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Modelling microscale flow and colloid transport in saturated porous media
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The microscale flow in soil porous media determines the transport of colloids contained in groundwater. In this paper, two
completely different computational approaches, namely a mesoscopic lattice Boltzmann approach and a Navier–Stokes
based hybrid approach, are applied to simulate pore-scale viscous flows. The porous medium is represented by a channel
partially filled with circular (in 2D) or spherical (in 3D) particles. We demonstrate that the two approaches produce almost
identical pore-scale flow field, providing a rigorous cross-validation for each approach. A Lagrangian particle-tracking
approach is then used to study the transport of colloids in these flows. Due to the competing effects of hydrodynamic forces
and electro-chemical interactions, it is shown that enhanced removal of colloids from the fluid by solid surfaces occurs when
the residence time of colloids in a given flow passage is increased, in qualitative agreement with pore-scale visualisation
experiments using confocal microscopy.

Keywords: porous medium; saturated soil; pore-scale flow; direct numerical simulation; lattice Boltzmann method;
colloid retention

1. Introduction

Understanding the mechanisms of colloid retention and

transport in soil porous media is of importance to the

management of groundwater contamination by contami-

nants that could sorb to and migrate with mobile colloids

or by pathogenic microorganisms. Even for the relatively

simple case of saturated soil and aquifer, the transport of

colloids and their attachment to solid surfaces are

governed by a multitude of physical processes: transport

by low-speed microscale water flows, Brownian motion

due to random thermal fluctuation and a variety of electro-

chemical interactions between colloids and solid surfaces

(Elimelech et al. 1995, Chu et al. 2000). These physical

processes together encompass a large range of length

scales from millimetre scale to nanometre scale, with each

possibly dominating the motion of a colloid depending on

the colloid’s relative location within a pore-scale passage.

A quantitative modelling tool requires both an accurate

pore-scale flow simulation and a realistic representation of

all important colloid–surface interaction forces.

This paper concerns mainly the accurate simulation of

complex flows at the pore-scale. This will be addressed by

employing two completely different computational

approaches to a given flow problem. First, we will explore

the use of lattice Boltzmann method (LBM) as a simulation

tool for viscous flow through a porous medium. The LBM

approach is based on a kinetic formulation and has certain

advantages over the traditional Navier–Stokes based

computational fluid dynamics (Qian et al. 1992, Chen and

Doolen 1998). While LBM models capable of addressing

thermal flows, flows through porous media, multiphase

flows, electro-osmotic flows and contact line, etc. have been

proposed in recent years, two general aspects remain to be

studied before they can be applied to complex flow

modelling. The first aspect concerns the accuracy and

reliability of these LBM models for practical applications.

Since these models have typically only been tested for

idealised problems, their applications to complex flow

problems need to be critically examined and different

possible LB models are compared. The second aspect

concerns a variety of LBM implementation issues when

dealing with practical applications.

Since accurate local measurements of pore-scale

microscale flows are not usually feasible, our strategy

here is to introduce a second, Navier–Stokes based

computational approach. The hybrid approach, referred to

as Physalis by its original developers (Takagi et al. 2003),

integrates a numerical solution of discretised Navier–

Stokes equation on a simple uniform grid with an

analytical representation of local flow near the surface of a

solid particle. Direct comparisons between LBM and

Physalis offer an opportunity for cross-validating each

approach as well as contrasting their pros and cons.

As the first step, we focus our attention on a 2D model

of porous media, namely, a 2D channel partially filled with

fixed circular cylinders. After the accuracy of the flow
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simulation is established, the trajectories of colloids are

simulated under the influence of Stokes drag, Brownian

force and electro-chemical surface–interaction forces.

The rate of deposition of colloids on solid surfaces at a

given solution ionic strength is then analysed for several

flow speeds. A thorough analysis of colloid deposition

under various conditions can be found in our companion

paper (Han et al. 2008).

2. Methodology

Consider a viscous flow in a 2D channel with seven fixed

cylinders as shown in Figure 1. This 2D setting is used to

mimic a slice of a 0.8mm £ 0.8mm channel packed with

glass beads (0.20mm in diameter, i.e. Figure 10 below).

Flow is driven by a constant pressure gradient or a body

force in the y-direction. Periodic boundary condition is

assumed in flow direction with a periodicity length of L,

while no-slip velocity condition is applied on the two

sidewalls at x ¼ 0 and H, and on the surface of the seven

glass cylinders. The channel width H is set to 200 and the

cylinders have an identical diameter of 30. The

computational domain size in terms of the grid spacing

(dx ¼ dy ¼ 1) is 200 in the x-direction and 93 in the

y-direction. The centres of the seven cylinders are located

at (50,25), (100,25), (150,25), (25,68), (75,68), (125,68)

and (175,68), respectively.

At the initial time t ¼ 0, the fluid is at rest. The body

force per unit volume is set to FB ¼ 8rnUc=H
2, such that

the centreline velocity of the channel would be Uc at long

time when the body force is balanced by the viscous

effects, if there were no glass cylinders in the channel.

Here, n and r are the fluid kinematic viscosity and density,

respectively. The magnitude of Uc is adjusted to match the

flow rate in our microchannel flow experiment. For the

results discussed here, Uc is such that the Reynolds number

based on Uc and H is UcH=n ¼ 0:20025.

