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In this survey we consider the impact of turbulence on cloud formation from the
cloud scale to the droplet scale. We assess progress in understanding the effect of
turbulence on the condensational and collisional growth of droplets and the effect of
entrainment and mixing on the droplet spectrum. The increasing power of computers
and better experimental and observational techniques allow for a much more detailed
study of these processes than was hitherto possible. However, much of the research
necessarily remains idealized and we argue that it is those studies which include such
fundamental characteristics of clouds as droplet sedimentation and latent heating
that are most relevant to clouds. Nevertheless, the large body of research over the
last decade is beginning to allow tentative conclusions to be made. For example, it
is unlikely that small-scale turbulent eddies (i.e. not the energy-containing eddies)
alone are responsible for broadening the droplet size spectrum during the initial
stage of droplet growth due to condensation. It is likely, though, that small-scale
turbulence plays a significant role in the growth of droplets through collisions and
coalescence. Moreover, it has been possible through detailed numerical simulations
to assess the relative importance of different processes to the turbulent collision
kernel and how this varies in the parameter space that is important to clouds. The
focus of research on the role of turbulence in condensational and collisional growth
has tended to ignore the effect of entrainment and mixing and it is arguable that
they play at least as important a role in the evolution of the droplet spectrum. We
consider the role of turbulence in the mixing of dry and cloudy air, methods of
quantifying this mixing and the effect that it has on the droplet spectrum. Copyright
c© 2012 Royal Meteorological Society and British Crown Copyright, the Met Office
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1. Introduction

Rainfall from ‘warm clouds’ (with cloud top below the
freezing level) accounts for approximately 30% of the total
rainfall on the planet and approximately 70% of all rainfall
in the Tropics (Lau and Wu, 2003). The interaction of
cloud and raindrops with radiation plays a significant role in
driving the atmospheric circulation, and hence the correct
representation of cloud microphysics in general circulation
models for numerical weather and climate prediction is
of obvious importance. Of course, the complexity of the
physical processes involved and the vast range of scales
mean that what form the ‘correct’ representation should
take is subject to considerable uncertainty, not least because
of the role of turbulence in the formation of clouds and
precipitation.

Turbulence is integral to the formation of clouds and
precipitation, yet its role, particularly at the smallest scales,
is often not well appreciated in the cloud physics community.
The difficulty in measuring clouds at small scales, and the
lack of realistic cloud models that span all the relevant
scales, mean that its precise effect is hard to quantify and
makes an assessment of its importance difficult. However,
increasing computer power, more sophisticated laboratory
experiments and better observations have all brought a
resurgence of interest in this issue in recent years, particularly
from the turbulence community. The phenomenon of
preferential concentration, also referred to as segregation or
clustering, of droplets has perhaps received most attention
from the turbulence community, yet this is just one of
many processes at work in clouds: large-scale atmospheric
stability, aerosols and entrainment all play important roles
in the formation of clouds.

As a result of their inertia, droplets do not follow the
flow exactly and tend to be non-uniformly distributed
in a turbulent flow. Direct numerical simulations (DNS)
of incompressible turbulence have provided a clear
demonstration of the clustering of inertial particles when
the particles respond to changes in the turbulent flow on the
same time-scale as the smallest eddies change (e.g. Squires
and Eaton, 1990; Wang and Maxey, 1993; Sundaram and
Collins, 1997). Thus collision rates in a turbulent flow
may be enhanced relative to a quiescent one. However,
the extrapolation of these results to real clouds is not
guaranteed: as pointed out by, for example, Grabowski
and Vaillancourt (1999), Vaillancourt and Yau (2000),
Wang et al. (2006a) and Khain et al. (2007), many DNS
studies have been conducted without gravity, at moderate
Reynolds numbers, for much higher energy dissipation
rates than is typical of clouds, for equally sized droplets
(a monodisperse suspension) and for relatively high droplet
concentrations compared with typical concentrations in
clouds. Perhaps this is not surprising given the difficulty
in determining what the relevant parameters are and
their values in real clouds. While they are better known
today compared with even a decade ago, they remain a
subject of continuing research. Clearly, idealized studies
of clouds are of most relevance when they are tailored
to model real clouds as closely as possible while allowing
for the not inconsiderable uncertainty. It is important,
then, to understand the assumptions made in DNS and
parametrizations of turbulent collision kernels as otherwise
collision rates can be overestimated.

Despite the criticisms levelled at idealized studies of clouds
and DNS in particular, they remain a valuable tool for
understanding the different physical processes involved in
their formation in so far as they can be distinguished.
However, this means that a meaningful comparison with
observations is often difficult because idealized studies,
by their nature, focus on a few, or even one, part of
the cloud formation process. Nevertheless, it is likely that
only through successively more complex but still relatively
idealized studies will it be possible to distinguish those
physical processes which play a key role in cloud formation
and precipitation, and which need to be included in
parametrizations of cloud microphysics, from processes
which can be regarded as being of secondary importance.
An example is DNS of sedimenting cloud droplets
(Franklin et al., 2007; Ayala et al., 2008a; Wang et al.,
2008) which provided quantitative data on turbulent
enhancement of the collision kernel and, more importantly,
on the relative contributions to this enhancement from
the effects of turbulence on the relative velocity of
the droplets, preferential concentration and collision
efficiency.

