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Dynamic equations for the scalar autocorrelation and scalar-velocity cross correlation spectra have
been derived for a passive scalar with a uniform mean gradient using the Eddy Damped Quasi
Normal Markovian~EDQNM! theory. The presence of a mean gradient in the scalar field makes all
correlations involving the scalar axisymmetric with respect to the axis pointing in the direction of
the mean gradient. Equivalently, all scalar spectra will be functions of the wave numberk and the
cosine of the azimuthal angle designated asm. In spite of this complication, it is shown that the cross
correlation vector can be completely characterized by a single scalar functionQ(k). The scalar
autocorrelation spectrum, in contrast, has an unknown dependence onm. However, this dependency
can be expressed as an infinite sum of Legendre polynomials ofm, as first suggested by Herring
@Phys. Fluids17, 859~1974!#. Furthermore, since the scalar field is initially zero, terms beyond the
second order of the Legendre expansion are shown to be exactly zero. The energy, scalar
autocorrelation, and scalar-velocity cross correlation were solved numerically from the EDQNM
equations and compared to results from direct numerical simulations. The results show that the
EDQNM theory is effective in describing single-point and spectral statistics of a passive scalar in
the presence of a mean gradient. ©1996 American Institute of Physics.@S1070-6631~96!00205-X#

I. INTRODUCTION

It has long been recognized that the behavior of a pas-
sive scalar differs significantly from that of the velocity field
for profound and fundamental reasons. Close examination of
the two fields shows that while the velocity field organizes
itself into long tubes at high vorticity, the scalar field more
closely resembles a rolled up pancake at equivalent levels of
scalar dissipation. The origin of this difference can be traced
to the convective term in the transport of each property,
which in the case of the scalar is simply the velocity dotted
into the scalar gradient while advection in the momentum
equation is modified by the pressure field. This subtle change
is responsible for significant qualitative differences in the
features of the two fields. Recently the scalar field has re-
ceived increased experimental attention1–5 as investigators
continue to catalog the important characteristics of the scalar
field and its derivatives. Indeed, the scalar in the presence of
a uniform mean gradient has been the subject of several re-
cent articles.6–10 One question that can be asked is whether
theories that have been successful in describing the behavior
of the turbulent energy can be applied to the scalar. We
consider this question in the present study by applying the
Eddy Damped Quasi-Normal Markovian theory~EDQNM!
to the dynamics of a passive scalar with a uniform mean
gradient in stationary isotropic turbulence. Our results indi-
cate that although one can postulate several objections to a

quasinormal theory for a passive scalar, it appears to repre-
sent the data from direct numerical simulations reasonably
well over the parameter range considered.

There have been a wide range of experimental investi-
gations of a passive scalar with a uniform mean gradient over
the years. For example, the study by Tavoularis and
Corrsin11,12introduced a mean gradient in temperature across
grid-generated turbulence and measured the spectrum of sca-
lar fluctuations that resulted. More recently, Warhaft and
several co-workers have considered in great detail the behav-
ior of a passive scalar in a series of papers.1–5Classical scal-
ing arguments set forth by Kolmogorov13 for the energy
spectrum and subsequently by Obukhov14 and Corrsin15 for
the scalar spectrum~hereafter referred to as KOC! estab-
lished that the scalar spectrum should have the following
form in the so-called inertial-convective range:16

EB~k!5be21/3xk25/3, ~1!

whereEB(k) is the three-dimensional scalar spectrum,e and
x are the average rate of dissipation of energy and scalar,
respectively, andb is a universal constant~according to the
theory!. Jayeshet al.3 observed that the presence of a mean
gradient improved the agreement between the observed sca-
lar spectrum and the KOC theory. Indeed, quantitativedis-
agreementwith KOC theory has occurred only for the case
of an isotropicdecaying scalar introduced downstream from
the grid-generated turbulence. The explanation appears to be
that at moderate to low Reynolds numbers there are system-
atic deviations from KOC unless there are strong correlations
between the initial velocity and scalar fluctuations. Scalar
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fluctuations that arise from the presence of a mean gradient
are, by definition, strongly correlated with the velocity field,
hence KOC scaling is valid for that case. This is confirmed
by most of the experimental investigations and our theoreti-
cal results. One aspect that was not discussed by Jayesh
et al.3 but has been discussed by others~e.g., Ref. 6! is how
the change from isotropy to axisymmetry manifests on the
scalar spectrum. This is one focus of the present analysis.

From the preceding discussion, you might conclude that
the scalar field can be completely characterized by the simple
KOC theory~assuming the Reynolds number is sufficiently
large!; however, closer examination reveals that there are
significant discrepancies that still require explanation. For
example, measurements of the probability density function
~pdf! for the scalar and scalar gradient show well-defined
exponential tails, particularly at large positive deviations
from the mean2,4,5,8,17~as opposed to the Gaussian form im-
plied by KOC!. These tails appear to be connected to ramp-
cliff structures in the scalar field that result from the anisot-
ropy introduced by the presence of the mean gradient. A
comprehensive discussion of the exponential tails has been
given by Jayesh and Warhaft,4 Tong and Warhaft,2 and
Pumir.6 Recently a theory has been developed by Pumir
et al.7 to explain these structures. Given the strongly non-
Gaussian character of the scalar fluctuations, the question
becomes whether theories based on Gaussian or near-
Gaussian statistics have any range of validity for a scalar
with a uniform mean gradient.

EDQNM theory18 has been used to describe a variety of
turbulent systems, including the classical studies of the en-
ergy and isotropic scalar spectrum,19,20 to more exotic prob-
lems involving mean flow inhomogeneities.21–25 The theory
relies on near Gaussian statistics for all fourth-order mo-
ments. As noted above, experimental measurements ofiso-
tropic scalar fluctuations have pdfs that are nearly Gaussian
supporting the theoretical approach, however, the presence
of a mean gradient appears to make this assumption some-
what more tenuous. Our results indicate that the EDQNM
theory can successfully represent the spectrum of a passive
scalar with a mean gradient, despite these objections. An
explanation may be that the exponential tails in the pdf of the
scalar fluctuations are low-probability events, and as such,
while they may alter the higher-order statistics significantly,
their contribution to second-order statistics is negligible.
Thus, the important features of the modeled fourth-order sca-
lar statistics are represented sufficiently well by the EDQNM
approximations, such that the second-order correlations are
predicted accurately. For example, it may be sufficient that
the pdf be nearly symmetric ensuring that odd-order mo-
ments are small as compared to even-order moments. In ad-
dition, built in corrections for the effect ofcumulantsmay
also compensate for the non-Gaussian statistics in the case of
a mean gradient.

In this paper we consider the dynamics of a passive sca-
lar with a uniform mean gradient advected by stationary,
isotropic turbulence. The presence of a mean gradient re-
duces the symmetry of all correlations involving the scalar
from isotropic~as found for a freely decaying scalar! to axi-
symmetric. As a result, the theoretical treatment of the scalar

field must be generalized to take this into account. This ap-
parently minor extension of the EDQNM theory significantly
increases the complexity of the computation, although the
final form of the integral equation remains essentially the
same as that for an isotropic scalar field. The approach taken
is equivalent to the one described originally by Batchelor26

and Chandreshekar,27 and more recently by Nakauchi24 and
Herring25 in studies of sheared turbulence. In the analysis by
Herring, the geometric dependence on the angle to the mean
gradient was accounted for by expanding the functions in a
polynomial series in cosines of that angle. We adopt a simi-
lar approach. In addition, comparisons of the results from the
EDQNM theory are made with direct numerical simulations
performed on a 1283 lattice over very long times~60 eddy
turnover times!. This allowed us to fix the two unknown
coefficients that result from the theory.

The paper is organized as follows. The equations of mo-
tion are summarized in Sec. II, followed by derivations of
the EDQNM model equations for the energy spectrum~Sec.
III !, velocity-scalar spectrum~Sec. IV! and scalar autocorre-
lation spectrum~Sec. V!. The cross correlation is considered
first because many of its terms are duplicated in the autocor-
relation equation. In Sec. VI we give a brief description of
the numerical method used to solve the integrodifferential
equations that result from the EDQNM analysis. Details of
the direct numerical simulations are then provided in Sec.
VII. Model results, discussion, and comparisons between di-
rect numerical simulations and the EDQNM model are given
in Sec. VIII, followed by conclusions in Sec. IX.

II. GOVERNING EQUATIONS

The fluid is considered to be incompressible with a con-
stant kinematic viscosity, thus the governing equations are

]ui
]xi

50, ~2a!

]ui
]t

1uj
]ui
]xj

1
1

r

]p

]xi
5n

]2ui
]xj

2 1Fi , ~2b!

whereui is the fluctuating fluid velocity~there is no mean
flow!, p is the pressure,r is the density,n is the kinematic
viscosity, andFi is a solenoidal forcing function introduced
to maintain stationary turbulence. In the simulations, forcing
is introduced over a narrow band of small wave numbers
under the assumption that its net effect on the turbulent en-
ergy transfer process is negligible. Consequently, the effect
of the forcing is modeled as a source term at small wave
numbers, and its influence on energy transfer is neglected
~although it should be noted that our results provide evidence
that the forcing function enhances the rate of transfer over
the forcing range—see Sec. VIII A for details!. The precise
form of the forcing in the EDQNM model will be discussed
in greater detail in Sec. III. It is possible and convenient to
eliminate the pressure from Eqs.~2a! and ~2b! by taking
advantage of the continuity relationship.28 The resulting ex-
pression is

]ui
]t

1
1

2
Pi jmujun5n

]2ui
]xj

2 1Fi , ~3a!
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where the operatorPi jm is given by

Pi jm5d i j
]

]xm
1d im

]

]xj
1

2

¹2

]3

]xi ]xj ]xm
. ~3b!

The transport equation for a passive scalar with constant
physical properties in an incompressible system is shown
below:

]F

]t
1uj

]F

]xj
5k

]2F

]xj
2 . ~4!