2.1 The lattice Boltzmann approach

In the LBM approach, the lattice Boltzmann equation for

the distribution function fi of the mesoscopic particle with

velocity ei:

f iðxþ eidt; t þ dtÞ2 f iðx; tÞ

¼ 2
1

t
f iðx; tÞ2 f

ðeqÞ
i ðx; tÞ

h i
þ ciðx; tÞ; ð1Þ

is solved with a prescribed forcing field ci designed to

model the driving pressure gradient or body force. In this

work, ci is specified as ciðx; tÞ ¼ Wiei·F=c
2
s , where F is

the macroscopic force per unit mass acting on the fluid.

The standard D2Q9 lattice model in 2D and the D3Q19

model in 3D (Qian et al. 1992) are used with the following

equilibrium distribution function:

f
ðeqÞ
i ðx; tÞ ¼ Wi rþ

r0ei·u

c2
s

þ
r0uu : eiei 2 c2

s I
� �
2c4

s

� �
; ð2Þ

where Wi is the weight, the sound speed cs is 1=
ffiffiffi
3

p
and

I ; [dij] is the second-order identity tensor. The mean

density r0 is set to 1. The macroscopic hydrodynamic

variables are computed as:

r ¼
X
i

f i; r0u ¼
X
i

f iei; p ¼ rc2
s ; ð3Þ

where r, u and p are the fluid density fluctuation (the local

fluid density is r0 þ r), velocity and pressure, respectively.

The above form of the equilibrium distribution was

suggested by He and Luo (1997) to best model the

incompressible Navier–Stokes equation.

A uniform lattice is used to cover the computational

domain. The straight channel walls are located in the

middle of lattice links so a second-order accuracy is

achieved with a simple bounce-back implementation. The

inlet and outlet are also located half way on the lattice links

to facilitate the implementation of the periodic boundary

condition in the y-direction.

The key implementation issue here is the treatment of

solid particle surfaces. For each lattice node near a particle

surface, we identify all links moving into the surface and

their relative boundary-cutting location, namely, the

percentage (a) of a link located outside the surface.

Since particles are fixed, this information is pre-processed

before the flow evolution. Before the streaming step, the

missing population is properly interpolated in terms of a

and two populations lying before and after the path of the

missing population (Lallemand and Luo 2003, Yu et al.

2003). For results in this paper, we used the first-order

interpolation based on two known populations and found

that the results are quite similar to the second-order

interpolation based on three nodes (Lallemand and Luo

2003). All lattice nodes lying within the solid particlesFigure 1. A sketchof the 2Dchannelwith sevenfixedglass beads.

H. Gao et al.494
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(including the fluid–solid interface) are excluded from

lattice Boltzmann equation (LBE) evolution, their

velocities are simply set to zero. As a validation check,

the total mass for the fluid nodes (excluding the fluid–

solid interface nodes) is computed and found to remain

constant as time is advanced.

We also tested the generalised LBE or the multiple-

relaxation-time (MRT) model as presented in Lallemand

and Luo (2000) and d’Humières et al. (2002). The MRT

has been shown to improve numerical stability so flows at

higher Reynolds numbers can be simulated. Here, our flow

is at low flow Reynolds number, but we will demonstrate

an interesting robustness of MRT which allows a wider

range of relaxation parameter (or viscosity setting) to be

used in the LBM approach, when compared to the usual

Bhatnagar–Gross–Krook (BGK) collision model shown

in Equation (1).

2.2 The Navier–Stokes approach: physalis

To validate the lattice Boltzmann approach and compare it

with traditional Navier–Stokes based computational

approaches, we also developed a code using the hybrid

method proposed by Takagi et al. (2003) and Zhang and

Prosperetti (2003, 2005). The method was named Physalis

(Takagi et al. 2003). Physalis combines a numerical

discrete representation of the Navier–Stokes viscous flow

around particles and an analytical representation imbedded

near the surface of each particle.

The basic idea behind Physalis is as follows. Because of

the no-slip boundary conditions on its surface, a solid

particle induces a specific local flow structure that could be

used to linearise the Navier–Stokes equations in the

neighbourhood of the particle surface. The fluid velocity,

pressure and vorticity near the particle surface can be

expressed analytically using series solutions of Stokes flow

equations. As a result, the geometric surface of the particle

can be replaced by a Stokes flow solution valid in a narrow

but finite region near the surface, known as the cage region

as indicated by the two dash circles in Figure 2.

There are three main components in Physalis. The first

component is an analytical representation of the flow

within the cage region. This is obtained by the method of

separation of variables applied to Stokes flow equations.

The general form in 2D is given in Zhang and Prosperetti

(2003) and in 3D is found in Zhang and Prosperetti (2005)

and Gao and Wang (2007). The second component is the

numerical method for Navier–Stokes equations on a

regular mesh (the flow solver). The second-order

projection method (Brown et al. 2001) is used. The

intermediate velocity in the fractional step procedure is

solved by a factorisation method (Kim and Moin 1985),

while the Poisson equation for the projection step is solved

by a combination of transformation and tridiagonal

inversion. This mesh extends to the interior of the particle

surface. The velocity cage essentially defines an internal

boundary for the viscous flow where the Stokes solution is

employed to specify the boundary conditions there.