Both theoretical and practical approaches to modelling
and understanding turbulent flows typically invoke a wide
separation of scales (into various asymptotic regimes,
e.g. the viscous dissipation range and the inertial
subrange, encompassing a continuum of scales). We
follow the conventional statistical description of stationary
homogeneous isotropic turbulence (e.g. Monin and Yaglom,
1975): by large-scale turbulence we mean the energy-
containing eddies that are influenced by the forcing of
the flow and the boundary conditions; by small-scale
turbulence we mean those eddies that are often assumed
to have universal properties independent of the forcing and
the boundary conditions–the smallest of these small-scale
eddies have sizes where viscous dissipation acts directly.
Although we still do not have detailed evidence for the
universal structure of turbulence in warm cumulus clouds,
the statistics of turbulence observed in stratocumulus show
similar scalings to those observed in laboratory wind tunnel
experiments (Siebert et al., 2010a); the higher Reynolds
number of cumulus clouds suggests that these scalings are
likely to occur there too. This opens the possibility that
the theoretical, computational and experimental studies
to be described below will have some relevance to cloud
physics. However, the effects of large-scale time-dependent
inhomogeneities and multi-scale energy exchange between
the moist air and liquid droplets could potentially complicate
any universal behaviour that is associated with single-phase
high-Reynolds number turbulence.

In the next section of this review we consider turbulence at
the cloud scale, in particular the sources of cloud turbulence
and the effect of entrainment and mixing of dry air (here
taken to be cloud-free air with a non-zero water vapour
content) on the structure of the cloud. In section 3 we
consider theories of droplet growth when the effects of
small-scale turbulence and entrainment are neglected and
how well observations support these ideas. The effects of
small-scale turbulence on the growth of droplets in the
absence of entrainment are considered in section 4 and the
effect of entrainment on the droplet spectrum is the subject
of section 5.
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2. Cloud-scale turbulence

The intensity of turbulence in clouds varies widely depending
on the cloud type and the stage in its evolution. Most
estimates of the parameters that characterize warm turbulent
clouds come from a limited number of measurements at low
resolution (e.g. MacPherson and Isaac, 1977; Caughey et al.,
1982; Pruppacher and Klett, 1997, sections 2.1.3 and 14.5.2)
giving typical values of the mean turbulent kinetic energy
dissipation rate, ε, of order 10 cm2 s−3 for stratocumulus
and 100 cm2 s−3 for small cumulus clouds. Only recently
have higher-resolution (∼20 cm) measurements been
possible: Siebert et al. (2010a) measured ε ∼ 1 cm2 s−3 in
stratocumulus and Siebert et al. (2006a) measured ε ∼ 10
cm2 s−3 in small cumulus clouds. The Taylor-scale Reynolds
number, Rλ, varies correspondingly between stratocumulus
and cumulus: Rλ ∼ 5000 in stratocumulus (Siebert et al.,
2010a) and Rλ ∼ 30 000–40 000 in cumulus (Siebert et al.,
2006a). These values of ε can be misleading in that they
give no indication of the extremely large fluctuations in
the local dissipation rate that are possible: for example, in
small cumulus clouds Siebert et al. (2006b) found that the
dissipation rate could vary by a factor of 50 over scales of
order 15 m (see Figure 5 therein); Meischner et al. (2001) also
found that the dissipation rate could vary by several orders
of magnitude on scales of order 100 m within thunderstorm
anvils.

2.1. Sources of cloud turbulence

From the perspective of fluid mechanics, the fact that
shallow convective clouds, such as boundary-layer cumulus
or stratocumulus, are turbulent should not be surprising.
This is because the Reynolds number characterizing such
flows is much higher than what is traditionally considered
a critical Reynolds number for transition to turbulence
(between a few thousand and several tens of thousands
depending on the details of the flow and the way in
which the velocity and length scales are selected). If one
assumes that the velocity and length scales representative of
shallow convective clouds are of order 1 m s−1 and 100 m
respectively (both conservative estimates), then the Reynolds
number based on the molecular viscosity of air is of order
107, which ensures a turbulent flow (unless suppressed by,
for example, stable stratification).

The initial seed for the flow instabilities of a small
cumulus cloud updraught is likely to originate from the
turbulent boundary layer. Both aircraft observations and
model simulations (e.g. Miao et al., 2006) clearly show
that what is visible as a small convective cloud has a
clearly defined updraught emanating from the boundary
layer. However, the air just below the cloud base is
typically characterized by turbulence levels much smaller
than those inside the cloud (MacPherson and Isaac, 1977).
Furthermore, ε shows systematic variation with height:
measurements of cumulus clouds by MacPherson and Isaac
(1977) and Gerber et al. (2008) show that ε tends to peak
near the cloud top. In addition, one might anticipate that
the turbulence intensity should be highest near the cloud
edge where turbulent entrainment and mixing between the
cloudy air and subsaturated (and typically non-turbulent)
air take place (e.g. Siebert et al., 2006a, 2006b). Numerical
simulations by Seifert et al. (2010) show that ε reaches a

maximum near the cloud top at its windward edge (see
Figure 6 therein).

Numerical simulations highlight the role of the so-
called cloud–environment interface instabilities in cumulus
entrainment (Klaassen and Clark, 1985; Grabowski and
Clark, 1991, 1993a, 1993b; see also a summary in Grabowski,
2000). The key argument is that such instabilities are a
fundamental feature of buoyancy-driven high-Reynolds-
number flows and are responsible for the characteristic
cauliflower-like shape of the rising buoyant fluid. As
summarized in Grabowski (2000), the essential aspect of
the instability is the shear layer that develops near the
interface as the buoyant fluid pushes upward. Because of
the deformational flow near the interface, the shear layer
collapses and becomes unstable. Both shear and buoyancy
production are important for the kinetic energy of the
instability, with buoyancy dominating near the top and
shear dominating near the sides (i.e. away from the top).
In reality, the interfacial instabilities are a combination
of Rayleigh–Taylor and Kelvin–Helmholtz instabilities
occurring in a complex geometric set-up. Evolution of
the instabilities results in the development of the turbulent
transition layer that separates undiluted fluid from the
environment. The turbulence that develops (see section 5 in
Grabowski and Clark, 1993a, for a detailed discussion) bears
strong similarities to homogeneous isotropic turbulence.