Without loss of generality, the scalar is assumed to have a
uniform mean gradient with a magnitudeG pointing in thee3
direction ~e3 is a unit normal pointing in thex3 direction!.
The system is still homogeneous under this circumstance,
although correlations involving the scalar field will no longer
be isotropic. The resulting governing equation for the scalar
fluctuation defined asF85F2F̄ ~whereF̄ is the mean sca-
lar concentration given byF̄5Gx3! is as follows:

]F8

]t
1uj

]F8

]xj
1u3G5k

]2F8

]xj
2 . ~5!

At this stage, it is convenient to nondimensionalize the
equations based on the integral length scaleL, the turbulence
intensityU rms, the large eddy turnover timeL/U rms, and the
characteristic scalar fluctuationGL, resulting in the follow-
ing:

]ui
]t

1
1

2
Pi jmujum5

1

RL

]2ui
]xj

2 1Fi , ~6a!

]F8

]t
1uj

]F8

]xj
1u35

1

Pe

]2F8

]xj
2 , ~6b!

where the Reynolds number isRL5U rmsL/n, the Peclet num-
ber is Pe5RLP, and the Prandtl number is defined byP5n/
k. Note, for the sake of maintaining a manageable nomen-
clature, that we have designated the nondimensional
variables with the same symbols as the dimensional ones,
with the understanding that hereafter all variables should be
assumed to be nondimensional unless specified otherwise.
Furthermore, it should be noted that the only parameters that
remain in the problem areRL andP because the magnitude
of the mean gradient is effectively scaled out of the problem.
Eqs. ~6a! and ~6b! now become the basic equations from
which the spectral model shall be derived.

III. EDQNM THEORY FOR ENERGY

Derivations of the EDQNM closure for the energy spec-
trum have been discussed in numerous publications; hence
we will only highlight the relevant features for the present
calculations. The reader is referred to the book by Lesieur28

for a more detailed description. The energy spectrum is most
easily derived from the two-point Reynolds stress shown be-
low:

Ri j ~x1 ,x2!5ui~x1!uj~x2!. ~7!

Forward and reverse Fourier transforms are designated with
the following convention:

Ri j ~k,p!5E E Ri j ~x1 ,x2!e
2 i ~k–x11p–x2!dx1 dx2 , ~8a!

Ri j ~x1 ,x2!5E E Ri j ~k,p!e1 i ~k–x11p–x2!d”k d”p, ~8b!

whered”k and d”p refer to dk/~2p!3 and dp/~2p!3, respec-
tively. @Fourier transforms of higher-order correlations are
obtained from a straightforward generalization of Eqs.~8a!
and ~8b!.# It can be shown that for a homogeneous energy
field, the Reynolds stressRi j ~k,p! is proportional to the
three-dimensional Dirac delta functiond̂~k1p!. Further-
more, the assumption of isotropy and no helicity implies

Ri j ~k,p!5 d̂~k1p!R~k!Pi j ~k!, ~9a!

where

Pi j ~k!5d i j2
kikj
k2

~9b!

is the projection operator anddi j refers to the Kronecker
delta function.@Note that the energy spectrum, often desig-
nated byE(k), is related toR(k) by E(k)5k2R(k)/2p2.#
Based on the definitions shown in Eqs.~8a! and ~8b!, it can
be shown that the turbulent intensity~i.e., root mean square
of the velocity fluctuations! is related toR(k) by

U rms
2 5

1

3p2 E
0

`

R~k!k2 dk. ~10!

As shown by Lesieur,28 the EDQNM model transport
equation forR(k) for a statistically stationaryturbulent sys-
tem is as follows:

2RL
21k2R~k!5E E

D

QR
kpq@V1R~q!R~p!

1V2R~q!R~k!#dp dq1F~k!, ~11a!

where

V15
qp2

2p2 @xy2z3#, ~11b!

V252V1 , ~11c!

QR
kpq5

1

mR
kpq , ~11d!

while the eddy damping coefficientmR
kpq is given by

mR
kpq5c1~mk1mp1mq!1RL

21~k21p21q2! ~11e!

and the time scalemk is determined from the following inte-
gral:

mk5
1

&p
S E

0

k

s4R~s!dsD 1/2. ~11f!

The coefficientsx, y, andz refer to the cosines of the interior
angles of the triad, and are defined as shown below:

x[
p–q

pq
5
k22p22q2

2pq
, ~11g!
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y[
k–q

kq
5
p22k22q2

2kq
, ~11h!

z[
k–p

kp
5
q22k22p2

2kp
. ~11i!

The constantc1 is usually assigned the value 0.36 to ensure
that the energy spectrum at infinite Reynolds number obeys
the classical Kolmogorov scaling argument.29 The forcing
term is assumed to have the form

F~k!5 HFk ,
0,

k<2,
k.2,

where the constantsF1 andF2 are set to match the condi-
tions of the direct numerical simulations~see Sec. VIII for
details!.

IV. SCALAR-VELOCITY CROSS CORRELATION

We must recognize from the outset that the variableF8,
which is isotropic for the decaying scalar case, is nowaxi-
symmetric~about thee3 axis! in the present system. It there-
fore follows that all two-point correlations that involveF8
must be functions of the separation distanceand the angle
between the separation vector and the mean gradient. The
correlations of interest to the present study are the scalar
autocorrelation B(x1 ,x2)5F8(x1)F8(x2) and scalar-
velocity cross correlation,Qi(x1 ,x2)5ui(x1)F8(x2). The
objective of this section is to derive a transport equation for
the Fourier transform ofQi~x1,x2! shown below:

Qi~k,p!5E E Qi~x1 ,x2!e
2 i ~k–x11p–x2! dx1 dx2 , ~12!

in closed form.
Homogeneity, axisymmetry, and the continuity relation-

ship force the cross-correlation vector to have the following
form;

Qi~k,p!5 d̂~k1p!Q~k!Pi3~k!, ~13!

thus reducing the model to a scalar equation for the function
Q(k). In general, the scalarQ is a function of the wave
numberk, andm, the cosine of the angle between the wave
vector k and the direction of the mean gradient, i.e.,
m[k–e3/uku However, in the present application, this angle
dependence is not observed for reasons related to the initial
conditions of the scalar field. Scalar fluctuations~i.e.,F8! are
initially zero and build up thereafter because of the presence
of the mean gradient. As a result, the scalar functionQ(k),
whose source term is isotropic, remains independent ofm for
all time. More general initializations may introduce anisot-
ropy in Q, however, those circumstances are beyond the
scope of the present analysis. Incidentally, any anisotropy
introduced by the initial conditions will decay in time and
therefore will not affect the steady-state solutions.

Physically, the single-point cross-correlation vectorQi

[uiF8 is the turbulent flux of scalar passing through the
system due to the random velocity fluctuations. The only
nonzero component of this vector in the present system lies

in the direction of the mean gradient, i.e.Q3 [ u3F8. From
the definitions of the spectra@Eqs.~12! and~13!#,Q3 is given
by

Q35u3F85
1

3p2 E
0

`

Q~k!k2 dk. ~14!

A. Exact equation

We begin with the transport equation forQi~x1,x2!,
which is found by manipulating the governing equations for
the velocity and scalar fluctuations@Eqs.~6a! and ~6b!#,

S ]

]t
2RL

21¹1
22Pe21 ¹2

2DQi~x1 ,x2!

52
]

]x1n
Pi jn~x1!Tjn~x1 ,x1 ,x2!

2
]

]x2n
Tin~x1 ,x2 ,x2!2Ri3~x1 ,x2!, ~15a!

where

Tjn~x1 ,x2 ,x3!5uj~x1!un~x2!F8~x3!. ~15b!

The operators¹1
2 and¹2

2 signify Laplacian derivatives with
respect tox1 and x2 respectively. Fourier Transforming the
above equation and taking advantage of Eq.~13! yields

S ]

]t
1~RL

211Pe21!k2DQ~k!

51
i

~12m2!
E E S knPj3~k!Tjn~k,p,q!

1
1

2
P3 jn~k!Tjn~q,p,k! Ddp dq2R~k!, ~16!

where the third-order tensorPi jm~k!5kmPi j ~k!1kjPim~k!.
The nonlinear integral in Eq.~16! shall be approximated by
using the EDQNM theory.

B. EDQNM closure and final equation for Q(k )

Equation 16 is an exact transport equation for the spec-
trum Q(k), however, it involves an unknown triple correla-
tion Tjn~k,p,q!. The approximate solution forTjn~k,p,q!
based on a rigorous application of EDQNM theory is as fol-
lows ~see Appendix A for details!:

Tjn~k,p,q!52 i d̂~k1p1q!QT
kpq$2QR

kqp@D3 jn
qkpR~k!R~p!

1Dnj3
pkqR~k!R~q!1Dj3n

kqpR~p!R~q!#

1Cnj
qpkR~p!Q~k!1Dn3 j

pqkR~k!Q~q!

1Djn3
kpqR~p!Q~q!1Cjn

qkpR~k!Q~p!%, ~17a!

where

Ci j
kpq5Ci j ~k,p,q!5kaPia~p!Pj3~q!, ~17b!

Di jm
kpq5Di jm~k,p,q!5Piab~k!Paj~p!Pbm~q!, ~17c!
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QT
kpq5

12e2mT
kpqt

mT
kpq , ~17d!

mT
kpq5c2~mk1mp!1c3mq1RL

21~k21p2!1Pe21 q2.
~17e!

The geometric factorsCi j
kpq andDi jm

kpq arise from substituting
the tensor relationships for the Reynolds stress@Eqs.~9a! and
~9b!# and cross correlation@Eq. ~13!# into the expression for
Tjn ~k,p,q!. Note that the subscripts in the geometric factors
@Eqs.~17b! and~17c!# indicate the indices of the tensor while
the superscripts are a shorthand notation of the wave vector
dependence. In previous EDQNM applications, the coeffi-
cients arising from the eddy damping terms~c2 andc3! have
been constrained by a known asymptotic form for the spec-
trum valid at high Reynolds numbers, however, in this case,

the asymptotic form of the cross-correlation spectrum is not
knowna priori. Instead, the coefficientsc2 andc3 were cho-
sen to match the results from the numerical simulations~see
Sec. VIII for details!.