The most essential component is the coupling or

matching between the numerical solution on the regular

mesh and the Stokes solution in the cage. This coupling is

achieved by an iterative procedure in which (a) the

numerical solution is used to refine the coefficients in the

Stokes flow representation and in turn (b) the numerical

solution is refined by an updated boundary condition at the

velocity cage from the refined Stokes flow. The first part is

accomplished by a singular value decomposition algorithm,

since an over-specified linear system (the number of

cage nodes used for coupling is larger than the number

of coefficients) is to be solved. The second part currently

relies only on the specific method of defining the cage

velocity nodes or the internal boundary, so the analytical

nature of the Stokes solution may not be fully taken

advantage of. There is more than one way to specify the

cage region (Takagi et al. 2003). For accuracy of the Stokes

flow representation, it is desirable to select the cage nodes as

close to the surface of the particle as possible.

An important advantage of this hybrid method is that

the force and torque acting on the particle can be

calculated directly from the Stokes solution, avoiding

often tedious numerical integration of local viscous force

on the particle surface that is necessary for other non-

hybrid numerical methods.

Figure 2. The cage used to represent a glass bead surface in
Physalis, for a glass bead with a radius of 15 grid spacings. Solid
circles denote pressure cage nodes, open circles are vorticity cage
nodes, filled triangles are u-velocity cage nodes and open
triangles are v-velocity cage nodes. The thick line denotes the
glass bead surface.

International Journal of Computational Fluid Dynamics 495
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2.3 Dynamics of colloids

When the steady viscous flow is established in the

microscale porous channel, colloids are randomly injected

into the flow at the inlet with a velocity equal to the local

fluid velocity, at a rate that corresponds to a concentration

of 1 ppm. One ppm indicates that the colloid mass

concentration is 1mg/l or a number concentration of

1810 permm3 of the solution. If we assume that the 2D

flow model represents a slice of thickness equal to the

colloid radius, then the above concentration implies that

there are about 23.7 colloids in the periodic fluid domain

shown in Figure 1.

Since this concentration is very low, the fluid flow is

assumed to be unaffected by the presence of colloids. Each

colloid is treated as a discrete entity (point-like particle)

and moves according to the following equation of motion:

mc

dvðtÞ

dt
¼ Fdrag þ Fb þ Fg þ FB þ Fc; ð4Þ

where v(t) is the instantaneous (Lagrangian) velocity of

the colloid, mc ; 4prca
3
c=3 is the mass of the colloid, rc

is the material density of the colloid and ac is the radius of

the colloid. All relevant physical parameters and their

corresponding value in the numerical simulation are

shown in Table 1. The hydrodynamic forces include the

viscous drag Fdrag and the buoyancy force Fb. Other forces

such as the pressure-gradient force, the added mass and

Basset history term (Maxey and Riley 1983) are neglected

here due to the very slow solvent (water) flow. Fg is the

gravitational body force. FB is a random force designed to

simulate Brownian motion of the colloid due to local

thermal fluctuations of solvent molecules. Finally, F c

represents interaction forces of the colloid with the glass

(grain and wall) surface or other deposited colloids.

The colloid is assumed to have a radius of ac ¼ 0:5mm,

this together with the slow Stokes flow of the solvent

implies that a Stokes drag could be assumed, namely:

Fdrag ¼ zðuðYðtÞ; tÞ2 vðtÞÞ; with z ; 6pmac; ð5Þ

where u(x,t) is the Eulerian solvent velocity field, Y(t) is

the instantaneous location of the colloid obtained from the

kinematic equation dYðtÞ=dt ¼ vðtÞ and m is the solvent

viscosity. As the first step, we neglected the effects of local

fluid shear and any corrections of the viscous force due to

glass cylinder surface or channel wall. Local shear flow

may induce viscous force (i.e. lift force) normal to the flow

(Saffman 1965, McLaughlin 1991). Hydrodynamic inter-

action of the colloid with a surface can result in a modified

drag, additional lift and non-zero torque (Goldman et al.

1967, O’Neill 1968). These modifications could be

included in our Lagrangian colloid-tracking approach.

Here, we chose to keep the force formulation simple for the

following reasons: (a) in a study conducted by Arcen et al.

(2006), it was shown that the results of particle statistical

properties from numerical simulation based on the standard

drag force only are not much different from these obtained

using wall-corrected drag and lift forces; (b) computations

of wall and shear corrections are computationally

expensive; (c) there appear to be inconsistencies in the

literature regarding the general expression of viscous force

acting on a particle in a shear flow near a surface and (d) we

intend to develop a systematic understanding by gradually

adding complexity to the description of hydrodynamic

forces, one step at a time.

The Stokes inertial response time of the colloid tc ;
mc=z ¼ 2rca

2
c=ð9mÞ is about 5.86 £ 1028 s, which is

much smaller than the typical flow time scale. Therefore,

the colloid would move along a streamline if no other

Table 1. Physical parameters and their values in the numerical simulation.

