the transfer terms in Eq29) [those with coefficients that longer times, the scalar contours form nearly perfect concen-

are not proportional to(1—1)] redistribute the scalar in the tric circles(indicating near isotropy Moreover, the contours
angular direction ofk space. The terms responsible for this are now slightly elongatedlong the gradient axisThis re-
angular redistribution are the ones associated with coeffiarrangement in the contours explains why the ratio of deriva-
cients:Gg, G7, M3, andMs. It should be noted that angular tives shown in Fig. @) starts out below unityconsistent
transfer is a conservative process; that is, the total root meanith elongated contours in the transverse diregtidout
square fluctuation is conserved by the angular redistributioreventually ends up greater than unity as the scalar field rear-
Furthermore, the redistribution does not occur instantaranges. Note also that the rearrangement occurs most quickly
neously, but requires a finite time to occlapproximately  at the highest wave numbers, and eventually proceeds to the
one eddy turnover timeThis can be seen by considering the lowest wave numbers. This is consistent with classical mod-
contour plots shown in Fig. 10. The upper left plot showseling arguments that assume rapid “return to isotropy” of
isocontours of the scalar autocorrelatiBiik,«) at a rela- the smallest scales.

tively short time (t/T,=0.1) plotted on the K,,ks) plane Most of the published values for the relative ratio of
(where the mean gradient points in the vertical diregtion derivatives were evaluated at several eddy turnover tfrfies,
For the sake of comparison, the source term8¢k, ) [Eq.  long after the aforementioned rearrangement occurs, hence
(35)] is shown in the upper right. Equivalent plots of the their values are always greater than unity. Initially, it was
scalar autocorrelation and source term at a later timsomewhat surprising to us that the ratio of derivatives could
(t/T,=33) are shown below. It is readily apparent that theever be greater than unity, based on the shape of the source
source terms are strongly anisotropic at early and late timeserm. The explanation appears to be that rapid angular rear-
(Note that an isotropic spectrum would appear as concentriangement of the scalar occurs as a result of four of the
circles in this diagram.For example, none of the contours of transfer terms. The angular rearrangement is sufficiently fast

Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins 1601

Downloaded-01-Jul-2005-t0-128.117.47.188.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



(a)

AY
-100 — \\
AY
5 \\ o
ln[E(k)k/’] \ )
N [=4
‘ 5]
-200 — \ =
\
A
Al
)
1
1)
-300 - \
1}
1)
1
1]
1
1
.400 T L} ”I||l| T LA ML ALY | T T llllll' !
10 100 1000

k

—— HighRe
- --LowRe
0 —
<

-100 < .
.
N
N
N
.
\\
In[E(k)] N,

-200 — R =

n %

N
. o
.
\ lE
.
300 N
\\
N
.
.
N
N
N
00 bl
A T T T
0 500 1000 1500

FIG. 11. (@) Energy spectrum for the high-resolution runs multiplied<s¥.
The solid line corresponds t&,=342 and the dashed line corresponds to
R,=96. Note the appearance of a well-defined inertial rafagpears as a
horizontal line in these coordinategb) Semilogarithmic plot of the energy

spectrum that emphasizes the exponential behavior in the dissipation ran@e' 12.  The scalar-velocity
of the spectrum.

cross-correlation  spectruig(K)
k,Q(k)/37? as a function of wave number for the high-resolution num-

ber runs.(a) R,=96 and the Prandtl numbers are 25gvlid line), 5.0
(dashed ling and 1.0(dotted ling, respectively.(b) R,=342 and Prandtl

numbers are 1.0solid line), 0.2 (dashed ling 0.04 (dotted ling, and 0.008
that it erases all memory of the source term, yielding ar(dash—dotted ling respectively.

autocorrelation spectrum that is nearly isotropic, and even
slightly skewed in the direction of the mean gradient.