Substituting Eqs.~17a!–~17e! into Eq. ~16! yields a
closed form transport equation forQ(k). The nonlinear con-
volution integral over the wave vectorsp andq can then be
mathematically converted into an integral over the scalar
wave numbersp andq. The details are given in Appendix B.
Upon performing the integral over the anglefq analytically
~see Appendix B for the definition offq!, a common factor
of ~12m2! emerges throughout the equation. This factor is
then canceled out, yielding the following integrodifferential
equation forQ(k):

S ]

]t
1~RL

211Pe21!k2DQ~k!52R~k!1E E
D

QT
kpq$2QR

kqp@H1R~k!R~p!1H2R~k!R~q!1H3R~p!R~q!#

1H4R~p!Q~k!1H5R~k!Q~q!1H6R~p!Q~q!1H7R~k!Q~p!%

1 1
2QT

qpk$2QR
qkp@J1R~k!R~p!1J2R~k!R~q!1J3R~p!R~q!#1J4R~q!Q~k!

1J5R~p!Q~q!1J6R~q!Q~p!1J7R~p!Q~k!%dp dq. ~18!

The 14 geometric cofactorsH1–H7 andJ1–J7 are summa-
rized in Table I. Note that all coefficients are functions of the
magnitudes of the wave numbersk, p, andq only. They are
expressed in terms ofx, y, andz, the cosines of the interior
angles of the triad, which, in turn, can be related to the mag-
nitudes of the wave numbers through the law of cosines@see
Eqs.~11g!–~11i!#.

V. SCALAR AUTOCORRELATION

The procedure for deriving the transport equation for the
autocorrelation is equivalent to the one used for the cross
correlation described in the previous section. The scalar au-
tocorrelationB(x1 ,x2) 5 F8(x1)F8(x2), like the cross corre-
lation, is axisymmetric with respect to thee3 direction. The
Fourier transform ofB~x1,x2! is defined as

B~k,p!5E E B~x1 ,x2!e
2 i ~k–x11p–x2! dx1 dx2 , ~19!

however homogeneity and axisymmetry reduceB~k,p! to the
following:

B~k,p!5 d̂~k1p!2B~k,m!. ~20!

It should be noted that the root mean square of the scalar

fluctuations,F rms[AF82̄ is related toB(k,m) by

F rms
2 5

1

2p2 E
0

`E
21

1

B~k,m!k2 dm dk. ~21!

A transport equation forB(k,m) is derived below.

A. Exact equation

The transport equation forB~x1,x2! is found by manipu-
lating Eq.~6b!, yielding

S ]

]t
2Pe21~¹1

21¹2
2! DB~x1 ,x2!

52
]

]x1n
Mn~x1 ,x1 ,x2!2

]

]x2n
Mn~x2 ,x1 ,x2!

2Q3~x1 ,x2!2Q3~x2 ,x1!, ~22a!

where

Mn~x1 ,x2 ,x3![un~x1!F8~x2!F8~x3!. ~22b!

Transforming Eq.~22a! yields

S ]

]t
1Pe21~k21p2! DB~k,p!

52 i d̂~k1p!E E @knMn~2p,p,2q!

1pnMn~p,k,q!#dp dq2Q3~k,p!2Q3~p,k!. ~23!

The integral term is the conservative transfer term discussed
in detail elsewhere~e.g., Ref. 28!. The final two terms are the
source terms for scalar fluctuations that arise from the pres-
ence of the mean gradient. Equation~23! can be further re-
duced by introducing the relationships shown in Eqs.~13!
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and~20!, eliminating the common factord̂~k1p!, and taking
advantage of the fact thatMn ~2p,2k,2q!52Mn~p,k,q!
andP33~k!512m2, yielding

S ]

]t
12 Pe21k2DB~k,m!5E E iknMn~p,k,q!dp dq

2Q~k!~12m2!. ~24!

B. EDQNM closure and final equations for B (k ,m)

A rigorous application of EDQNM theory yields the fol-
lowing expression for the triple correlation~see Appendix A
for details!:

Mn~p,k,q!52 i d̂~k1p1q!„2QM8
pkq;pkq$2QR

pqk@D3n3
qpkR~k!R~p!1Dn33

pqkR~k!R~q!1D3n3
kpqR~p!R~q!#1Cn3

qpkR~p!Q~k!

1C3n
qkpR~k!Q~p!1Dn33

pkqR~k!Q~q!1D33n
kqpR~p!Q~q!%2QM8

pkq;pqk$2QR
pkq@D3n3

qpkR~k!R~p!1Dn33
pkqR~k!R~q!

1D3n3
kpqR~p!R~q!#1D33n

qkpR~p!Q~k!1Dn33
pqkR~q!Q~k!1C3n

kqpR~q!Q~p!1Cn3
kpqR~p!Q~q!%

1QM
pkq@C3n

qkpQ~k!Q~p!1Dn33
pkqQ~k!Q~q!1C3n

kqpQ~p!Q~q!1An
qpR~p!B~k,m!1An

kpR~p!B~q,m9!#…, ~25a!

where the definitions forCi j
kpq andDi jm

kpq given in Eqs.~17b! and ~17c! still apply, and

Ai
kp5Ai~k,p!52knPin~p!, ~25b!

QM
kpq5

12e2mM
kpqt

mM
kpq , ~25c!

TABLE I. Table of coefficients forQ(k). ‘‘Formula’’ refers to @1/~12m2!#(pq/k)@1/~2p!3#*0
2p^Integrand&dfq .

Herex, y, andz refer to the cosines of angles between the vectors of the triad@see Eqs.~11g!–11~i!#, andN2

is given byN2[
1
4(k1p1q)(k1p2q)(k2p1q)(2k1p1q).

Name Integrand Expanded integrand Formula

H1 knPj3~k!D3 jn
qkp knPj3~k!P3ab~q!Paj~k!Pbn~p! N2

8p2

pq

k S2 ~11y2!

p2
1
xy

kpD
H2 knPj3~k!Dnj3

pkq knPj3~k!Pnab~p!Paj~k!Pb3~q! N2

8p2

pq

k Syzpq2 xy

kpD
H3 knPj3~k!Dj3n

kqp knPj3~k!Pjab~k!Pa3~q!Pbn~p! N2

8p2

pq

k S~11y2!

p2
2
yz

pqD
H4 knPj3~k!Cnj

qpk knPj3~k!qaPna~p!Pj3~k! N2q

4p2pk
H5 knPj3~k!Dn3 j

pqk knPj3~k!Pnab~p!Pa3~q!Pbj~k! N2

8p2

pq

k Syzpq2 xy

kpD
H6 knPj3~k!Djn3

kpq knPj3~k!Pjab~k!Pan~p!Pb3~q! N2

8p2

pq

k S~11y2!

p2
2
yz

pqD
H7 knPj3~k!Cjn

qkp knPj3~k!qaPja~k!Pn3~p! N2qz

8p2k2

J1 P3 jn~k!Dj3n
qkp P3 jn~k!Pjab~q!Pa3~k!Pbn~p! N2

8p2

pq

k S2 ~11y2!

p2
1
xy

kp
2
xz

kq
1
yz

pqD
J2 P3 jn~k!Dnj3

pqk P3 jn~k!Pnab~p!Paj~q!Pb3~k! N2

8p2

pq

k S2 ~11z2!

q2
2
xy

kp
1
xz

kq
1
yz

pqD
J3 P3 jn~k!D3 jn

kqp P3 jn~k!P3ab~k!Paj~q!Pbn~p! N2

8p2

pq

k S~11y2!

p2
1

~11z2!

q2
22

yz

pqD
J4 P3 jn~k!Dn3 j

pkq P3 jn~k!Pnab~p!Pa3~k!Pbj~q! N2

8p2

pq

k S2 ~11z2!

q2
2
xy

kp
1
xz

kq
1
yz

pqD
J5 P3 jn~k!Cnj

kpq P3 jn~k!kaPna~p!Pj3~q! N2

8p2

pq

k S~11y2!

p2
2
yz

pqD
J6 P3 jn~k!Cjn

kqp P3 jn~k!kaPja~q!Pn3~p! N2

8p2

pq

k S~11z2!

q2
2
yz

pqD
J7 P3 jn~k!Djn3

qpk P3 jn~k!Pjab~q!Pan~p!Pb3~k! N2

8p2

pq

k S2 ~11y2!

p2
1
xy

kp
2
xz

kq
1
yz

pqD
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QM8
kpq;k8p8q855

1

mT
k8p8q8 F ~12e2mM

kpqt!

mM
kpq 1

~e2mM
kpqt2e2mT

k8p8q8t!

~mM
kpq2mT

k8p8q8!
G ,

1

mT
k8p8q8 F ~12e2mM

kpqt!

mM
kpq 2tēmM

kpqtG , mM
kpq5mT

k8p8q8 ,

mM
kpqÞmT

k8p8q8 ,
~25d!

mM
kpq5c4mk1c5~mp1mq!1RL

21k21Pe21~p21q2!. ~25e!

The coefficientsc4 andc5 are empirical constants associated
with scalar transfer. Following the analysis of Andre and
Lesieur,29 the coefficients are assigned the value 0.36. This
ensures mathematical consistency of the proposed model
with earlier isotropic scalar models, in the limit of a vanish-
ingly small scalar gradient.

The expression forMn~p,k,q! @Eq. ~25a!# can be substi-
tuted into Eq.~24! to yield a closed expression forB(k,m).
However, a complication withB(k,m) is its unknown depen-
dency on the anglem. One method of explicitly representing
this dependency is to expandB(k,m) in a Legendre polyno-
mial series inm, as shown below,25

B~k,m!5(
j50

`

B2 j~k!P2 j~m!. ~26!

@BecauseB(k,m) is an even function ofm only the even
members of the series are nonzero.# Fortunately, in the
present application, the infinite series can be truncated after
the second term because the higher-order terms have no

source, and therefore if they are zero initially they will re-
main zero for all time. Thus, the angle dependence of the
scalar autocorrelation reduces to

B~k,m!5B0~k!P0~m!1B2~k!P2~m!, ~27!

whereP0~m!51 andP2~m!5~3m221!/2.
Upon substituting Eq.~25a! into Eq. ~24!, re-expressing

the nonlinear integral term as shown in Appendix B, and
expanding the scalar functionsB(k,m) andB(q,m9) in terms
of the Legendre Polynomials@Eq. ~27!#, a closed form ex-
pression for the autocorrelation is obtained. Separate expres-
sions for the spectral coefficientsB0(k) andB2(k) are then
obtained by multiplying the equation byPl~m! ~l50 or 2!
and integrating with respect tom, thereby taking advantage
of the orthogonal properties of Legendre polynomials,

E
21

1

Pj~m!Pl~m!dm5
2

~2l11!
d j l . ~28!