Symbol Physical value Value in simulation

Water density r 1000 kg/m3 1
Water viscosity m 0.001 kg/(m·s) 0.8
Grid spacing dx, dy 2mm 1
Channel width H 800mm 400
Periodicity length L 372mm 186
Glass cylinder radius R 60mm 30
Colloid radius ac 0.5mm 0.25
Velocity used in setting FB Uc 679.5m/day 0.01258
Mean speed realised Us 2.887m/day 5.347 £ 1025

Porosity e 0.734 0.734
Nominal flow speed Us/e , 4.0m/day 7.285 £ 1025

Colloid density rc 1055 kg/m3 1.055
Time step dt 6.4 £ 1025 s 20
Mass of colloid (actual) mc 5.524 £ 10216 kg 0.06905
Mass of colloid (assumed) m*

c 6.033 £ 10212 kg 754.0
Response time (actual) tc 5.86 £ 1028 s 1.831 £ 1022

Response time (assumed) t*
c 6.4 £ 1024 s 200

Force Fdrag, Fc, etc. (1.563 £ 1029)FN F

H. Gao et al.496
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forces were considered. In the numerical simulation, we

assumed a value of t*
c ¼ 6:4 £ 1024 s, which is several

orders of magnitude larger than the actual value, but is still

very much smaller than the flow time scale, in order to

reduce the stiffness of the system, Equation (4), so a large

integration time step can be used. Note that the typical

flow time scale is on the order of ac=Us ¼ 0:5 s. Numerical

tests show that the results are not sensitive to the value of

tc as long as it is much smaller than the typical flow

timescale.

The buoyancy force and body force together is given as:

Fbg ¼ Fb þ Fg ¼ mc 1 2
rw

rc

� �
g; ð6Þ

where rw is the solvent density and g is the gravitational

acceleration. Taking the density ratio of rc=rw < 1:055 and

jgj ¼ 9:8 m=s2, the ratio of Fbg to Fdrag may be estimated

as mcð0:052Þg=ðzUsÞ ¼ 0:052tc=ðUs=gÞ < 0:894 £ 1023

(see Table 1). Furthermore, the 2D simulation considered

here is viewed as modelling the transport of colloids in a

horizontal plane section through the actual 3D horizontal

porous channel. For these reasons, here, we neglected the

buoyancy force and body force together.

The Brownian force is specified as FB ¼ ðFB
1 ;F

B
2 Þ,

where each component FB
i is an independent Gaussian

random variable of zero mean and the following standard

deviation (Fujita et al. 2004):

sFB
i
¼

ffiffiffiffiffiffiffiffiffiffi
2zkT

dt

r
; ð7Þ

where dt is the time step size, T is the temperature

(assumed to be 293 K), k ¼ 1:38 £ 10223 J=K is the

Boltzmann constant. When a simple explicit Euler scheme

is applied, the Brownian force would generate the desired

mean square value (kT=mc) of velocity fluctuation in each

direction (Elimelech et al. 1995). The ratio of the

Brownian force to the drag force is estimated to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tckT= mcU

2
s dt

� �q
< 3:5, implying that the Brownian

effect is as important as the drag force in transporting the

colloidal particles. The above treatment for the Brownian

motion is based on a stochastic (Langevin equation)

model. It should be noted that an alternative would be to

directly introduce fluctuating hydrodynamics (Landau and

Lifshitz 1959) within the LBE, as performed in Ladd

(1993).

While the drag force and the Brownian force are active

in all regions of the flow domain, the colloidal interaction

force is a short-range force that is only important when a

colloid is very close to a glass surface or another deposited

colloid. It consists of the electrostatic, Lifshitz–van der

Waals (LW) and Lewis acid–base (AB) interaction forces

(van Oss 1994):

F c ¼ F EDL þ F LW þ FAB; ð8Þ

where all interaction forces are assumed to act in the

direction normal to a surface, with a positive value

indicating a repulsive force and negative an attractive force.

The formulation of these forces is primarily based on the

Derjaguin and Landau (1941) and Verwey and Overbeek

(1948) (DVLO) interaction potential. The electrostatic

double layer (EDL) force results from the interaction of a

charged particle with the ions in the liquid medium. For

colloid–glass surface interaction, the EDL force may be

written as Hogg et al. (1966) and Han et al. (2008):

F EDL; cg ¼
ack

1 2 expð22khÞ

£ ½a1 expð2khÞ2 a2 expð22khÞ�; ð9Þ

where h is the minimum gap between the colloid and a glass

surface (the distance from the centre of the colloid to the

surface minus ac),k is the inverse Debye–Huckel screening

length, which depends on the solution ionic strength. Here,

we shall only consider an ionic strength at 100 mM in NaCl

electrolyte solution and in this case 1/k ¼ 0.963 nm. The

coefficientsa1 anda2 are related to the surface potentials of

the glass surface (269.74 mV) and colloid (276.99 mV) as

well as the dielectric constant of the medium (Han et al.

2008). The surface potentials are computed based on the

measured z-potentials (241.31 and 245.56 mV, respect-

ively; Han et al. 2008). For the electrolyte solution used in

this study (Han et al. 2008), a1 ¼ 4:648 £ 10211 N and

a2 ¼ 4:671 £ 10211 N. With the above parameters, the

EDL force is repulsive and F EDL=ðzUsÞ . 1 when h=ac ,

0:02 (Figure 3). For the case of colloid–colloid interaction

at 100 mM ionic strength, the EDL force is computed by

Elimelech et al. (1995) and Han et al. (2008):

F EDL; cc ¼ ð1:847 £ 10211 NÞack expð2khÞ; ð10Þ

where h is the minimum gap between the two approaching

colloids.