2.2. Entrainment and mixing processes

When a turbulent fluid penetrates another fluid with a
different density, the turbulent fluid entrains and then mixes
this fluid. This is perhaps most clearly seen for a buoyant fluid
emanating from an isolated source such as a fire-generated
plume. Clouds are also examples of turbulent fluids whose
density differs from that of the surrounding fluid and, as
such, entrainment is a key process in the dynamics of clouds.
Simple models of entrainment at the cloud scale have been
relatively successful in parametrizing clouds (e.g. Stevens,
2006) but the rate of entrainment is subject to considerable
uncertainty, not least in its dependence on environmental
conditions. The nature of entrainment also depends on the
cloud type: two cases serve as paradigmatic scenarios in
which to study the effect of entrainment on cloud formation
and the droplet spectrum, namely isolated cumulus and
unbroken stratocumulus. In isolated cumulus, entrainment
of dry air occurs throughout the depth of the cloud and
results in strong dilution of the cloud: the liquid water
content rapidly drops to about 20% of its adiabatic value
(Warner, 1955). In unbroken stratocumulus, entrainment
proceeds from the top and affects mostly a thin layer
(Gerber et al., 2005). By regarding these two cases in a more
idealized context, parallels (and differences) may be drawn
with entrainment in other buoyancy-driven flows such as dry
plumes or thermals which, although not necessarily of direct
relevance to real clouds, provides a context for considering
more realistic scenarios. It is worth remembering that real
clouds form in the context of a turbulent atmosphere with
ambient shear and non-uniform stratification and so many
permutations of cumulus and stratocumulus are possible.
Nevertheless, we briefly consider entrainment in cumulus
and stratocumulus separately, more detailed reviews of each
case can be found in Blyth (1993) and Stevens (2002)
respectively.
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2.2.1. Entrainment in cumulus clouds

A simple model for entrainment in a dry plume from an
isolated source was proposed by Morton et al. (1956), which
assumed that the profiles of the buoyancy and vertical
velocity are self-similar with height and that the rate of
entrainment is proportional to the vertical velocity (and
occurs through the lateral edge of the plume). This approach
was adapted to modelling entrainment in cumulus clouds
(e.g. Morton, 1957; Squires and Turner, 1962) but was
less successful for clouds than for dry plumes. Clearly, the
latent heating and evaporative cooling that occur within
clouds either provide or remove energy that affect the
cloud dynamics. Indeed, Morton (1957) showed that when
saturation occurs well below the plume top, the dynamics
of the cloud are dominated by latent heating rather than the
source parameters which characterize dry plumes. Further
criticisms of these simple plume models include their
inability to predict simultaneously both the vertical extent
and liquid water content of the cloud (Warner, 1970) and
the assumption of self-similarity, which is only well justified
in a neutrally stable environment sufficiently far above the
source (see, for example, the discussion in Blyth, 1993).

As the weaknesses of 1-D similarity models of cumulus
convection became better understood, an alternative
hypothesis grew in importance. Squires (1958) suggested
that vertical rather than horizontal entrainment, through
penetrative downdraughts into the ascending cloud top,
was the primary mechanism for diluting cumulus clouds.
While observations by, for example, Paluch (1979) and Jonas
(1990) supported this idea, it remains a subject of debate. For
example, aircraft observations by Blyth et al. (1988) suggest
that the entrained air comes primarily from close to, or just
above, any of the levels where observations were made. They
argued that entrainment from the cloud top cannot account
for the observed dilution of cumulus clouds considering
the small downward mass fluxes that are observed and
the relatively small distances that mixed air parcels are
observed to descend. Recently, Heus et al. (2008) performed
Lagrangian fluid-particle tracking in large-eddy simulations
(LES) of cumulus clouds to show that entrainment is
primarily lateral rather than through the cloud top. Heus and
Jonker (2008) developed this conceptual view of cumulus
convection into a model of concentric annuli centred on the
cloud core. The cloud core, with positive vertical velocity
and buoyancy, is surrounded by a descending shell with
negative buoyancy and finally an outer shell representing
the ambient dry air. The descending shell forms as a result of
evaporative cooling (Turner, 1966) and has been observed
in reality (Jonas, 1990; Rodts et al., 2003; Wang et al., 2009)
as well as in LES (Heus and Jonker, 2008). Heus and Jonker
(2008) argue that lateral entrainment can be reconciled with
observations showing that entrained air appears to originate
at higher levels by noting that any laterally entrained dry air
must be entrained via the descending shell. Implicit in this
argument is that the mixing of dry and cloudy air is not
instantaneous–a point we return to in section 5.