The final expression is~see Herr30 for details!

S ]

]t
12 Pe21 k2DBl~k!5E E

D

„2QM8
pkq;pkq$2QR

pqk@F1
l R~k!R~p!1F2

l R~k!R~q!1F3
l R~p!R~q!#1F4

l R~p!Q~k!

1F5
l R~k!Q~p!1F6

l R~k!Q~q!1F7
l R~p!Q~q!%2QM8

pkq;pqk$2QR
pkq@G1

l R~k!R~p!

1G2
l R~k!R~q!1G3

l R~p!R~q!#1G4
l R~p!Q~k!1G5

l R~q!Q~k!1G6
l R~q!Q~p!

1G7
l R~p!Q~q!%1QM

pkq@M1
l Q~k!Q~p!1M2

l Q~k!Q~q!1M3
l Q~p!Q~q!1M4

l R~p!Bl~k!

1M5
l R~p!Bl~q!#…dp dq2 2

3~12 l !Q~k!, ~29!

where ‘‘l ’’ refers to the index of the Legendre polynomial~0
or 2!. The 19 geometric cofactors that result from the angle
integrationsF1

l –F7
l , G1

l –G7
l , andM1

l –M5
l are summarized

in Table II.

VI. NUMERICAL PROCEDURE

The dynamic equations forR(k), Q(k), B0(k), and
B2(k) @Eqs.~11a!, ~18!, and~29!, respectively# are classified
as integrodifferential equations, and therefore updating them
requires a numerical procedure for evaluating the convolu-
tion integral at each time step. Homogeneity requires that the
integral be evaluated over values ofp and q that form a

closed triad. This region of thep-q space is shown schemati-
cally in Fig. 1 for k52. The integral was evaluated using a
trapezoid rule in two dimensions. Each point was weighted
by either unity,12, or

1
4 depending on whether the point was in

the center of the domain of integration, on a bounding line,
or a bounding corner~see Fig. 1!. It would be possible to
improve the accuracy of the numerical integration by substi-
tuting a higher-order approximation for the integrand~e.g.,
Simpson’s rule!, however, a word of caution is required.
Some of the quantities transported by the nonlinear terms
should be conserved under the action of the integral. Non-
uniform weighting of the internal points may compromise
the conservation principle, because cancellations required for
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conservation may be altered by the different weights. For
example, if a particular triad is to appear twice in the inte-
grand, however, it is weighted differently in each case, the
system may not precisely conserve the transported quantity.
We therefore elected to use a trapezoid rule even though it is
less accurate because it ensures uniform weighting of all
equivalent points.

VII. DIRECT NUMERICAL SIMULATIONS

Direct numerical simulations of a passive scalar ad-
vected by an incompressible fluid were performed on a 1283

lattice using a standard pseudospectral Galerkin method to
update the fluid velocity and scalar transport equations.31,32

The spectral code was a modified version of that described in
Chen and Shan33 for the velocity field. The simulations for
this study were performed on the massively parallel CM-5 at
Los Alamos National Laboratory. The basic algorithm is
equivalent to the one described in the textbook by Canuto
et al.34 The aliasing errors in the pseudospectral simulation
were completely eliminated by truncating all modes with
wave numbers larger than 47.5~the two-thirds rule!. The
physical parameters used in the simulations are summarized
in Table III. The fluid viscosity was set to give an average
spatial resolution parameterkmax h51.56, the temporal reso-
lution parameter or CFL number was 0.23, and the Prandtl
number was 0.5, therefore both the velocity and scalar field

TABLE II. Table of coefficients in the equation forBl(k), wherel refers to the order of the Legendre series~0
or 2!. ‘‘Formula’’ refers to: [(l1

1
2)/(2p)3](pq/k)*21

1 *0
2p^Integrand&Pl(m)dfq dm. Herex, y, andz refer to

the cosines of angles between the vectors of the triad@see Eqs.~11g!–~11i!#, and N2 is given by
N2[

1
4(k1p1q)(k1p2q)(k2p1q)(2k1p1q).

Name Integrand Integrand~expanded! Formula

F1
l kiD3i3

qpk kiP3ab~q!Pai~p!Pb3~k! N2

12p2

pq

k
~12 l !S 2

~11y2!

p2
1
xy

kpD
F2
l kiDi33

pqk kiPiab~p!Pa3~q!Pb3~k! N2

12p2

pq

k
~12 l !S ~yz!

pq
2
xy

kpD
F3
l kiD3i3

kpq kiP3ab~k!Pai~p!Pb3~q! N2

12p2

pq

k
~12 l !S ~11y2!

p2
2

yz

pqD
F4
l kiCi3

qpk kiqaPia~p!P33~k!
2
N2~12l!q

6p2pk
F5
l kiC3i

qkp kiqaP3a~k!Pi3~p! N2

12p2

pq

k
~12 l !

z

kp
F6
l kiDi33

pkq kiPiab~p!Pa3~k!Pb3~q! N2

12p2

pq

k
~12 l !S yzpq2

xy

kpD
F7
l kiD33i

kqp kiP3ab~k!Pa3~q!Pbi~p! N2

12p2

pq

k
~12 l !S ~11y2!

p2
2

yz

pqD
G1
l kiD3i3

qpk kiP3ab~q!Pai~p!Pb3~k! N2

12p2

pq

k
~12 l !S 2

~11y2!

p2
1
xy

kpD
G2
l kiDi33

pkq kiPiab~p!Pa3~k!Pb3~q! N2

12p2

pq

k
~12 l !S ~yz!

pq
2
xy

kpD
G3
l kiD3i3

kpq kiP3ab~k!Pai~p!Pb3~q! N2

12p2

pq

k
~12 l !S ~11y2!

p2
2

yz

pqD
G4
l kiD33i

qkp kiP3ab~q!Pa3~k!Pbi~p! N2

12p2

pq

k
~12 l !S 2

~11y2!

p2
1
xy

kpD
G5
l kiDi33

pqk kiPiab~p!Pa3~q!Pb3~k! N2

12p2

pq

k
~12 l !S yzpq2

xy

kpD
G6
l kiC3i

kqp kikaP3a~q!Pi3~p! N2

12p2

pq

k F2~12 l !
yz

pq
1S 11

l

2D N2

k2p2q2G
G7
l kiCi3

kpq kikaPia~p!P33~q! N2

12p2

pq

k F ~12 l !S 11y2

p2 D1S 11
l

2D N2

k2p2q2G
M1

l kiC3i
qkp kiqaP3a~k!Pi3~p! N2

12p2

pq

k
~12 l !

z

kp
M2

l kiDi33
pkq kiPiab~p!Pa3~k!Pb3~q! N2

12p2

pq

k
~12 l !S yzpq2

xy

kpD
M3

l kiC3i
kqp kikaP3a~q!Pi3~p! N2

12p2

pq

k F2~12 l !
yz

pq
1S 11

l

2D N2

k2p2q2G
M4

l kiAi
qp 2kiqaPia~p!

2
N2q

2p2pk
M5

l kiAi
kp 2kikaPia~p! N2q

4p2pk F2S12
l

2D1 l

2
~3y221!G

1595Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins

Downloaded¬01¬Jul¬2005¬to¬128.117.47.188.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



were well resolved in space and in time in the simulation.35

The velocity field was made stationary by maintaining con-
stant total energy in each of the first two wave number shells
~0.5<k<1.5 and 1.5<k<2.5!, with the energy ratio between
the two shells consistent withk25/3. Since the nodes are not
evenly distributed in the spherical shells in wave vector
space, a smoothing operation36 was applied to the energy
spectrumE(k). Because the velocity field was stationary, the
scalar fluctuations, which were initially set to zero, asymp-
totically approached a constant mean value at long times that
was determined by a balance between the fluctuation source
due to the mean gradient and the rate of dissipation con-
trolled by spectral cascade and dissipation.

The direct numerical simulation was first run with the
velocity field only for about ten eddy turnover times to ob-
tain a statistically stationary hydrodynamic field. The scalar
field was then introduced and the simulation was continued
for an additional 60 eddy turnover times. We assumed the
scalar field had achieved a statistically stationary state after
30 eddy turnover times, and so the remaining 30 eddy turn-
over times were used to compute the average values of the
scalar and scalar-velocity correlations. One motivation for
running the simulations for such long times was to achieve
meaningful statistical measures of the mean scalar quantities
of interest. Since most of the statistics addressed in the

EDQNM analysis are directly related to the large-scale scalar
field, and there are a limited number of large-scale modes in
the computational domain, it was necessary to carry out the
simulation for at least 60 eddy turnover times. To our knowl-
edge, such long-time simulations have been performed in
only a few studies~e.g., Ref. 6!. Since the focus of this paper
is the EDQNM analysis, the direct numerical simulation was
used to guide the analysis and provide the necessary infor-
mation to estimate some of the model parameters~c2 andc3!.
We therefore only report one simulation here. A more de-
tailed comparison between the direct numerical simulations
and the EDQNM model, including a parametric study, will
be reported in a future publication.

Single-point averages of the scalar autocorrelation and
velocity-scalar cross correlation were determined by averag-
ing the values over the calculation grid. Spherically average
spectra for the cross- and autocorrelations were determined
from sums over shells, as shown below:

Q~ki !5
3p2

ki
2 (

f50

2p

(
m521

1
1

2
@ û3~k!F̂* ~k!

1û3* ~k!F̂~k!#U
ki2Dk/2<uku<ki1Dk/2

, ~30a!

B~ki !5
p2

ki
2 (

f50

2p

(
m521

1

@F̂~k!F̂* ~k!#U
ki2Dk/2<uku<ki1Dk/2

.

~30b!

The angle-dependent spectra for the autocorrelation were
then determined using a conical average, defined by

B~ki ,m i !5
p2

ki
2 (

f50

2p

@F̂~k!F̂* ~k!#U ki2
Dk
2 <uku<ki1

Dk
2

m i2
Dm
2 <m<m i1

Dm
2

.