The attractive LW interaction accounts for intermole-

cular interaction including London dispersion, Keesom

dipole–dipole and Debye induction. For the purpose of

this paper, the LW force can be written as van Oss (1994)

and Han et al. (2008):

F LW; cg ¼ 2bac

h0

h

� �
2

; ð11Þ

where h0 is an equilibrium distance used to model the

occurrence of physical contact and is set to 0.157 nm

(Elimelech et al. 1995). The constant b has been determined

to be 0.0434 J/m2 for colloid–surface interaction and

0.0469 J/m2 for colloid–colloid interaction, based on the

International Journal of Computational Fluid Dynamics 497
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thermodynamic parameters of colloids, glass and the liquid

solution.

The AB force originates from the bonding reaction of a

Lewis acid and a Lewis base. It can be expressed as van

Oss (1994) and Han et al. (2008):

FAB ¼ 2g
h0ac

x
exp

h0 2 h

x

� �
; ð12Þ

where x ¼ 0:6 nm is the water decay length (van Oss 1994),

the constant g is determined, using the relevant electron-

accepter and electron-donor parameters, to be20.0322 and

20.170 J/m2 for colloid–surface and colloid–colloid

interactions, respectively.

In Figure 3, we compare the three different colloidal

interactions forces and also their magnitudes relative to the

drag force, for the case of colloid–glass surface

interaction. Several important observations can be made.

First, as a colloid approaches a surface, the LW attractive

force is the first active force and it plays a role starting at

h < 0:2 ac. This attractive LW force dominates the

colloidal interaction until h < 0:02 ac, with a peak

magnitude at least 10 times the drag force. Then the

EDL force quickly takes over to turn the net interaction

force a repulsive force. An important parameter here is

kac ¼ 519:2, implying that the EDL force will play a role

when the gap is on the order of ac=519:2 ¼ 0:00193 ac.

This scale indeed falls in the range when EDL force is the

dominant force. Eventually at h=ac < 0:0004, the LW

force wins over to change the net force back to an

attractive force (i.e. towards the primary energy

minimum). This overall picture implies that the LW

force is the dominant force acting over most of the small

gap distances. The two locations where the net force is

zero, namely, h=ac ¼ 0:000383 and 0.0152, correspond to

the secondary minimum and the energy barrier in the net

energy potential (Elimelech et al. 1995).

Similar plots are shown in Figure 4 for the interaction

of a colloid with another deposited colloid. In this case, the

net interaction force at h ¼ h0 is repulsive, implying the

surface location where a colloid has been deposited will

not attract a second colloid. The net force variation near

the secondary minimum is similar.

In our simulation, both the grain and wall surface are

treated as a flat glass surface. For a given colloid particle,

all possible colloid–surface and colloid–colloid binary

pair interactions are summed to obtain the final Fc. Such

pairwise summation of all the binary interactions is a

reasonable approach since here, kac .. 1 (Das and

Bhattacharjee 2005). The equation of motion was solved

numerically by first integrating the drag force and colloidal

force using a mixed fourth-order Adam–Bashforth and

Adman–Moulton scheme. The Brownian force was then

added using the explicit Euler scheme.

3. Results

3.1 Viscous flow simulation

Before discussing the results for the flow problem shown in

Figure 1, we shall validate both our LBM and Physalis

codes by a unit cell flow problem in which a fixed cylinder

of radius a is located at the centre of a 2D channel with walls

at x ¼ 0 and H. Periodic flow condition is assumed in the

y-direction with periodicity length of L. Both channel walls

are moving at a constant velocity of U. The force Fy acting

on the cylinder in the flow direction is of interest. This

simulates a problem of viscous flow over a line of cylinders

with spacing equal to L, driven by two moving walls both

40000(a) (b)

20000

0
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5

0
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–10

–15
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–20000

–40000

–60000
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EDL

sum
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Figure 3. Different colloidal interaction forces normalised by (zUs) for colloid–surface interaction: (a) the region h0 , h , ac and
(b) the zoom-in region 0:005ac , h , ac. The thin vertical line in (a) marks the location where h ¼ h0. The three horizontal lines in
(b) mark the value of 21, 0 and 1, respectively.
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parallel to the line and located H/2 away from the line.

Clearly, the normalised force Fy=ð2prU
2aÞ is a function of

three dimensionless parameters: the Reynolds number

Re ¼ rUð2aÞ=m and the two geometric scale ratios L/(2a)

andL/H, where r andm are fluid density and viscosity. Here,

we set Re ¼ 1 and L/H ¼ 1. The resulting normalised

forces are shown in Table 2 for three different L/(2a) ratios.

In our simulations, the unit cell is discretised at a mesh

resolution of 144 £ 144, 64 £ 64 and 24 £ 24 for cases

A–C, respectively, which corresponds to a very moderate

resolution of the cylinder radius at a/dx ¼ 6.102, 5.246 and

5.742, for the three cases, respectively. The density and

the mesh spacing are assumed to be one for all runs. For the

LBM simulations, the relaxation time is set to t ¼ 1 so the

kinematic viscosity is m/r ¼ 1/6. For Physalis, the wall

velocity U is set to 0.1. Only the force at the steady state is

presented here. Table 2 shows that our LBM and Physalis

results are always within 1% to each other. Our results are

also in very good agreement with the previous results of

Inamuro et al. (2000) and Zhang and Prosperetti (2003).

We now consider the flow problem shown in Figure 1.