2.2.2. Entrainment in stratocumulus

Stratocumulus typically forms at a temperature inversion
(density interface) capping a mixed layer. An analogous
dry situation that provides some insight into entrainment
in stratocumulus occurs when a buoyant plume impinges

on a density interface. Here the entrainment rate depends
on a local Richardson number defined as Ri = �g′l/w2,
where �g′ is the buoyancy difference across an interface of
depth l and w is the velocity of the impacting plume (e.g.
Turner, 1973, p. 294). Since entrainment decreases as the
stability of the interface increases, the entrainment rate is a
decreasing function of Ri. For Ri � 1, the entrainment rate
has been found to vary like Ri−3/2, whereas for moderate Ri
the entrainment rate decreases like Ri−1 (e.g. Turner, 1973,
p. 294; Lin and Linden, 2005) and tends to a constant as
Ri → 0 (e.g. Lin and Linden, 2005). When the distortion of
the interface is taken into account, Mahrt (1979) suggests
that the entrainment rate associated with the horizontal
and vertical components of the entrainment velocity may
differ. However, it is problematic to measure this in practice
and illustrates the difficulty in defining the interface and
the direction of entrainment–a point we return to in
section 5.2. In recent laboratory experiments, however,
Gerashchenko et al. (2011) have shown the importance of
the orientation of the entraining interface with respect to
gravity (for a neutrally buoyant flow in the absence of shear)
in selectively mixing droplets of different sizes across the
interface. These, and the experiments of Good et al. (2012),
show the importance of the large scales in the entrainment
process (although all scales play a role).

The dynamics of dry plumes are dominated by the
source parameters; when a plume impinges on the density
interface, the dynamics of the small-scale eddies are driven
by the dissipation of the larger eddies. In contrast, the
dynamics of stratocumulus are, at least in part, controlled
by the energy associated with phase changes and radiative
cooling because these diabatic processes can force the small-
scale eddies directly. Not surprisingly, then, stratocumulus
exhibits more complex behaviour than is possible in a
dry atmospheric boundary layer. Mixing between cooler
saturated air below a temperature inversion and warmer
(in the potential temperature sense) subsaturated air above
the inversion reduces the temperature difference between
the two layers. If the temperature of the resulting mixture
is not sufficient to offset any evaporative cooling which
accompanies this mixing, then the mixed fluid may have
a density which is greater than that of either the lower
saturated air or the upper subsaturated air. This is known
as buoyancy reversal and leads to penetrative downdraughts
of dry air occurring at the cloud top (see, for example,
Yamaguchi and Randall, 2008). The buoyancy of the mixed
fluid is a nonlinear function of the fraction of lower and
upper fluid in the mixture and has a minimum at the
point where exact saturation occurs (see, for example,
Figure 1 of Siems et al., 1990). This observation has led to
the concept of cloud-top entrainment instability (Deardorff,
1980; Randall, 1980) which, when a critical threshold is
passed, may generate a runaway positive feedback between
mixing, evaporative cooling and entrainment and in turn
lead to the break-up of stratocumulus into cumulus cloud.
However, the concept of cloud-top entrainment instability
is not necessarily supported by cloud observations because
solid stratocumulus is often observed even if the critical
threshold is passed (e.g. Figure 1 in Kuo and Schubert,
1988).

Based on studies of aircraft measurements, several authors
(e.g. Caughey et al., 1982; Gerber et al., 2005) have suggested
the existence of an entrainment interfacial layer consisting of
previously mixed air in proportions which do not result in
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negative buoyancy of the mixed product. This substantially
modifies entrainment at the top of stratocumulus. Direct
mixing between air from above the inversion and the
quasi-adiabatic cloud is not common and the cloud-top
entrainment instability criterion should not be applied to
free tropospheric air and quasi-adiabatic cloud volumes.
More detailed analysis of the small-scale structure of
mixing by Haman et al. (2007) confirms the presence of
an entrainment interfacial layer and mixing between this
layer and the cloud. A survey of LES of stratocumulus by
Stevens (2002) showed that entrainment rates diagnosed
from LES results can vary by up to a factor of two. This
has led Stevens et al. (2005) to suggest that the entrainment
rate may not only be sensitive to the energy-containing
eddies but also to the small-scale (subgrid) eddies which are
not explicitly resolved in LES, either directly or indirectly
through the impact of the small-scale (subgrid) eddies on the
large-scale eddies. Such a situation would be in agreement
with the concept of an entrainment interfacial layer: since
this layer is thin, its dynamics are likely to be dominated by
the smaller eddies.

3. Theories and observations of droplet growth

Cloud droplets typically have a radius, a, less than
approximately 20 µm, and their number concentrations
per unit volume, n, vary from 50 cm−3 in maritime
clouds to 1000 cm−3 in continental clouds (Pruppacher
and Klett, 1997, section 2.1.3). For larger droplets, the
number concentrations can be less than 1 cm−3 (Pruppacher
and Klett, 1997, section 2.1.3). The gravitational settling
velocities of cloud droplets (with radii less than 20 µm)
are typically 4 cm s−1 or less (Pruppacher and Klett, 1997,
section 10.3.6). Since the typical liquid water content of a
small cumulus or stratocumulus cloud is in the range 0.1–1
g m−2 (generally higher for cumulus than stratocumulus),
it follows that the mass or volume loading is relatively low,
the latter being of order 10−6 (e.g. Shaw, 2003), and hence
that the droplet number concentration is sufficiently dilute
that interactions between droplets are infrequent. The low
mass loading means that modulation of the turbulence by
the droplets is not expected to be significant (e.g. Figure 1 of
Elghobashi, 1994). However, droplets do affect the flow field
through latent heating and evaporative cooling (see section
4.1) and there is momentum exchange at the droplet scale
associated with interactions between droplets which occurs
regardless of the larger-scale mass loading.