~30c!

VIII. RESULTS AND DISCUSSION

As mentioned previously, the model contains two adjust-
able constants~c2 andc3! that arise from the eddy damping
terms in the cross-correlation spectrum. The constants cannot
be constrained by imposing an asymptotic form for the cross-
correlation spectrum at high Reynolds numbers since none
exists. Instead, we have elected to fix the constants by fitting
theQ spectrum at long times to the time-average spectrum
from the numerical simulations. The figure of merit for the
optimization is the mean value of the single-point correlation

FIG. 1. Schematic of the region of integration for wave numberk52. The
gray region is the domain of integration. Points in the center of the domain
have unity weighting while points on the bounding lines are weighted by
1
2 and points in the corners by

1
4.

TABLE III. Parameter values used in direct numerical simulations and model calculations. Dimensional parameters are based on arbitrary units. HereU rms

refers to the turbulence intensity;e is the dissipation rate;n is the kinematic viscosity;L is the integral scale;l is the Taylor Microscale;h is the Kolmogorov

scale;Te is the large eddy turnover time;G is the magnitude of the mean scalar gradient; andAF82̄ is the root mean square of the scalar fluctuations. As for
the dimensionless parameters,RL andRl are Reynolds numbers based on the integral scale and Taylor microscale, respectively;P is the Prandtl number; and
Frms is thedimensionlessroot mean square scalar fluctuation~based on the characteristic scalar valueGL!.

Dimensional parameters~arbitrary units! Dimensionless parameters

Title U rms e n L l h Te G AF82̄ RL Rl P Frms

DNS 0.84 0.19 0.006 1.59 0.58 0.033 1.9 1.0 2.15 223 81 0.5 1.35
EDQNM 0.88 0.19 0.006 1.59 0.61 0.033 1.8 1.0 2.23 233 89 0.5 1.40
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u3F8. Figure 2 shows the acceptable pairs of values ofc2
andc3. The solid line is a least squares fit of the results. It is
interesting to note that the relationship between the two co-
efficients is linear, which is consistent with the other pair of
coefficients in the autocorrelation spectrum~i.e., c4 and
c5!.

28 We chose the combinationc2, c35~0,1.03! for the cal-
culations shown in this paper, however, the results were rela-
tively insensitive to the particular combination used.

A. Energy

Much of the earlier work with the EDQNM model has
focused on decaying isotropic or axisymmetric turbulence.
The numerical simulations in the present study are made
stationary by forcing the low wave number end of the spec-
trum, therefore the EDQNM model for the energy must in-
clude forcing terms as well to be consistent. A forcing func-
tion was added to the standard EDQNM model to supply a
constant~in time! source of energy to the first two wave
numbers@see Eq.~11a!, and related equations in the text#. At
steady state, the rate of energy addition to the fluid must
equal the rate of viscous dissipation~e!, hence

e5
1

2p2 ~F114F2!, ~31!

whereFk is the magnitude of forcing at wave numberk. The
dissipation rate in the simulations can be readily determined
from the energy spectrum. Equation~31! provides a con-
straint on the values ofF1 andF2. A specific combination of
F1 andF2 satisfying Eq.~31! was chosen so as to match the
integral length scale of the numerical simulation as well.
Figure 3 shows a comparison between the energy spectrum
from the EDQNM model and an average spectrum from the

numerical simulations. There is reasonable agreement over
most of the wave numbers. The differences are attributed to
two causes:~i! the imperfect match of the forcing in the two
systems; and~ii ! neglecting the contribution of the forcing
term to energy transfer in the EDQNM model. The effect of
the latter is apparent in the DNS spectrum just beyond the
forcing range~indicated with an arrow in Fig. 3!; that is,
there is a noticeable bump in the energy spectrum at that
point. Most likely, this results from an enhancement in the
rate of energy transfer to the wave number just beyond the
forcing band due to the forcing. This is not accounted for in
the EDQNM model. To compensate, the model must over-
predict the energy at the second wave number so as to yield
an integral scale in agreement with the simulations. Addi-
tional work is required to correctly incorporate the effect of
forcing on the transfer function in the EDQNM equation for
the energy. However, despite these objections, we believe
there is sufficient agreement between the predicted energy
spectrum and the simulations to achieve meaningful com-
parisons of the other scalar spectra.

B. Single-point scalar statistics

Figure 4~a! illustrates the time dependence of the scalar-
velocity cross correlation~turbulent scalar flux!. The DNS
results are spatial averages over the domain of integration
~cube of length 2p! and the EDQNM model results were
determined from Eq.~14!. As noted above, the scalar statis-
tics are particularly troublesome, requiring several eddy turn-
over times to achieve reasonable statistical convergence.
Nevertheless, there appears to be quantitative agreement be-
tween the model and simulation results. It should be noted
that the coefficientsc2 and c3 were chosen to optimize the
agreement at long times, so the test is whether the model

FIG. 2. Optimal values of the coefficientsc2 and c3 in the eddy damping
terms associated withTjn~k,p,q!. The coefficients were determined by fit-
ting theQ(k) spectrum from the model to the equivalent spectrum from the
direct numerical simulations. The results shown in the paper are based on
the combination~0, 1.03!.

FIG. 3. The turbulent energy spectrum for the model~solid line! and simu-
lation ~dashed line!. The spectrum from the simulation was averaged over
30 eddy turnover times.
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captures the transient behavior. It appears to do well. Figure
4~b! shows the cross correlation normalized by the local~in
time! value ofU rmsFrms. The Schwartz inequality restricts
this normalized correlation to be less than unity. Both the
DNS and model predict that at early times, the correlation is
nearly unity ~i.e., the velocity and scalar fluctuations are
strongly correlated!, but at later times the correlation is di-
minished, ultimately approaching;0.6 as time approaches
infinity. The strong correlation at early times results from the
dominance of the source terms in the scalar transport equa-
tions that produce scalar fluctuations that are precisely cor-
related to the eddy motion. At later times, this strong corre-
lation is diminished by the different rates of spectral transfer
of energy and scalar concentration that results from differ-
ences in the convective terms for each quantity. A modal
analysis developed by Brasseur and Wei37 was used to quali-
tatively confirm this result. In addition, the DNS results ap-
pear to corroborate the model prediction of therate of deco-
rrelation of these two fields.

HereFrmswas determined from the simulations again by
taking a volume average and from the EDQNM model by
evaluating Eq.~21!. The results are summarized in Fig. 5.
This comparison is perhaps a more direct evaluation of the
model since there are no adjustable parameters in the equa-

tion for B0(k) ~aside from those fixed in earlier studies!. The
spatially averaged scalar autocorrelation fluctuates slowly
with a period of several eddy turnover times. A comparison
between the simulation and EDQNM model results shows
that the time-average value of the scalar autocorrelation is
predicted to within 4% of the simulation value.

Several earlier studies of passive scalars in the presence
of a uniform mean gradient have focused on the magnitude
of derivatives in the direction of the mean gradient and in the
transverse direction.2,6 Scalar derivatives differ from the pre-
vious statistics in that they explicitly involve the angle de-
pendence of the scalar autocorrelation. That is readily appar-
ent from the definitions for the gradients shown below:

S ]F

]x3
D 25 1

2p2 S 23 E
0

`

B0~k!k4 dk1
4

15 E0
`

B2~k!k4 dkD ,
~32a!

S ]F

]x1
D 25S ]F

]x2
D 25 1

2p2 S 23 E
0

`

B0~k!k4 dk

2
2

15 E0
`

B2~k!k4dkD . ~32b!

Figure 6~a! shows a comparison of the square of the gradient
in the longitudinal and transverse directions with the
EDQNM model result. Again there is reasonable agreement
between the model and simulation. The literature often con-
siders the ratio of these two derivatives as a measure of the
anisotropy of the scalar field. By definition, this ratio in the
model is given by

L5S ]F

]x3
D 2 YS ]F

]x1
D 25 112A

12A
, ~33a!

where

A[
1

5

*0
`B2~k!k4 dk

*0
`B0~k!k4 dk

. ~33b!

FIG. 4. ~a! Single-point scalar-velocity correlation as a function of time.
The solid curve was determined from the model and the dashed curve from
the numerical simulation. Simulation values are instantaneous volume aver-
ages of the correlation.~b! The same correlation normalized by the product
turbulence intensityU rms times the root mean square scalar fluctuationFrms.
The correlation is initially very high~i.e., near unity!, however, it diminishes
in time due to transfer processes that tend to decorrelate the scalar and
velocity fields.

FIG. 5. Single-point scalar autocorrelation as a function of time. The solid
curve was determined from the model and the dashed curve from the nu-
merical simulation. Simulation values are instantaneous volume averages of
the correlation.
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Figure 6~b! is a plot of the predicted and observed ratio of
the square of the gradients. It is interesting to note that at
short times this ratio is less than unity, and grows above
unity at long times. From Eq.~33a! it is apparent that as the
ratio increases from a fraction of unity to greater than unity,
the variableA must change sign~from negative to positive!.
SinceB0(k) is positive definite, this implies thatB2(k) must
change sign. Indeed, that is what the EDQNM model pre-
dicts. At long times, there is some discrepancy between the
ratio,L, predicted by the EDQNM model~L51.08! and the
value found in the direct numerical simulations~L51.02!. In
fact, the anisotropy in the DNS scalar concentration field was
barely discernible, especially given the significant statistical
fluctuations in the DNS. Interestingly, the model prediction
is in closer agreement with earlier experimental measure-
ments by Tong and Warhaft,2 who foundL51.4 ~indepen-
dent of Reynolds number!, and the direct numerical simula-
tions of Pumir,6 who found values ofL ranging from 1.07 to
1.33. It should be noted that we found this ratio to be some-
what sensitive to the Reynolds number and very sensitive to
the Prandtl number. Furthermore, no effort was made in this
study to match the conditions of Tong and Warhaft2 or
Pumir.6 We will return to the topic of anisotropy as it relates

to the autocorrelation spectrum in Sec. III C, and again in
Sec. III D, which is a more complete discussion of the ori-
gins of anisotropy in the EDQNM model.