Both LBM and Physalis codes were developed to simulate

this flow.The steady-statemeanflowspeedUs, defined as the

volumetric flow rate per unit depth normalised byH, is much

smaller thanUc and is found to be 0.00425Uc. Therefore, the

flow Reynolds number based on the mean speed isUsH=n ¼

8:51 £ 1024 or the flow in the microchannel is essentially a

Stokes flow. It is then expected that the flux is linearly related

to the applied forcing.

Figure 5 compares the resulting flow volumetric

flux normalised by 0:01HUc. The parameters used in

Physalis are Uc ¼ 8:01 £ 1024, r ¼ 1; n ¼ 0:8 and the

time step size dt ¼ 10, while in the LBM simulation,

Uc ¼ 4:171875 £ 1025,r ¼ 1; n ¼ 0:0416667 (ort ¼ 5=8)

and dt ¼ 1: These settings imply that one Physalis time

step corresponds to roughly 192 LBM time steps,

although, we can adjust the LBM parameters to improve

the efficiency of the LBM simulation (see below). During

the transient development, the flux increases monotoni-

cally with time, reaching to its steady-state value at a non-

dimensional time of about tUc=H ¼ 0:001. The steady

state value for LBM is only 1% different from the

Physalis result. This comparison between LBM and

Physalis is obtained when the truncation order for the

local Stokes flow representation in Physalis is set to 6 (or

a total of 26 expansion coefficients are considered, Zhang

and Prosperetti (2003) for detail). It was also found that

even with a low truncation order of two in Physalis (i.e.

10 expansion coefficients), the steady-state flux is only

2% different from the IBM result. This shows that, on the

one hand, the local flow structure near the cylinder

surface is relatively smooth, but at the same time, the

interaction between the cylinders and with the channel

walls induces secondary higher-order corrections. The

Stokes flow truncation order at six will be assumed for all

the comparisons below.

60000

(a) (b)

30000

–30000

–60000

10–3 10–2 10–1 100

h/ac

10–2 10–1 100

h/ac

sum

AB
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0
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–10

–20

0

Figure 4. Different colloidal interaction forces normalised by ðzUsÞ for colloid–colloid interaction: (a) the region h0 , h , ac and (b)
the zoom-in region 0:005ac , h , ac. The thin vertical line in (a) marks the location where h ¼ h0. The three horizontal lines in (b) mark
the value of 21, 0 and 1, respectively.

Table 2. Comparison of the normalised force acting on a fixed
cylinder in a unit cell flow driven by two moving walls.

Case L/(2a) LBM Physalis ZP03a IMO00b AL95c

A 11.8 1.033 1.033 1.034 1.053 0.966
B 6.1 1.241 1.243 1.224 1.251 1.158
C 2.09 2.098 2.083 2.079 2.093 2.067

a Zhang and Prosperetti (2003).
b Inamuro et al. (2000).
c Aidun and Lu (1995).
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In Table 3, we compare forces and torques acting on

each cylinder as labelled according to Figure 1. The forces

are normalised by F0 ¼ FBHL and torques by F0a. Due to

the symmetry of the geometric arrangement, only results

for cylinders 1, 2, 4 and 5 are shown. For most of the cases,

the relative differences between LBM and Physalis results

are less than 1%. The results show that cylinder 1

experiences clockwise torque but cylinders 4 and 5

counterclockwise torques. The transverse (lift) force on

cylinder 4 is the largest due to its close proximity to the

wall, it also has the largest x-component force (drag) due

to the combination of the flow blocking and the wall effect.

We further confirm that the net force acting on fluid at the

steady state, namely, the sum of reacting forces from the

walls and the cylinders and the applied body force is

identically zero. The normalised total tangential force

acting on each wall is 0.0370 and 0.0372 for the LBM and

Physalis runs, respectively.

Figures 6 and 7 display velocity distributions at three

line cuts marked in Figure 1. For the streamwise velocity

component, the velocity profiles are essentially identical at

all three locations inside the fluid regions. It is noted that

Physalis produces flows within the cylindrical particle

surfaces, while in LBM no flow is computed within the

cylinders. The transverse velocity also matches precisely

at the AA cut where its magnitude is comparable to the

streamwise component. For the other two cuts, the

transverse velocity is only about one fiftieth the magnitude

of the streamwise velocity. Some small differences are

visible in the fluid regions, but perhaps are not important

due to its very small magnitude. Note that both LBM and

Physalis have roughly a second-order accuracy in spatial

representation.

In the above comparisons, the actual number of time

steps used in LBM is 16,000 while only 80 time steps are

used in Physalis. For a given flow geometry and grid

resolution, the flow Reynolds number is the only

remaining governing parameter. One could therefore

increase both Uc and n proportionally in LBM to

effectively reduce the number of time steps needed to

produce the same macroscopic behaviour (governed by the

dimensionless time tUc=H). Taking the base case Uc value,

we performed four additional runs at the same flow

Reynolds number by increasing Uc by a factor of 2 (run2,

v ¼ 1.333), 4 (run3, v ¼ 1.0), 16 (run5, v ¼ 0.40) and 32

(run6, v ¼ 0.222). The dimensionless flux curves are

shown in Figure 8(a) for the single-relaxation time BGK

collision model and in Figure 8(b) for the MRT model of

Lallemand and Luo (2000). Here, v is the relaxation

frequency and is equal to 1/t in the BGK model or equal to

the relaxation parameter for the stress tensor in the MRT

model (Lallemand and Luo 2000). The relaxation

parameters for other moments in the MRT collision

model follow the suggested values in Lallemand and Luo

(2000). Several interesting observations can be made. For

the steady-state flow, the BGK model produces the correct

result when v . 1 or there is a sufficient number of time

steps (about 1000) for the flow to evolve to steady state. On

the other hand, the MRT moment-space collision model

can always produce the correct steady-state, even when the

transient behaviour is not correct, showing an desirable

advantage of MRT over BGK. During the transient time

period, care must be taken to properly set the relaxation

parameter in LBM, as otherwise non-physical oscillatory

behaviours can occur due to the contamination of

hydrodynamic modes by inherent acoustic waves in the

LBM approach (Lallemand and Luo 2000, Mei et al.