3.1. Activation and growth of cloud droplets

The formation and growth of cloud droplets may be regarded
as a three-stage process: first, droplets are generated by the
activation of sub-micron-sized aerosols which act as cloud
condensation nuclei (CCN) and typically have a radius of
order 0.1 µm (Pruppacher and Klett, 1997, section 9.1).
Second, if the conditions allow, the droplets grow to a
diameter of a few tens of microns due to condensation.
Finally, once the droplets are large enough, they may grow
by collision and coalesce with other droplets. The whole
process may be described by a continuous function known
as the droplet size distribution or spectral density function,
f (a, x, t) where f da = dn at position x and time t, whose
evolution is governed by a Boltzmann-type equation (e.g.

Shaw, 2003):

∂f (a)

∂t
+ 1

ρa
∇ · [ρa(u + vp(a))f (a)] + ∂

∂a
(ȧf (a)) =

J(a) + 1

2

∫ a

0

a2

a′′2 �12[a′′, a′] f (a′′) f (a′) da′

−
∫ ∞

0
�12(a, a′)f (a)f (a′) da′, (1)

where a′′ = (a3 − a′3)1/3, u is the air velocity, vp is the
droplet velocity, ρa is the air density, ȧ is the droplet growth
rate and �12 is the collision kernel (see section 4.2). (Note
that the dependence of f , u and vp on x and t has been
suppressed for clarity.) The third term on the left-hand side
of (1) represents the diffusional growth of droplets due to
condensation (which can be thought of as an advection
term in radius space). The first term on the right-hand side
of (1) represents a source of droplets, the activation rate,
J. The second term represents the production of droplets
of radius a through coalescence between any two droplets
whose masses sum exactly to the mass corresponding to
an a-droplet. The last term represents the destruction of
droplets of radius a which occurs whenever a droplet of that
size coalesces with a droplet of any other size. In the absence
of the third term on the left-hand side of (1) and the first
term on the right-hand side of the equation, (1) is known
as the stochastic collection equation or stochastic coalescence
equation (Smoluchowski, 1916; Pruppacher and Klett, 1997,
section 15.3). Note that in meteorological textbooks it is
more commonplace to express the part of (1) representing
collisions and coalescence in terms of the droplet mass. In
the chemical engineering community, equations of the form
of (1) are often referred to as population balance equations.

Droplets tend to originate at cloud base where an
updraught typically produces a peak in the supersatura-
tion (for moderate updraught velocities). The peak value
determines the fraction of available CCN that are activated
(Rogers and Yau, 1989, pp. 88, 110). The droplet concentra-
tion thus depends on the CCN activation spectrum: clouds
growing in a continental or polluted environment typically
show higher droplet concentrations than those growing in
a marine or pristine environment (Pruppacher and Klett,
1997, section 2.1.3). In a given environment, however, tur-
bulence–more specifically fluctuations in the vertical velocity
at cloud base–results in considerable variability of n in a field
of convective clouds (Snider et al., 2003). At any location in
a convective cloud, the liquid water content (∝ na3, where a
is the mean droplet radius) is mostly determined by heat and
moisture budgets, i.e. it does not depend significantly on the
cloud microphysics. The mean droplet radius is therefore
smaller in continental or strongly convective clouds than
in similar marine or pristine ones, and it scales like n−1/3

(Rogers and Yau, 1989, p. 92). Both large droplet radii and
large droplet concentrations increase the collision rate, all
else being equal. The ubiquitous observation that marine
clouds (low droplet concentration) precipitate more readily
than continental clouds (high droplet concentration) for
equal liquid water contents indicates that the increase in
droplet size is more important than the increase in n. Con-
sequently, a local increase in n due to small-scale turbulence
could only accelerate the formation of rain if the scaling of
the droplet radius like n−1/3 is not locally valid, i.e. there is
also a small-scale increase in liquid water content.
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In some types of clouds, activation of cloud droplets also
occurs above the cloud base due to either strongly increasing
updraught strength (e.g. Warner, 1969b; Pinsky and Khain,
2002) or entrainment (Warner, 1969a; Paluch and Knight,
1984; Brenguier and Grabowski, 1993; Su et al., 1998;
Lasher-Trapp et al., 2005). As discussed in Brenguier and
Grabowski (1993, section 3b and Figures 6–8 in particular),
entrainment-related activation above the cloud base occurs
in vortical structures associated with cloud–environment
interface instabilities that bring environmental cloud-free
air into the cloud. Modelling studies discussed in Slawinska
et al. (2011) and Wyszogrodzki et al. (2011) show that in-
cloud activation leads to approximately constant-in-height
mean cloud droplet concentration in shallow cumuli, in
agreement with aircraft observations (e.g. Gerber et al., 2008;
Arabas et al., 2009) but in contrast to simulations where
activation above the cloud base is artificially suppressed.

Small cloud droplets (with radii � 15 µm) grow efficiently
by the diffusion and condensation of water vapour. Although
at the droplet scale this is a complex process (see section 4.1
below), at the cloud scale the process can be significantly
simplified. The growth of a single droplet can be described
by (Mason, 1971, p. 123)

da

dt
= γ

s

a
, (2)

where a is the droplet radius, s = e/es − 1 is the
supersaturation (the excess water vapour with respect
to saturation), e and es are respectively the actual and
saturated vapour pressure and γ is a function of the ambient
temperature and pressure (Rogers and Yau, 1989, p. 102).
Equation (2) applies when a is larger than a few microns
such that Raoult (solute), Kelvin (curvature) and kinetic
effects can all be neglected. Since the rate of droplet growth
is inversely proportional to its radius, small droplets grow
faster than large droplets (when growth is considered in
terms of droplet diameter; it would not be true if growth
were considered in terms of droplet mass). Thus (2) predicts
that the droplet size distribution becomes narrower as the
mean droplet radius increases. Equation (2) also describes
the evaporation of a droplet when s is negative (the saturation
deficit). If s is assumed to be constant, (2) can be integrated
to give a time scale, τe, for the evaporation of a droplet.