C. Scalar spectra

The velocity-scalar cross-correlation spectrum,
EQ(k)[2Q(k)k2/3p2, is shown as a function of wave
number in Fig. 7. The spectrum is defined such that the in-
tegral yields the single-point cross correlation~i.e., u3F8!.
The average cross-correlation spectrum was obtained from
the numerical simulations by averaging 30 spectra, each
separated by an eddy turnover time. Good agreement is
found between the simulation and model results. Further-
more, although the coefficientsc2 and c3 were chosen to
optimize the fit between the simulated and modeled cross
correlations, the coefficients predominantly control the low-
est wave numbers and have little effect beyond a wave num-
ber of approximately 3. Therefore much of the agreement
can be attributed to the performance of the EDQNM model
and not to the fitting of the coefficients. The equivalent spec-
trum for the scalar autocorrelation is, by definition,
EB(k)[B0(k)k

2/p2. Figure 8 shows a comparison of this
spectrum with the simulation. The model again does very
well in predicting the correct scalar spectrum, except at the
highest wave numbers.

A critical feature of the passive scalar in the presence of
a mean gradient is the reduction in symmetry from isotropic
~no mean gradient! to axisymmetric. This reduction in sym-
metry is responsible for the discrepancy in the magnitude of
the derivatives of the scalar in the direction parallel and per-
pendicular to the mean gradient. The anisotropy in the scalar
autocorrelation can be observed directly in the simulations
by substituting conical averages@Eq. ~30c!# for the shell av-

FIG. 6. ~a! Average, single-point derivatives of the scalar in the direction of
the mean gradient~@]F/]x3#

2! and in the transverse direction~@]F/]x1#
2!.

The subscripta designates the ‘1’ or ‘3’ direction and therefore doesnot
imply a summation.~b! Ratio of the two square derivatives as a function of
time. Notice that both the model and simulation show this value to be below
unity at short times and greater than unity at long times. This is associated
with an angular redistribution of the scalar autocorrelation~see Sec. VIII D!.

FIG. 7. The scalar-velocity cross-correlation spectrum as a function of wave
number. The spectrum is defined asEQ(k)52k2Q(k)/3p2. The solid line is
the result from the model and the dashed line is the result from the simula-
tion after averaging over 30 eddy turnover times.
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erages used in an isotropic system@Eq. ~30b!#. Unfortu-
nately, statistical noise due to insufficient grid resolution in
the simulations makes it difficult to observe the angle depen-
dence directly, however, we can calculate the spectrum inte-
grated over ranges of the anglem so that we may look for
systematic deviations from the isotropic case. For example,
Fig. 9 illustrates the scalar autocorrelation integrated over
ranges ofm defined by 0<m<1

2 and
1
2<m<1. The individual

points are the numerical simulations and the solid lines are
determined from the analytical formulas shown below:

E
0

1/2

EB~k,m!dm5
k2

2p2 S 12 B0~k!2
3

16
B2~k! D , ~34a!

E
1/2

1

EB~k,m!dm5
k2

2p2 S 12 B0~k!1
3

16
B2~k! D . ~34b!

At long times, the EDQNM model predicts that the second
integral@Eq. ~34b!# exceeds the first integral@Eq. ~34a!# at all
wave numbers. Likewise, most of the DNS points follow this
trend. The major exception occurs at the very first wave
number, where the trend in the DNS is strongly reversed.
This reversal may be an artifact of the relatively poor grid
resolution in the first shell of wave numbers. Nevertheless,
despite the scatter in the DNS data, the trends throughout the
remainder of the spectrum are represented reasonably accu-
rately by the model. In particular, the model correctly pre-
dicts that the largest deviation between the two spectra oc-
curs at low wave numbers, and diminishes thereafter with
increasing wave number.

D. Anisotropy in the EDQNM model

Thus far, we have examined the anisotropy in the scalar
autocorrelation by evaluating derivatives in the directions
parallel and perpendicular to the mean gradient~Fig. 6! and
by examining partially integrated spectra~Fig. 9!. Now that
we have some confidence in the model’s ability to predict the
scalar correlations, it is insightful to consider the mecha-
nisms responsible for anisotropy in the model. The mecha-
nisms suggest physical explanations for the effects observed
in the direct numerical simulations presented here and else-
where and experiments in the literature.

Anisotropy in the EDQNM model for the scalar autocor-
relation is represented entirely byB2(k); that is, ifB2(k)50,
the scalar spectrum is, by definition, isotropic. Recall in the
governing equation forB(k,m) @Eq. ~24!#, the anisotropic
source term is

Q3~k!5Q~k!P33~k!5Q~k!~12m2!. ~35!

Thus,Q3~k! is not only a source of scalar fluctuations, but
also a source of anisotropy in the scalar spectrum as well.
Upon expanding Eq.~24! in terms of Legendre polynomials,
the anisotropy in the source term@Eq. ~35!# is manifested in
the two separate source terms in the equations governing
B0(k) andB2(k) that are equal in magnitude but opposite in
sign @see Eq.~29!#. This can be illustrated by considering the
behavior of Eq.~29! in the limit that the source terms domi-
nate the nonlinear transfer terms and dissipation. In this
limit, the coefficientsB0(k) and B2(k) would be equal in
magnitude and opposite in sign@i.e., B2(k)52B0(k)#,
yielding an autocorrelation of the form

B~k,m!5B0~k!1B2~k!~ 3
2m

22 1
2!5 3

2B0~k!~12m2!.
~36!

The source term, therefore, attempts to impose its anisotropy
on the scalar spectrum. Furthermore, close examination of
Table II shows that most of the coefficients in Eq.~29! as-
sociated with nonlinear transfer of the scalar are also consis-
tent with the source term, i.e., they only change sign whenl
changes from 0 to 2. All coefficients that are proportional to

FIG. 8. The scalar autocorrelation spectrum as a function of wave number.
The spectrum is defined asEB(k)5k2B0(k)/p

2. The solid line is the result
from the model and the dashed line is the result from the simulation after
averaging over 30 eddy turnover times.

FIG. 9. Partially integrated scalar autocorrelation spectra from the EDQNM
model ~solid and dashed lines! and numerical simulations~symbols!. The
coefficients~a,b! are either~0,

1
2! or ~

1
2,1!. Notice that the model predicts

that the latter integrated spectrum exceeds the former integrated spectrum at
long times. A similar result is observed in most of the DNS points as well.

1600 Phys. Fluids, Vol. 8, No. 6, June 1996 Herr, Wang, and Collins

Downloaded¬01¬Jul¬2005¬to¬128.117.47.188.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



a factor ~12l ! fall into this category. By definition, these
terms reinforce the anisotropy introduced by the source term.

The reason thatB2(k)Þ2B0(k) for all time is that some
of the transfer terms in Eq.~29! @those with coefficients that
are not proportional to~12l !# redistribute the scalar in the
angular direction ofk space. The terms responsible for this
angular redistribution are the ones associated with coeffi-
cients:G6, G7, M3, andM5. It should be noted that angular
transfer is a conservative process; that is, the total root mean
square fluctuation is conserved by the angular redistribution.
Furthermore, the redistribution does not occur instanta-
neously, but requires a finite time to occur~approximately
one eddy turnover time!. This can be seen by considering the
contour plots shown in Fig. 10. The upper left plot shows
isocontours of the scalar autocorrelationB(k,m) at a rela-
tively short time ~t/Te50.1! plotted on the (k1 ,k3) plane
~where the mean gradient points in the vertical direction!.
For the sake of comparison, the source term forB(k,m) @Eq.
~35!# is shown in the upper right. Equivalent plots of the
scalar autocorrelation and source term at a later time
~t/Te533! are shown below. It is readily apparent that the
source terms are strongly anisotropic at early and late times.
~Note that an isotropic spectrum would appear as concentric
circles in this diagram.! For example, none of the contours of

either source term cross thek3 axis. Likewise, the autocorre-
lation contours are strongly anisotropic at short times, par-
ticularly at small wave numbers~large scales!, however, at
longer times, the scalar contours form nearly perfect concen-
tric circles~indicating near isotropy!. Moreover, the contours
are now slightly elongatedalong the gradient axis. This re-
arrangement in the contours explains why the ratio of deriva-
tives shown in Fig. 6~b! starts out below unity~consistent
with elongated contours in the transverse direction!, but
eventually ends up greater than unity as the scalar field rear-
ranges. Note also that the rearrangement occurs most quickly
at the highest wave numbers, and eventually proceeds to the
lowest wave numbers. This is consistent with classical mod-
eling arguments that assume rapid ‘‘return to isotropy’’ of
the smallest scales.

Most of the published values for the relative ratio of
derivatives were evaluated at several eddy turnover times,2,6

long after the aforementioned rearrangement occurs, hence
their values are always greater than unity. Initially, it was
somewhat surprising to us that the ratio of derivatives could
ever be greater than unity, based on the shape of the source
term. The explanation appears to be that rapid angular rear-
rangement of the scalar occurs as a result of four of the
transfer terms. The angular rearrangement is sufficiently fast

FIG. 10. Two-dimensional contour plots ofB(k,m) and its source termQ3(k,m) as a function of the wave numbersk1 andk3 at early times~upper left and
upper right, respectively! and after steady state has been reached~lower left and lower right, respectively!. The mean gradient~‘3’ direction! is pointing in the
vertical direction. It is apparent that at short times the topological shape of theB(k,m) surface is similar to that forQ3(k,m), however, at long times, angular
rearrangement occurs causing the autocorrelation spectrum to become nearly isotropic.
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that it erases all memory of the source term, yielding an
autocorrelation spectrum that is nearly isotropic, and even
slightly skewed in the direction of the mean gradient.

E. Model results at high Reynolds and Prandtl
numbers

A major limitation with numerical simulations is the
range of Reynolds numbers and Prandtl numbers that are
numerically accessible. Models, in contrast, have no such
limitation because the spectrum is fundamentally a one-
dimensional~1-D! quantity ~instead of a 3-D quantity!; thus
the storage requirements are substantially reduced. We have
run the EDQNM model at Reynolds numbers of 96 and 342
~based on the Taylor Microscale! and Prandtl numbers rang-
ing from 0.008 to 25. To accommodate these higher values,
the maximum wave number was increased to 1024. Figure
11~a! shows the steady-state energy spectrum multiplied by
k5/3. A clear inertial range can be easily identified at both

Reynolds numbers~note, the inertial range appears as a hori-
zontal line in these coordinates!. Figure 11~b! is a semilog
plot of the energy spectrum to illustrate the exponential dis-
sipation region that follows the inertial range. Note that at
the highest Reynolds number, the inertial and dissipation
ranges are distinct and well defined.