2006).

While our current application here only concerns low

Reynolds number viscous flows, our MRT LBM method

can simulate a variety of flow Reynolds numbers. Figure 9
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Figure 5. Comparison of results on the normalised volumetric
flux as a function of time.

Table 3. Normalised forces and torques acting on different cylinders.

~Fx
~Fy

~Gz

Particle LBM Physalis LBM Physalis LBM Physalis

1 0.00787 0.00781 0.0635 0.0643 20.00286 20.00286
2 0.0 0.0 0.0810 0.0818 0.0 0.0
4 0.0137 0.0136 0.128 0.129 0.0166 0.0166
5 0.00243 0.00241 0.0959 0.0966 0.000176 0.000188
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demonstrates this capabilitywith the same lattice resolution

for a flow at a Reynolds number of about UsH=n ¼ 1429.

Interestingly, at this Reynolds number, the long-timeflow is

actually unsteady due to quasi-periodic vortex sheddings

and the complex interactions of vortices with cylinder

surfaces and channel walls. Only half of the flow domain is

shown in Figure 9. The two time snapshots in Figure 9 are

both taken at the quasi-steady stage, but locally they have

quite different vorticity distributions.

We now briefly discuss some preliminary results in three

dimensions for a porous channel with a square cross-section,

filled with 25 spherical glass beads almost packed in the

channel, as illustrated in Figure 10. A moderate lattice

resolutionof80by35by80 is used. Sixteenbeads are located

at y ¼ 10, with x, z ¼ 10, 30, 50 and 70. Another nine beads

are located at y ¼ 25, with x, z ¼ 20, 40 and 60. The diameter

of glass beads is set to 20. The flow is driven by a body force

of magnitude equal to 8rnUc=H
2 where H ¼ 80. The

magnitude of Uc is set to give UcH=n ¼ 288.

Figure 11 shows the velocity distributions in two plane

cuts. One can see a complex 3Dflowwith a large variation of

local velocity magnitudes and directions, implying strong
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Figure 6. Comparison of steady-state, streamwise velocity profiles from LBM and Physalis at three locations shown in Figure 1. The
horizontal lines mark the glass-bead boundaries when the y location cuts through glass beads. (a) AA cut; (b) BB cut and (c) CC cut.
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streamline curvatures in the flow. The effect of glass bead

surfaces is well represented. The steady-state mean flow

speed is found to be roughly 0.0005Uc. A quantitative

analysis and comparison between LBM and Physalis for this

case is being undertaken and will be reported separately.

3.2 Preliminary results on colloid transport and
deposition

In this section, results on the transport of colloids in the 2D

porous channel with seven fixed cylinders are presented.

The flow may be extended in the y-direction indefinitely

using the periodicity condition to allow a colloid to travel

any length in the y-direction. We used bilinear

interpolation to obtain the fluid velocity at the location

of a colloid. To ensure the accuracy of simulated colloid

trajectories, we purposely doubled the grid resolution to

400 £ 186 (see Table 1), although this is not necessary for

the flow simulation. Figure 12 displays the locations of

colloids within the same region from the inlet at a time

when a total of 1898 colloids have been released into the

channel, for four different mean flow speeds ranging from
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Figure 8. The normalised flux as a function of time from LBM runs at different parameter settings but the same flow Reynolds number
(UcH=n ¼ 0:2). Run2: n ¼ 0.08333, Uc ¼ 8:34 £ 1025 and T ¼ 8000; Run3: n ¼ 0.1667, Uc ¼ 1:67 £ 1024 and T ¼ 4000; Run5:
n ¼ 0.6667, Uc ¼ 6:675 £ 1024 and T ¼ 1000; Run6: n ¼ 1.3333, Uc ¼ 1:335 £ 1023 and T ¼ 500. Here, T is the total number of time
steps used. (a) BGK collision model and (b) the MRT model of Lallemand and Luo (2000).

Figure 9. Two snapshots of vorticity visualisation for a test run at Reynolds number of 1429 based on the steady-state average
streamwise velocity (Us ¼ 0:014295). The parameters are Uc ¼ 15.0 and n ¼ 0.004.
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1 to 8 m/day. The solution ionic strength is set to 0.1 M in

these simulations. Suspended colloids are marked as open

circles while deposited colloids are shown as filled circles.

Since the colloid concentration is fixed at 1 ppm, a fixed

total number of injected colloids corresponds to a same

total solvent volume passing through the inlet. The

numbers of deposited colloids at the times shown in Figure

12 are 508, 358, 231 and 105 for 1, 2, 4, 8 m/day,

respectively. These results show that the overall colloidal

deposition decreases with increasing flow speed.