. Reynolds number&ote, the inertial range appears as a hori-
Eﬁn'\ﬁl())gresl results at high Reynolds and Prandil zontal line in these coordinatesFigure 11b) is a semilog

plot of the energy spectrum to illustrate the exponential dis-
A major limitation with numerical simulations is the sipation region that follows the inertial range. Note that at

range of Reynolds numbers and Prandtl numbers that abe highest Reynolds number, the inertial and dissipation
numerically accessible. Models, in contrast, have no suchanges are distinct and well defined.

limitation because the spectrum is fundamentally a one- Figure 12a) shows the steady-state cross-correlation
dimensional(1-D) quantity (instead of a 3-D quantijythus  spectrum EQ(k)E—Q(k)k2/37T2 at the lower Reynolds
the storage requirements are substantially reduced. We hameimber and Prandtl numbers between 1 and 25, and Fig.
run the EDQNM model at Reynolds numbers of 96 and 34212(b) shows the same spectrum at the higher Reynolds num-
(based on the Taylor Microscaland Prandtl numbers rang- ber and Prandtl numbers ranging from 0.008 to 1. The
ing from 0.008 to 25. To accommodate these higher valueRrandtl numbers were chosen to highlight the different scal-
the maximum wave number was increased to 1024. Figur@ng regions for the passive scalar. The spectra in both figures
11(a) shows the steady-state energy spectrum multiplied byappear to have an inertial range followed by a dissipation
k53 A clear inertial range can be easily identified at bothrange that depends on the Reynolds number and Prandtl
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tra have a well-defined inertial range wittka®® power law

at low wave numbers followed by a second power-law re-

gion with a more shallow slope, and an exponential tail at
very high wave numbers. The location of the dissipation

range is a strong function of the Prandtl number. Once again,
the dissipation range moves to higher wave numbers with
increasing Prandtl number, however, in this case, the trend
should continue indefinitely. That is, the autocorrelation

spectrum willnot approach a constant asymptotic shape at
large values of the Prandtl number. Similar trends are ob-
served in the high Reynolds number styéyg. 13b)]. No-

tice that the inertial range in the scalar spectrum at the lower
Prandtl numbers is also followed by a second power-law
region, however, now the slope of the second region is
steeperthank >3,

With the increased resolution of the present calculations,
it is possible to quantitatively determine the scaling relation-
ships within the “second” power-law region that follows the
inertial range. We show the scalar autocorrelation spectra for
the two limiting Prandtl numbers separately in Figs(dl4
and 14b), along with lines indicating the classical scaling
laws. Figure 14a) has a clear viscous-convective region with
a k™! power-law behavior, in agreement with the original
analysis by Batchelo There has been an objection raised
about thek ™! spectrum and the implicit logarithmic diver-
gence ofd,,,,; as P—».3° For the moment, we simply point
out that the EDQNM model predictska * Batchelor region,
even in the presence of a mean gradient. Furthermore, we
note that this observation is consistent with, and perhaps par-
tially explains, other experimental observations lkf?!
Batchelor regions in more complex inhomogeneous
flows *>*! Figure 14b) shows the inertial-conductive range
at the lowest Prandtl number with a dashed line indicating
the classicak—% power law predicted by Batchelet al*?
Once again, there appears to be good agreement with the
scaling law.

In Eg(k)

In Eg(k)

FIG. 13. The scalar autocorrelation spectrig(k) =k?Bq(k)/#* as a func-
tion of wave number for the high-resolution number ruasR, =96 and the

Prandtl numbers are 25(8olid line), 5.0(dashed ling and 1.0(dotted line, ;
respectively.(b) R,=342 and Prandtl numbers are 1(olid line), 0.2 An EDQNM turbulence transport model for a passive

(dashed ling 0.04(dotted ling, and 0.008dash—dotted ling respectively. scalar in the presence of a uniform mean gradient has been
developed. The model accounts for the axisymmetric scalar
autocorrelation by expanding the angle dependence in a Leg-

number. As expected, the location of the dissipation range igndre polynomial series. A fortuitous consequence of the ini-

the spectrum moves to higher wave numbers with increasingjal conditions used in this study is that the infinite series can

Prandtl number, however, this will not continue indefinitely. be rigorously truncated after the second term. The model

At asymptotically large Prandtl numbers, the location of thecontains two adjustable constants arising from the eddy

dissipation range will be determined by the molecular vis-damping procedure. Since there is no asymptotic form avail-

cosity, or in nondimensional terms, the Reynolds numberable for the scalar-velocity cross correlation, no external con-

Thus, the cross-correlation spectrum must asymptotically bestraint could be placed on these coefficients, and conse-

come independent of the Prandtl number as the Prandtl nunguently they were determined by optimizing the fit of the

ber approaches infinity. This is evident in Fig.(42 Notice ~ scalar-velocity cross correlation to the DNS results.