The supersaturation can be related to the vertical velocity,
w, by (Squires, 1952; Twomey, 1959)

ds

dt
= Aw − s

τs
, (3)

where A is a thermodynamic variable which depends on
the ambient temperature and τs is the phase relaxation
time (the time-scale for s to approach equilibrium). This
time-scale is related to the droplet number concentration
and the mean droplet radius via τs ∝ (na)−1, where a is
assumed to be constant (e.g. Politovich and Cooper, 1988;
Korolev and Mazin, 2003; Kostinski, 2009). Typical values
of τs vary from 0.23 s for n = 1000 cm−3 and a = 10
µm to 14.1 s for n = 100 cm−3 and a = 2 µm (Politovich
and Cooper, 1988). The time-scales τs and τe can vary quite
significantly depending on the choice of parameters. Indeed,
Lehmann et al. (2009) show that even when τs and τe are
comparable, the numerical solution of (2) and (3) (with no
assumption of constant a or constant s) can yield a time-scale
for droplet evaporation (or for s to reach equilibrium) that is

substantially different from either τs or τe. The first term on
the right-hand side of (3) represents the increase in s due to
adiabatic cooling in ascent and the second term represents
the decrease in s due to the condensation of water vapour on
droplets. The second term accounts both for the removal of
water vapour from the ambient phase by the droplet and the
change in s that occurs as a result of latent heat release. For
t � τs, the quasi-equilibrium supersaturation, sqe = Awτs,
follows automatically from (3) for constant w and A. Since
typical updraught velocities are approximately 1–5 m s−1,
then for the values of τs quoted above one would only expect
significant deviations from sqe for eddies smaller than at
most a few tens of metres. For larger eddies, s will be close
to sqe for most of the time. Neglect of the second term on
the right-hand side of (3) in some studies (see section 4.1.3
below) can lead to an unrealistic growth of s as then sqe no
longer imposes a constraint on s for large eddies.

The simple model of droplet growth provided by (2) and
(3) is a reasonable approximation of reality (at least in the
quasi-adiabatic cloud core with no mixing of entrained dry
air) because the supersaturation rarely exceeds 0.1% (see, for
example, Politovich and Cooper, 1988; Korolev and Mazin,
2003) except where the activated droplets have not grown
enough to deplete it. As discussed above, CCN activation
is generally confined to the first 100 m above cloud base
except in vigorous convective clouds with vertical velocities
of order 10 m s−1, where the supersaturation can reach
levels higher than 1% (Prabha et al., 2011). This means that
the total volume fraction of droplets in a cloud volume is
generally equal to the difference between the total water
mixing ratio and the saturation water vapour mixing ratio
at the temperature of that cloud volume to within 1% or
less. Both the total water mixing ratio and the enthalpy
are conserved variables that do not depend significantly
on microscale processes. This prediction of the macroscale
theory is well supported by observations. For example, in
stratocumulus clouds, the liquid water mixing ratio is close
to adiabatic, except when approaching the cloud top (see
Figure 3 in Pawlowska et al., 2000).

3.2. Observations of cloud droplets

Some of the first observations with scattering spectrometers
showed much broader size distributions in the quasi-
adiabatic cloud core than predicted by (2). These
observations triggered numerous studies for identifying
physical processes that could explain this broadening.
However, the instrument used to make these observations,
the FSSP-100 (Forward Scattering Spectrometer Probe),
had a poor size resolution (15 size classes to cover the
range from 2 to 45 µm). Measurements with an improved
version, the Fast-FSSP with 256 size classes (Brenguier et al.,
1998), revealed narrower spectra (in quasi-adiabatic cloud
volumes) than previously observed (though not as narrow
as predicted by (2)) well above cloud base in cumulus clouds
(Brenguier and Chaumat, 2001). Since then the standard
instrument has been significantly improved, with up to 40
size classes and observations of narrow spectra (typically with
a standard deviation of 0.1 times the mean droplet radius;
Brenguier et al., 1998) are now more common. Observations
of spectra as narrow as those predicted by (2), though, are not
yet feasible with forward scattering particle counters because
the relationship between droplet radius and the intensity of
Mie scattering is not monotonic (see Figure 16 in Dye and
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Baumgardner, 1984). Moreover, even if the instrument were
perfect, the probability of finding a cloud volume that has
not been affected by entrainment and mixing 1 km above
cloud base is extremely low in real clouds. These limitations
notwithstanding, LES of realistic clouds do a reasonable job
of reproducing the main features of the droplet spectrum
such as the effective radius of the droplets (defined as the
ratio of the third moment of the droplet size distribution
to its second moment) and the number concentration (see,
for example, Jiang et al., 2008; van Zanten et al., 2011).
However, the positive tail of the droplet size distribution,
which accounts for the largest droplets, is poorly measured
with single-particle counters, while it plays a crucial role
in the onset of precipitation. Small-scale turbulence may
therefore be important if it affects the proportion of the
largest droplets that initiate precipitation but this is unlikely
to be detected with existing single-particle counters. There is,
however, some indirect evidence for spectral broadening: in
situ measurements and satellite retrievals of stratocumulus
show that it can start precipitating when the mean droplet
radius reaches values larger than 12 µm (Gerber, 1996;
Boers et al., 1998; Pawlowska and Brenguier, 2003), while
collision–coalescence requires droplets larger than 30 µm.
This common observation thus suggests that droplet spectra
with a mode around 12 µm also contain a significant fraction
of droplets larger than 30 µm.