Figure 12~a! shows the steady-state cross-correlation
spectrum EQ(k)[2Q(k)k2/3p2 at the lower Reynolds
number and Prandtl numbers between 1 and 25, and Fig.
12~b! shows the same spectrum at the higher Reynolds num-
ber and Prandtl numbers ranging from 0.008 to 1. The
Prandtl numbers were chosen to highlight the different scal-
ing regions for the passive scalar. The spectra in both figures
appear to have an inertial range followed by a dissipation
range that depends on the Reynolds number and Prandtl

FIG. 11. ~a! Energy spectrum for the high-resolution runs multiplied byk5/3.
The solid line corresponds toRl5342 and the dashed line corresponds to
Rl596. Note the appearance of a well-defined inertial range~appears as a
horizontal line in these coordinates!. ~b! Semilogarithmic plot of the energy
spectrum that emphasizes the exponential behavior in the dissipation range
of the spectrum.

FIG. 12. The scalar-velocity cross-correlation spectrumEQ(k)
52k2Q(k)/3p2 as a function of wave number for the high-resolution num-
ber runs.~a! Rl596 and the Prandtl numbers are 25.0~solid line!, 5.0
~dashed line!, and 1.0~dotted line!, respectively.~b! Rl5342 and Prandtl
numbers are 1.0~solid line!, 0.2 ~dashed line!, 0.04~dotted line!, and 0.008
~dash–dotted line!, respectively.
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number. As expected, the location of the dissipation range in
the spectrum moves to higher wave numbers with increasing
Prandtl number, however, this will not continue indefinitely.
At asymptotically large Prandtl numbers, the location of the
dissipation range will be determined by the molecular vis-
cosity, or in nondimensional terms, the Reynolds number.
Thus, the cross-correlation spectrum must asymptotically be-
come independent of the Prandtl number as the Prandtl num-
ber approaches infinity. This is evident in Fig. 12~a!. Notice
that the spectra at the two highest Prandtl numbers~P55 and
P525! are much closer to each other than to the spectrum at
the lowest Prandtl number~P51!.

The scalar autocorrelation spectrum EB(k)
[B0(k)k

2/p2 is illustrated in Fig. 13 at both Reynolds num-
bers and the same Prandtl numbers, as shown in Fig. 12. For
the low Reynolds number study@Fig. 13~a!#, the scalar spec-

tra have a well-defined inertial range with ak25/3 power law
at low wave numbers followed by a second power-law re-
gion with a more shallow slope, and an exponential tail at
very high wave numbers. The location of the dissipation
range is a strong function of the Prandtl number. Once again,
the dissipation range moves to higher wave numbers with
increasing Prandtl number, however, in this case, the trend
should continue indefinitely. That is, the autocorrelation
spectrum willnot approach a constant asymptotic shape at
large values of the Prandtl number. Similar trends are ob-
served in the high Reynolds number study@Fig. 13~b!#. No-
tice that the inertial range in the scalar spectrum at the lower
Prandtl numbers is also followed by a second power-law
region, however, now the slope of the second region is
steeperthank25/3.

With the increased resolution of the present calculations,
it is possible to quantitatively determine the scaling relation-
ships within the ‘‘second’’ power-law region that follows the
inertial range. We show the scalar autocorrelation spectra for
the two limiting Prandtl numbers separately in Figs. 14~a!
and 14~b!, along with lines indicating the classical scaling
laws. Figure 14~a! has a clear viscous-convective region with
a k21 power-law behavior, in agreement with the original
analysis by Batchelor.38 There has been an objection raised
about thek21 spectrum and the implicit logarithmic diver-
gence ofFrms asP→`.39 For the moment, we simply point
out that the EDQNM model predicts ak21 Batchelor region,
even in the presence of a mean gradient. Furthermore, we
note that this observation is consistent with, and perhaps par-
tially explains, other experimental observations ofk21

Batchelor regions in more complex inhomogeneous
flows.40,41 Figure 14~b! shows the inertial-conductive range
at the lowest Prandtl number with a dashed line indicating
the classicalk2 17

3 power law predicted by Batcheloret al.42

Once again, there appears to be good agreement with the
scaling law.

IX. CONCLUSIONS

An EDQNM turbulence transport model for a passive
scalar in the presence of a uniform mean gradient has been
developed. The model accounts for the axisymmetric scalar
autocorrelation by expanding the angle dependence in a Leg-
endre polynomial series. A fortuitous consequence of the ini-
tial conditions used in this study is that the infinite series can
be rigorously truncated after the second term. The model
contains two adjustable constants arising from the eddy
damping procedure. Since there is no asymptotic form avail-
able for the scalar-velocity cross correlation, no external con-
straint could be placed on these coefficients, and conse-
quently they were determined by optimizing the fit of the
scalar-velocity cross correlation to the DNS results.

We compared a number of single-point statistics to the
DNS database, including the scalar autocorrelationF82,
scalar-velocity cross correlationu3F8, and derivatives paral-
lel and perpendicular to the mean scalar gradient. The agree-
ment between the simulations and model was good for the
scalar-velocity cross correlation, however, this can be par-
tially attributed to the adjusted coefficients in the model. A

FIG. 13. The scalar autocorrelation spectrumEB(k)5k2B0(k)/p
2 as a func-

tion of wave number for the high-resolution number runs.~a! Rl596 and the
Prandtl numbers are 25.0~solid line!, 5.0~dashed line!, and 1.0~dotted line!,
respectively.~b! Rl5342 and Prandtl numbers are 1.0~solid line!, 0.2
~dashed line!, 0.04~dotted line!, and 0.008~dash–dotted line!, respectively.
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perhaps more stringent test was the scalar autocorrelation,
which had no adjustable parameters in its equation~aside
from those prescribed in earlier isotropic studies!. Once
again, we found the agreement between the model and simu-
lations to be quite good~within 4%!.

Earlier experimental and numerical studies of a passive
scalar with a mean gradient reported differences in the mag-
nitudes of scalar derivatives in directions parallel and per-
pendicular to the mean gradient, i.e., they found the scalar
field to be anisotropic.2,6 We likewise observed the same
effect in the model, although the magnitude of the effect was
smaller than that found in the other studies reported in the
literature~approximately 8% for the ratio of the square of the
parallel to perpendicular derivatives!.

The presence and degree of anisotropy in the scalar field

is extremely relevant to the development of a simplified
model of scalar transport because incorporating anisotropy
will add significantly to the model’s complexity, ultimately
limiting its utility for three-dimensional flows or flows in
complex geometries. Remarkably, despite the strong anisot-
ropy imposed on the scalar autocorrelation by the source
terms, the scalar autocorrelation was found to be nearly iso-
tropic after approximately one eddy turnover time. Appar-
ently, the nonlinear transfer terms responsible for redistrib-
uting the scalar in wave number space also redistribute the
scalar in the angular direction. This angular redistribution
occurs sufficiently rapidly that the anisotropy imposed by the
source term is completely negated by angular transfer. In-
deed, we predicted the scalar spectrum to be slightlyen-
hancedalong the direction of the mean gradient at long
times, in contrast to the source term that is identically zero
along that direction~a result consistent with earlier experi-
mental measurements in the literature!. More importantly,
our model and DNS results showed this difference to be
quite small. We therefore conclude that given the significant
errors in most single-point transport models introduced by
the closure approximations, the error due to assuming local
isotropy is most likely not as significant.

Comparisons of the spherically averaged spectra for the
scalar-velocity cross correlation and scalar autocorrelation
were made with the DNS results. In general, there was very
good agreement between the two. There was excellent agree-
ment within the inertial range, and some disagreement within
the dissipation range. It is difficult to pinpoint the cause of
the discrepancy at the higher wave numbers, particularly
given the large number of transfer terms in the model~see
Tables I and II!. Perhaps a more systematic study of each
transfer term may indicate the terms for which the EDQNM
approximation is breaking down.

One advantage the EDQNM model has over DNS is that
it is fundamentally one dimensional, thus it can be run at
much higher Reynolds numbers and Prandtl numbers than
can be achieved in the simulations. The high Reynolds num-
ber and Prandtl number studies allowed us to look for power-
law scaling relationships for different ranges in the scalar
autocorrelation spectrum. We observed ak21 power law in
the viscous-convective region at high Prandtl numbers~i.e.,
the so-called Batchelor region! and ak217/3 power law in the
inertial-conductive range at very low Prandtl numbers. It was
noted that there has been some controversy about thek21

Batchelor region and its implications on the boundedness of
Frms in the limit P→`. For the moment we only point out
that the EDQNM model clearly predicts scaling consistent
with the original Batchelor argument. A more comprehen-
sive discussion of the Batchelor region will be the topic of a
future paper.
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FIG. 14. Replot of the scalar autocorrelation spectra corresponding to the
extreme values of the Prandtl number.~a! P525.0 and~b! P50.008. The
dashed lines indicate the classical power-law behaviors for the different
regimes, with the exponents as indicated on the graph. The energy spectrum
is also shown for comparison~dotted line!.
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APPENDIX A: DERIVATION OF THE CLOSED TRIPLE
CORRELATIONS USING THE EDQNM
APPROXIMATIONS

1. Tjn (k,p,q)

EDQNM theory provides a methodology for obtaining
approximate relationships for the triple correlations such as
Tjn~k,p,q! based on the principle that the velocity and scalar
fluctuations are nearly Gaussian. The theory involves three
basic steps:~i! derive exact transport equations for unknown
triple correlations;~ii ! apply the quasinormal approximation
to the fourth-order moments; and~iii ! add eddy damping
terms and apply the Markovian approximation to obtain an
explicit expression for triple correlation.

The exact transport equation forTjn~x1,x2,x3! is as fol-
lows:

S ]

]t
2Pe21 ¹3

22RL
21~¹1

21¹2
2! DTjn~x1 ,x2 ,x3!