IX. CONCLUSIONS

that the spectra at the two highest Prandtl numbers5 and We compared a number of single-point statistics to the
P=25) are much closer to each other than to the spectrum d&@NS database, including the scalar autocorrelatibf?,
the lowest Prandtl numbéP=1). scalar-velocity cross correlatian®’, and derivatives paral-

The scalar autocorrelation  spectrum Eg(K) lel and perpendicular to the mean scalar gradient. The agree-
=B,(k)k?/ 72 is illustrated in Fig. 13 at both Reynolds num- ment between the simulations and model was good for the
bers and the same Prandtl numbers, as shown in Fig. 12. Fecalar-velocity cross correlation, however, this can be par-
the low Reynolds number studiFig. 13a)], the scalar spec- tially attributed to the adjusted coefficients in the model. A
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is extremely relevant to the development of a simplified
model of scalar transport because incorporating anisotropy
will add significantly to the model’s complexity, ultimately
limiting its utility for three-dimensional flows or flows in
complex geometries. Remarkably, despite the strong anisot-
ropy imposed on the scalar autocorrelation by the source
terms, the scalar autocorrelation was found to be nearly iso-
tropic after approximately one eddy turnover time. Appar-
ently, the nonlinear transfer terms responsible for redistrib-
uting the scalar in wave number space also redistribute the
scalar in the angular direction. This angular redistribution
occurs sufficiently rapidly that the anisotropy imposed by the
source term is completely negated by angular transfer. In-
deed, we predicted the scalar spectrum to be sligatly
hancedalong the direction of the mean gradient at long
times, in contrast to the source term that is identically zero
along that direction(a result consistent with earlier experi-
mental measurements in the literafur®ore importantly,

our model and DNS results showed this difference to be
quite small. We therefore conclude that given the significant
errors in most single-point transport models introduced by
the closure approximations, the error due to assuming local
isotropy is most likely not as significant.

Comparisons of the spherically averaged spectra for the
scalar-velocity cross correlation and scalar autocorrelation
were made with the DNS results. In general, there was very
good agreement between the two. There was excellent agree-
ment within the inertial range, and some disagreement within
the dissipation range. It is difficult to pinpoint the cause of
the discrepancy at the higher wave numbers, particularly
given the large number of transfer terms in the madeke
Tables | and I). Perhaps a more systematic study of each
transfer term may indicate the terms for which the EDQNM

In Eg(k)

In Eg(K)

(b approximation is breaking down.
60 L+ ——— e ————rrrm : One advantage the EDQNM model has over DNS is that
10 100 1000 it is fundamentally one dimensional, thus it can be run at

k much higher Reynolds numbers and Prandtl numbers than

can be achieved in the simulations. The high Reynolds num-
FIG. 14. Replot of the scalar autocorrelation spectra corresponding to thper and Prandtl number studies allowed us to look for power-

extreme values of the Prandtl numbé P=25.0 and(b) P=0.008. The . . . . .
dashed lines indicate the classical power-law behaviors for the differenlaw scahng relatlonShlpS for different ranges in the scalar

regimes, with the exponents as indicated on the graph. The energy spectru@ttocorrelation spectrum. We observett @ power law in

is also shown for comparisdfdotted ling. the viscous-convective region at high Prandtl numifees,

the so-called Batchelor regipand ak ~*""® power law in the

inertial-conductive range at very low Prandtl numbers. It was
oted that there has been some controversy aboukthe

@’atchelor region and its implications on the boundedness of

from those prescribed in earlier isotropic stugie®nce Dry i the limit P—. For the mome_nt we or_1|y point .OUt

again, we found the agreement between the model and simHj.at the ED.QNM model clearly predicts scaling consistent

with the original Batchelor argument. A more comprehen-

lations to be quite goo@within 4%). . . ) . . .
q goodw 9 jlve discussion of the Batchelor region will be the topic of a

perhaps more stringent test was the scalar autocorrelatio
which had no adjustable parameters in its equataside

Earlier experimental and numerical studies of a passiv

scalar with a mean gradient reported differences in the ma uture paper.

nitudes of scalar derivatives in directions parallel and per-

pendicular to t.he mean gradignt, !.e., they found the ScalaACKNOWLEDGMENTS

field to be anisotropié® We likewise observed the same

effect in the model, although the magnitude of the effect was We acknowledge computational support for the simula-

smaller than that found in the other studies reported in théions presented in this paper from Los Alamos National

literature(approximately 8% for the ratio of the square of the Laboratories. Two of the authokSH and LRQ gratefully

parallel to perpendicular derivatives acknowledge financial support from Dow Chemical through
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APPENDIX A: DERIVATION OF THE CLOSED TRIPLE where
CORRELATIONS USING THE EDQNM
APPROXIMATIONS