In the absence of turbulence, the spatial distribution of
droplets would be random, with no correlation between the
droplets. However, it is known from numerical simulations
and laboratory experiments (see, respectively, sections
4.2.2.2 and 4.2.6 below) that the positions of droplets in
turbulent flows are correlated over certain scales. The Fast-
FSSP has been used to detect droplet clustering in real
clouds: the aim is to distinguish clustering that occurs
due to inertial-range mixing between cloudy filaments and
cloud-free air (due to entrainment) from that which occurs
at dissipation-range scales. The FSSP measures droplets
along a narrow almost 1-D horizontal path through a
cloud volume, which means that a long sample is necessary
to construct a reasonable spectrum. The interpretation of
the results remains controversial because deviations from
Poisson distributions are always possible due to instrumental
artefacts and the necessarily limited samples that are
obtained from aircraft measurements, which inevitably
compromise the assumption of the statistical homogeneity of
the sample. Nevertheless, droplet counts in cumulus clouds
have been analysed to quantify the departure from a Poisson
distribution. A number of techniques have been developed
to quantify this departure, including the Fishing test (Baker,
1992), clustering index (Chaumat and Brenguier, 2001),
pair-correlation function and its volume average (Kostinski
and Shaw, 2001; Shaw et al., 2002; Lehmann et al., 2007),
analysis of power spectra (Pinsky and Khain, 2001, 2003)
and analysis of correlations (Jaczewski and Malinowski,
2005). Mathematically, these techniques are related to each
other (Shaw et al., 2002; Baker and Lawson, 2010) but
there remains some debate over the merits of each test
when applied to real data. What is important is to assess
the significance of any observed deviations from Poisson
distributions against those produced by models. In this
respect, and to mitigate the impact of instrumental artefacts,
it is suggested that a stronger test is to compare observations
with simulated droplet fields that are virtually sampled

using a simulator of the probe (as was done for two cases by
Chaumat and Brenguier, 2001).

Shaw et al. (1999) argue that the difficulty of detecting
spatial inhomogeneities in the droplet concentration may
be related to the volume fraction associated with these
inhomogeneities. Drawing on a model of fine-scale structure
in turbulence by Tennekes (1968), which predicts that
the volume fraction occupied by vortex tubes decreases
with increasing Rλ, Shaw et al. (1999) hypothesize that the
departure from Poisson statistics may be small because the
volume fraction of vortex tubes is small and hence any
localized clustering is likely to be masked by instrumental
averaging. However, airborne samples are never perfectly
homogeneous in the statistical sense and so inhomogeneities
or deviations from a Poisson distribution will always be
noticeable in airborne observations of real clouds. It is the
impact of such deviations that is important but difficult to
quantify, particularly with no information on the time-scale
of these deviations.

4. Small-scale turbulence and cloud microphysics

In this section we consider the effect of small-scale
turbulence on the growth of cloud droplets (though not
in isolation from the large scales). In section 4.1 we consider
its effect on condensational growth. Droplet growth by
gravitational collision-coalescence only becomes efficient
once a certain fraction of droplets reaches 30–50 µm in
radius (Pruppacher and Klett, 1997, sections 14.5, 15.1–15.3;
Xue et al., 2008; Wang and Grabowski, 2009; Grabowski and
Wang, 2009). The rapid growth of droplets from 15 to 50
µm remains difficult to explain. Indeed, ‘rapid’ remains
poorly defined largely because of the lack of observations:
it is difficult to measure this time interval since clouds
only become visible to radar after drizzle-sized drops have
already formed. Moreover, it will vary from one cloud type
to another and will depend on the supersaturation and the
liquid water content. Nevertheless, turbulence has long been
considered to play an important role and this is discussed in
section 4.2.

We defer discussion of the impact of entrainment and
mixing on the droplet size distribution to section 5; this
section may be regarded as appropriate for the quasi-
adiabatic cloud core (at least in the early development
of the cloud). Since our main interest is on cloud droplets
less than 100 µm in radius, we shall assume that the droplets
are spherical and ignore any deformation of droplets in close
proximity to each other that may occur in reality. Similarly,
we will not consider the fluid flow within the droplets. These
have been discussed extensively in Pruppacher and Klett
(1997, section 10.3) and are of secondary importance for
most cases of interest.

A cloud droplet has a characteristic inertial response time,
τp, which depends on its density, ρw, and radius, a. For small
cloud droplets the Reynolds number based on the velocity
of the droplet relative to the flow and the droplet diameter
is usually assumed to be sufficiently small that Stokes drag
can be used to good approximation. In this case, it can be
shown (e.g. Batchelor, 1967, p. 234) that, since ρw � ρa,
τp = 2ρwa2/9µ, where µ is the dynamic viscosity of air.
When there is no motion in the fluid, the particle equation
of motion can be integrated to give an expression for the
droplet velocity, vp, at time t assuming zero initial velocity:
vp(t) = vT(1 − exp(−t/τp)), where vT = τpg is the (Stokes)
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terminal velocity of the droplet and g is the acceleration
due to gravity. While Stokes drag is appropriate for droplets
less than 30 µm in radius, for larger droplets a nonlinear
drag must be assumed since the droplet Reynolds number
is O(1). A parametrization due to Beard (1976) includes
Reynolds number effects and has been successfully used
in cloud simulations. The effect of a nonlinear drag on
droplet collisions and growth is discussed in section 4.2.2.
Most studies of droplets in turbulent fluids assume that the
motion of the droplet is entirely governed by a drag force and
gravity. In reality, though, there are a number of other forces
that act on the droplet which are usually neglected since
ρw � ρa and on the assumption that fluid accelerations are
much less than the gravitational acceleration (Maxey and
Riley, 1983; Shaw, 2003). However, as discussed in Shaw
(2003) and Siebert et al. (2010b), recent experimental and
numerical research has shown that accelerations much larger
than g are possible in localized regions of the flow (although
such measurements have yet to be made in real clouds);
the implications of this for cloud physics are not yet clear
but the collision rate may well be sensitive to large but rare
events.