52 1
2Pnkl~x2!Tkl j~x2 ,x2 ,x1 ,x3!

2 1
2Pjkl~x1!Tkln~x1 ,x1 ,x2 ,x3!

2
]

]x3l
Tjln~x1 ,x3 ,x2 ,x3!2Rj3n~x1 ,x3 ,x2!, ~A1a!

where

Tin j~x1 ,x2 ,x3 ,x4!5ui~x1!un~x2!uj~x3!F8~x4!, ~A1b!

Ri jn~x1 ,x2 ,x3!5ui~x1!uj~x2!un~x3!. ~A1c!

According to the EDQNM theory,Tin j ~x1,x2,x3,x4! can be
approximated by

Tin j~x1 ,x2 ,x3 ,x4!'Rin~x1 ,x2!Qj~x3 ,x4!

1Ri j ~x1 ,x3!Qn~x2 ,x4!

1Rnj~x2 ,x3!Qi~x1 ,x4!. ~A2!

Upon substituting this approximation into Eq.~A1a!, Fourier
Transforming, and taking advantage of the known tensorial
relationships for the lower-order moments, the following ex-
pression is obtained:

S ]

]t
1Pe21 q21RL

21~k21p2! DTjn~k,p,q!52 i d̂~k1p1q!FqlPjl ~k!Pn3~p!R~k!Q~p!1qlPln~p!Pj3~k!R~p!Q~k!

1
1

2
Pnkl~p!Pkj~k!P13~q!R~k!Q~q!1

1

2
Pnkl~p!Pl j ~k!Pk3~q!R~k!Q~q!

1
1

2
Pjkl~k!Pkn~p!P13~q!R~p!Q~q!1

1

2
Pjkl~k!Pln~p!Pk3~q!R~p!Q~q!G

1Rj3n~k,q,p!. ~A3!

The expression forRj3n ~k,q,p!, determined previously for
the energy equation,28 can be used in Eq.~A3!. Of course,
since the energy field is not evolving in time~stationary tur-
bulence!, Rj3n~k,q,p! is constant. Equation~A3! can be for-
mally solved forTjn~k,p,q! in terms of a time integral over
the right-hand side. Introducing the standard eddy damping
terms and invoking the Markovianization approximation28

yields the following explicit relationship forTjn~k,p,q!:

Tjn~k,p,q!52 i d̂~k1p1q!QT
kpq$2QR

kqp@D3 jn
qkpR~k!R~p!

1Dnj3
pkqR~k!R~q!1Dj3n

kqpR~p!R~q!#

1Cnj
qpkR~p!Q~k!1Dn3 j

pqkR~k!Q~q!

1Djn3
kpqR~p!Q~q!1Cjn

qkpR~k!Q~p!%. ~A4!

Definitions forQR
kpq andQT

kpq are given in Eqs.~11d! and

~17d! in the main text, and the compact notation defined in
Eqs.~17b! and ~17c! is being used.

2. Mn(q,k,p)

The transport equation forMn~x3,x1,x2! in physical
space is shown below:

S ]

]t
2Pe21~¹1

21¹3
2!2RL

21¹2
2DMn~x2 ,x1 ,x3!

52
]

]x1 j
Mn j~x2 ,x1 ,x1 ,x3!2

]

]x3 j
Mn j~x2 ,x3 ,x1 ,x3!

2
]

]x2i
Pn j~x3!M ji ~x2 ,x2 ,x1 ,x3!2Tn3~x2 ,x1 ,x3!

2Tn3~x2 ,x3 ,x1!, ~A5a!

where
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Min~x1 ,x2 ,x3 ,x4!5ui~x1!un~x2!F8~x3!F8~x4!. ~A5b!

The quasinormal approximation forMin~x1,x2,x3,x4! is
given by

Min~x1 ,x2 ,x3 ,x4!'Rin~x1 ,x2!B~x3 ,x4!

1Qi~x1 ,x3!Qn~x2 ,x4!

1Qi~x1 ,x4!Qn~x2 ,x3!. ~A6!

Substituting into Eq.~A5! and Fourier transforming the re-
sulting equation yields

S ]

]t
1Pe21~k21q2!1RL

21p2DMn~p,k,q!52 i d̂~k1p1q![qaP3a~k!Pi3~p!Q~k!Q~p!

1 1
2 Piab~p!Pa3~k!Pb3~q!Q~k!Q~q!1 1

2Piab~p!Pa3~q!Pb3~k!Q~k!Q~q!

1kaP3a~q!Pi3~p!Q~p!Q~q!12qaPia~p!R~p!B~k,m!

12kaPia~p!R~p!B~q,m9!]2Tn3~p,k,q!2Tn3~p,q,k!. ~A7!

Standard eddy damping coefficients can now be introduced into Eq.~A7!. The Markovian approximation, in contrast, is
complicated by the fact thatTn3~p,k,q! and Tn3~p,q,k! are exponential functions of time, from the previous Markovian
approximation. Consequently, ‘‘Markovianization’’ of Eq.~A7! shall neglect the time variation of the scalar spectra, as is
usually done, but will account for the exponential functions introduced by the previous Markovian approximations in
Tn3~p,k,q! andTn3~p,q,k!. The result is

Mn~p,k,q!52 i d̂~k1p1q!„2QM8
pkq;pkq$2QR

pqk@D3n3
qpkR~k!R~p!1Dn33

pqkR~k!R~q!1D3n3
kpqR~p!R~q!#1Cn3

qpkR~p!Q~k!

1C3n
qkpR~k!Q~p!1Dn33

pkqR~k!Q~q!1D33n
kqpR~p!Q~q!%2QM8

pkq;pqk$2QR
pkq@D3n3

qpkR~k!R~p!1Dn33
pkqR~k!R~q!

1D3n3
kpqR~p!R~q!#1D33n

qkpR~p!Q~k!1Dn33
pqkR~q!Q~k!1C3n

kqpR~q!Q~p!1Cn3
kpqR~p!Q~q!%

1QM
pkq@C3n

qkpQ~k!Q~p!1Dn33
pkqQ~k!Q~q!1C3n

kqpQ~p!Q~q!1An
qpR~p!B~k,m!1An

kpR~p!B~q,m9!#…. ~A8!

Expressions for the new eddy damping coefficients are given in Eqs.~25c! and ~25d! in the main text.

APPENDIX B: GEOMETRIC CONSIDERATIONS IN
EVALUATING THE CONVOLUTION INTEGRAL

The expressions forTjn~k,p,q! and Mn~p,k,q! @Eqs.
~17a! and ~25a!# in principle, can be substituted into Eqs.
~16! and ~24! to obtain closed relationships forB(k,m) and
Q(k), however, it is important to first consider precisely how
the convolution integral is to be evaluated. Homogeneity en-
sures that all triple correlations are proportional tod̂~k1p
1q!, thus the convolution integrals can be thought of as
having the following generic form:

1

~2p!6
E E F~k,p,q,m,m8,m9!d̂~k1p1q!dp dq, ~B1!

wherem, m8, andm9 are the cosines of the angles between
the wave vectorsk, p, andq and the mean gradiente3, re-
spectively. In an earlier study of turbulence with mean shear,
Nakauchi24 introduced an alternative coordinate system for
evaluating the convolution integral. The standard one, re-
ferred to as~e1,e2,e3!, is the coordinate system aligned with
the mean gradient. The alternative coordinate system, re-
ferred to as (e18 ,e28 ,e38) and shown schematically in Fig. 15,
is positioned such that the vectork is aligned withe38 . The
motivation for introducing the second coordinate system is
that the convolution integral can be more easily evaluated in
that system. One complication of axisymmetric turbulence is

that the geometric factorsAi
kp, Ci j

kpq, andDi jm
kpq will depend

on the internal angles of the triad and the angle of the wave
vectors to the mean gradient. Thus, relationships for express-
ing the anglesm, m8, andm9 in the (e18 ,e28 ,e38) coordinate
system are required. By design the anglem remains un-
changed. Nakauchi24 derived the following relationships for
m8 andm9:

FIG. 15. Coordinate systems for evaluating the convolution integral.~e1, e2,
e3! is the natural coordinate system based on the direction of the mean
gradient, while (e18 ,e28 ,e38) is chosen so thate38 is aligned with thek vector.
The latter coordinate system is used to evaluate the convolution integral
because it simplifies the integrand.
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m852mz2A~12m2!~12z2!sin fq , ~B2a!

m952my1A~12m2!~12y2!sin fq , ~B2b!

wherefq is the angle of the projection ofq onto thee18
2 e28 plane~see Fig. 15 for details!.

Returning to the convolution integral shown in Eq.~B1!,
we can now integrate with respect to thep vector, yielding

1

~2p!3
E F~k,uk1qu,q,m,m8,m9!q2d cosuqdfq dq.

~B3!

From geometric considerations one can show that
d cosuq5(p/qk)dp, thus the integral becomes

1

~2p!3
E

D
F~k,p,q,m,m8,m9!

pq

k
dp dq dfq , ~B4!

where the symbolD indicates an integration over triads. For
an isotropic system the integral overdfq simply introduces a
factor of 2p, however, the integrand in an axisymmetric sys-
tem can depend on the anglefq . In all cases the angle inte-
gration with respect tofq was done analytically, producing
geometric coefficients that were functions of the magnitudes
of k, p, andq only. ~Note: theinterior angles of the triad can
be related to the magnitudes of the wave vectors through the
law of cosines.! Thus, the integral is ultimately reduced to
the following generic form

1

~2p!3
E

D
F8~k,p,q,m!

pq

k
dp dq, ~B5!

where the modified coefficientF8(k,p,q,m) is the result
from the angle integration overdfq . The angle integration
will yield a different coefficient for each term in the convo-
lution integral, hence there will be a large number of coeffi-
cients, however, this introduces no additional complexity,
aside from bookkeeping, because all coefficients can be
evaluated analytically. Furthermore, it should be noted that
the final numerical integration is only over the wave num-
bersp andq, much like the isotropic system, thus remark-
ably the extension to axisymmetry does not introduce any
additional computational burden or inaccuracy over that for
the isotropic system.
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