The results were further analysed quantitatively by

calculating and comparing the average surface coverage,

defined as the fraction of the solid surface covered by

deposited colloids. Figure 13 shows the surface coverage

as a function of the total number of injected colloids. The

total number N(t) of injected colloids is proportional to

the time t as NðtÞ ¼ utðsÞ, where the coefficient u

represents the number of colloids released per unit time

and is 0.737, 1.474, 2.949 and 5.899 s21 for the four flow

speeds. The surface coverage has a quadratic dependence

on the total number of injected colloids since the net rate

of deposition increases roughly linearly with the injection

time or the total number of injected colloids. The

observed dependence on the mean flow speed may be

qualitatively explained as follows. While fluid flow

transports colloids along curved streamlines, Brownian

motion can cause colloids to cross streamlines. The lower

the mean flow speed, the longer it takes for a colloid to

move through a given distance in the y-direction. This

then increases the possibility for Brownian force to shift

the colloid across streamlines and bring the colloid to

regions very close to a solid surface, where the surface

interaction forces can act to remove the colloid from

the flow.

Figure 10. A 3D geometric configuration with 25 nearly packed spherical glass beads in a 3D channel with a square cross-section: (a) 3D
view, (b) xy view and (c) xz view.
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Figure 11. Simulated velocity field on two plane sections
shown in Figure 10, with LBM approach. Similar results are
obtained with Physalis. (a) AA plane cut and (b) BB plane cut.
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Another analysis is that we counted the number of

colloids deposited on each cylinder including its periodic

images. It appears that more colloids are deposited on the

cylinders near the centre of the channel (Cylinders 2, 5 and 6;

see Figure 1) for highflow speeds (4 and 8m/day). But at low

flow speeds (1 and 2m/day), there is no detectable bias. This

shows that the channel walls can have an effect on the

deposition at high flow speeds. It should be noted that there

are 170, 122, 74 and 25 colloids deposited on the channel

walls for the four flow speeds, corresponding to 33.5, 34.1,

32.0 and 23.8%of total deposited colloids, respectively. This

shows that the percentage of deposition on channel walls

also decreases with flow speed when the flow speed is high.

There are large statistical uncertainties on the data shown in

Table 4, as judged by the non-symmetric distribution of the

deposited colloids. Therefore, the conclusion here needs to

be checked with longer simulations.

We have also considered the effect of the solution

ionic strength on the surface coverage and found a very

non-linear dependence of surface coverage on the ionic

strength (Han et al. 2008). A thorough analysis of surface

coverage at different flow speed and solution ionic strength

has been presented in our companion paper (Han et al.

2008), where we also show that our own experimental

observations using confocal microscopy confirm the

simulated dependence of colloid deposition on flow

speed and ionic strength.

4. Conclusions

In this paper, we have simulated viscous flows in a model

porous medium, using two different computational

approaches. The fact that themesoscopic lattice Boltzmann

approach and amacroscopic CFD approach produce almost

identical velocity profiles shows that both approaches are

capable of handling thismodel geometry. Our next stepwill

be to establish a quantitative agreement between LBM and

Physalis for a realistic porous medium in three dimensions.

It is believed that cross-validations of two completely

different computational approaches will partially eliminate

the need to perform pore-scale flow measurements.

The mesoscopic lattice Boltzmann approach is perhaps

a better choice due to its simplicity in treating the no-slip

boundary condition on a solid surface and its potential to

extend to arbitrary flow geometry, provided that the

parameters in LBM are set properly such that the results are

not contaminated by acoustic waves or other numerical

instabilities. The generalised LBE or MRT collision model

is shown to be more robust in simulating steady-state

viscous flows. Further research is needed to gain a

theoretical understanding of acoustic waves in LBM for

complex geometries.

A Lagrangian modelling approach for colloid transport

has been developed to study the deposition of colloids on

solid surface. The key finding is that the rate of deposition

depends on the flow speed and solution ionic strength, and

the nature of the dependence agrees qualitatively with

previous observations and our visualisations using

x

y
Time = 2575.21 s

x
y

Time = 1287.53 s

x

y

Time = 643.69 s

x

y
Time = 321.77 s

(a) (b)

(d)(c)

Figure 12. Colloidal distribution after injection of 1898 colloids
at an interstitial velocity of (a) 1m/day, (b) 2m/day, (c) 4m/day
and (d) 8m/day in 0.1M buffer solution.

Table 4. Number of deposited colloids on each cylinder.

Cylinder 1m/day 2m/day 4m/day 8m/day

1 46 29 14 1
2 43 31 26 5
3 38 15 18 4
4 50 52 23 14
5 48 36 20 27
6 58 39 37 22
7 55 34 19 7

Deposition on all periodic images of a cylinder are included.

Figure 13. Predicted surface coverage of 1mm sulphate latex
colloids at different mean flow speeds with a solution ionic
strength at 0.1M.
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confocal microscopy (Han et al. 2008). This demonstrates

the feasibility of our computational model as a quantitative

research tool and its potential for revealing transport

mechanisms at the pore-scale. We intend to develop this

model further to include other hydrodynamic interaction

forces and 3D flow effects, so a quantitative comparison

with pore-scale experimental observations can be made

possible. It is important to note that, because typically

kac .. 1, the hydrodynamic interaction forces become

active far before the EDL interaction force.
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