L Tnep.a) Tini(X2.%2, X3, X4) = Ui (X)) Un(X2) Uj(X3) @ (Xg),  (A1D)
EDQNM theory provides a methodology for obtaining
approximate relationships for the triple correlations such as
T..(k,p,q) based on the principle that the velocity and scalar
fluctuations are nearly Gaussian. The theory involves three  Riin(X1:X2,X3) = Ui(X1)Uj(X2) Un(X3).-
basic stepsti) derive exact transport equations for unknown
triple correlationsyii) apply the quasinormal approximation
to the fourth-order moments; an@i) add eddy damping According to the EDQNM theoryT;,;(X;,X2.,X3,Xs) Can be
terms and apply the Markovian approximation to obtain anapproximated by
explicit expression for triple correlation.
The exact transport equation for,(x;,X;,X3) is as fol-

(Alc)

lows:
Tinj(X1,X2,X3,X4) =~ Rin(X1,X2) Qj(X3,X4)
J .
at Pe ! Vi-R Y(Vi+V)) Tin(X1,%2,X3) R (X1, %) Qnl(X2,Xa)

+ Rnj(X2,X3) Qi(X1,X4). (A2)
== %an(Xz)Tku(Xz'X21X1,X3)
1
2P (Oxa) Than(Xa, X4, X2 Xs) Upon substituting this approximation into E@\1a), Fourier
J Transforming, and taking advantage of the known tensorial
% Tiin(X1,X3,%2,X3) = Rjan(X1,X3,%2),  (Ala)  relationships for the lower-order moments, the following ex-
pression is obtained:

J ~
s Hpet a2+ R (K24 p?) | Tjn(k,p,a) = —i 8(k+p+a)| 4P} (K)Pya(P)R(K)Q(P) + 0y Pin(P) Pja(K)R(P) Q(K)

1 1
+ 5 Paki(P)Pyj(K)P1a(a)R(K)Q(q) + 5 Paki(p) Pyj (k) Pia(@)R(K)Q(q)

1 1
+ 5 Pi(KPin(P)P1@R(P)Q(A) + 5 Pjia(K) Pin(P) Pis(@)R(P) Q(a)

+Rj3n(k!q!p)- (A3)

The expression foR; 5, (k,q,p), determined previously for (17d) in the main text, and the compact notation defined in
the energy equatio"r%‘, can be used in EqA3). Of course, Eqgs.(17b and(17¢ is being used.

since the energy field is not evolving in tinfstationary tur- 2. M,(ak.p)

bulence, R;3,(k,q,p) is constant. EquatiofA3) can be for- T
mally solved forT;,(k,p,q) in terms of a time integral over The transport equation foM(x3,X1,X,) in physical
the right-hand side. Introducing the standard eddy dampingpace is shown below:

terms and invoking the Markovianization approximatfon

yields the following explicit relationship fof;,(k,p,q): d B B
" 1 PE VIV RIS IMy(xz X1, %)

Tjn(k,p,q) = —i 8(k+p+q) O — O KT DIPR(K)R(p) 9
== W Mnj(X21X11X1!X3)_ W Mnj(X21X31X1!X3)
1j 3j

+DPKIR(K)R(q)+ DIIPR(p)R()]

+ ngka(p)Q(k) + Dﬁgij(k)Q(Q) 2 Ppj(X3)Mi (X2, X2, X1,X3) = Tna(X2, X1 ,X3)

(9X2i
+DXPIR +CIPR(k : A4
in3R(P)Q(a) +CiPR(K)Q(p)} (A4) T, (Xp X X0), (A5a)
Definitions for O and ©%PY are given in Eqs(11d) and  where
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Min(X1,X0,X3,X4) = Ui (X)) Un(X) D' (X3) D' (X4). (A5b) Min(X1,X2,X3,X4) =~ Rin(Xq,X2) B(X3,X4)
+ Qi(X1,X3) Qn(Xz,X4)

+ Qi(X1,X4) Qn(X2,X3). (A6)
The quasinormal approximation foM;,(X;,X,,X3.Xs) IS Substituting into Eq(A5) and Fourier transforming the re-
given by sulting equation yields

J ~
S HPe ik a?)+ RC'p?|Mu(p.k, @)= —i8(k+p+a)[daP3a(K)Pia(p)Q(K)Q(P)

+ 3 Piab(P) Pas(k) Pu3(a) Q(K)Q(Q) + 2Pian(P) Pas(@) Poa(k) Q(K)Q(q)
+KaP3a(q)Pia(p)Q(P)Q(q) +20,Pia(P)R(P)B(K, 1)

+2K4Pia(P)R(P)B(Q, 1")] — Tha(p,K,q) — Tha(p,q.K). (A7)

Standard eddy damping coefficients can now be introduced into(4&f). The Markovian approximation, in contrast, is
complicated by the fact thaf,;(p,k,q) and T,3(p,q,k) are exponential functions of time, from the previous Markovian
approximation. Consequently, “Markovianization” of EGA7) shall neglect the time variation of the scalar spectra, as is
usually done, but will account for the exponential functions introduced by the previous Markovian approximations in
Tha(p,k,q) andT,3(p,q,k). The result is

Mo(p,k, @)= —i8(k+p+q)(— ONFPY — @R DIPAR(K)R(p) + DPSR(K)R(q) + DEPIR(P)R() 1+ CIR(p)Q(k)
+CIPR(K)Q(p) + DRSIR(K)Q(q) + DEIPR(P)Q(a)} — OFS* P — ORI DIRER(K)R(p) + DPASR(K)R(q)
+DSPIR(p)R() ]+ DIPR(P) Q(K) + DPHR(9) Q(K) + CEIPR(9) Q(p) + CKEIR(p) Q(a)}

+ORTCHQKIQ(P) + DRI Q(A) + C5PQ(P)Q(a) + APPR(P)B(K, 1) + APR(P)B(a, ") ]).  (AB)
Expressions for the new eddy damping coefficients are given in (2§e). and (25d in the main text.

APPENDIX B: GEOMETRIC CONSIDERATIONS IN that the geometric factor&[®, CKP9, and Di{h will depend
EVALUATING THE CONVOLUTION INTEGRAL on the internal angles of the triad and the angle of the wave
vectors to the mean gradient. Thus, relationships for express-
! e ) . ing the anglesu, x/, and u” in the (g ,€;,€;) coordinate
(178 and (259] in principle, can be substituted into Egs. system are required. By design the angleremains un-

(16) and (24) to .Ot.’t"’?i” closed relgtionships f@(k"“.) and changed. NakaucHi derived the following relationships for
Q(K), however, it is important to first consider precisely how and "

the convolution integral is to be evaluated. Homogeneity en- ndu
sures that all triple correlations are proportional & +p

+q), thus the convolution integrals can be thought of as

having the following generic form:

The expressions foiTj,(k,p,q) and M,(pk,q) [Egs.

-
u@\

A Jo uondanp

1 "
(zT)effF(k,p,q,n.ﬂ’,u”)ﬁ(ﬂp+q)dp dg, (B

whereu, u', and u” are the cosines of the angles between
the wave vector, p, andq and the mean gradiems, re-
spectively. In an earlier study of turbulence with mean shear, =
Nakaucht* introduced an alternative coordinate system for
evaluating the convolution integral. The standard one, re-
ferred to age;,e,,83), is the coordinate system aligned with
the mean gradient. The alternative coordinate system, re-
ferred to as €] ,€;,e;) and shown schematically in Fig. 15,

is positioned such that the vectlris aligned withe;. The FIG. 15. Coordinate systems for evaluating the convolution inte(gale;,,

. . . . . . &) is the natural coordinate system based on the direction of the mean
motivation for mt.rOd.ucmg the second Coord".]ate system I.‘:’gradient, while €; ,€;,€;) is chosen so thag; is aligned with thek vector.
that the convolution 'ntelgra! can be more eas{'ly evaluated Fhe latter coordinate system is used to evaluate the convolution integral
that system. One complication of axisymmetric turbulence iecause it simplifies the integrand.
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"= 7 — [ 1— 12)(1—7%)sin , B2 mean gradient in rapidly sheared homogeneous turbulent flow,” Phys.
# " (1= w2 Jsin éq (B29 Fluids A 3, 144(1991).

10 PO . o .
"n— _ +J(1= 12 (1=-v3)sin , B2b J. R. Chasnov, “Similarity states of passive scalar transport in isotropic

K ©y ( K )( y ) ¢q ( ) turbulence,” Phys. Fluid$, 1036(1994.
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