For a typical small cumulus cloud the Kolmogorov length
scale η ≈ 1000 µm (e.g. Shaw, 2003), which is comparable
with the typical inter-droplet distance (Pruppacher and
Klett, 1997, p. 28). Since cloud droplets have radii much
less than η, it is the dynamics of small-scale turbulence
(in particular the dissipation range) which are important.
However, it should be noted that large-scale flow features
alter the background conditions seen by individual droplets
and also impact on fine-scale intermittency, which increases
with increasing L/η, where L is the integral scale of
turbulence. The response of the droplet to changes in
turbulence is characterized by the Stokes number, which
is defined as St = τp/τη, where τη is the Kolmogorov time-
scale. Since τη = (ν/ε)1/2, where ν is the kinematic viscosity
of air, it follows that St ∼ ε1/2.

Droplets falling under gravity have a mean velocity
relative to the turbulent flow and hence the interaction
time between the sedimenting droplets and the turbulent
eddies will be reduced. The relative importance of turbulence
and sedimentation may be quantified in terms of the
dimensionless parameter Sv (Wang and Maxey, 1993;
Vaillancourt and Yau, 2000). It is defined as the ratio
of the eddy turnover time to the time taken for a
droplet to sediment across that eddy, τv. For an eddy
of order η, Sv = τη/τv, which can also be expressed as
Sv = vT/vη, where vη is the Kolmogorov velocity scale and
noting that τv = η/vT . Since vη = (εν)1/4, it follows that
Sv ∼ ε−1/4. The ratio St/Sv = (vη/τη)/g = v2

η/(gη) = Frf

is independent of τp and is equal to the Froude number for
the fluid, Frf .

As stated in the Introduction, many earlier DNS studies on
turbulence–inertial particle interactions tend to have larger
values of ε than is typical of clouds and hence may stress the
importance of St instead of Sv (Grabowski and Vaillancourt,
1999). They are not designed for cloud droplets but are
relevant to engineering applications where the dissipation
rate may be several orders of magnitude higher. For typical
cloud conditions (ε ∼ 100 cm2 s−3, ν ∼ 0.15 cm2 s−1) and
droplets of radius 15 µm, we have St ∼ 0.07 and Sv ∼ 1.4,
indicating that gravity has a greater effect (compared with
turbulence) on the collision rate of cloud droplets within
dissipative eddies through its effect on the relative motion
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Figure 1. Contour plots of (a) Stokes number (St) and (b) non-
dimensional terminal velocity (Sv) as a function of flow dissipation rate (ε)
and droplet radius (a) (Ayala et al., 2008a).

of cloud droplets and on the collision efficiency. Figure 1
shows the variation of St and Sv with droplet size and ε

(for values relevant to cloud droplets) and indicates that
typically St is less than one and Sv is greater than one. It
is important to note, however, that even for the size range
shown (10–60 µm) both parameters can vary by more than
an order of magnitude. For small ε and larger droplet size
(the lower right quadrant in Figure 1), gravity dominates
the motion of droplets and turbulence only introduces a
weak modification to the motion; thus the effect of inertial
clustering is very weak. On the other hand, for small cloud
droplets in regions of very large ε (the upper left quadrant
in Figure 1) e.g. during the initial cloud droplet growth in
actively convective clouds, St could be 0.1 or higher, while
Sv is of order one or less. In this case, St could become
an important parameter for quantifying phenomena such
as the effect of clustering on the collision rate of cloud
droplets. Numerical, theoretical and experimental studies
(e.g. Ayala et al., 2008a, 2008b; Lu et al., 2010) have revealed
that both parameters and their physical implications need
to be carefully considered together in quantifying the pair
interaction and collision of cloud droplets.
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The above arguments rely on the variation of St and Sv
with the mean dissipation rate. In reality, the dissipation
rate has a distribution of values whose width increases
with increasing Rλ. Fluctuations in the dissipation rate may
well produce localized regions of the flow where St and Sv
depart significantly from their values based on the mean
dissipation rate. Moreover, the frequency of these regions
and the intensity of the dissipation rate are likely to increase
with increasing Rλ. This in turn could have a localized
impact on processes which are very sensitive to turbulence
such as droplet clustering. Of course, these regions may
form only a very small fraction of the flow which, along
with the non-stationarity of the flow, may render their
overall effect negligible. However, it is possible that even
if only a very small proportion of droplets are affected
by localized regions of intense turbulence–the one-in-a-
million lucky droplet that goes on to form rain (Kostinski
and Shaw, 2005)–this could have a significant impact on
precipitation. Recent analysis of droplets in 2-D turbulence
(Dallas and Vassilicos, 2011) supports these arguments but
demonstrates that they do not necessarily depend on small-
scale intermittency (since the velocity-gradient statistics
in 2-D turbulence are approximately Gaussian) or on
differential gravitational settling (assuming a sufficiently
large volume fraction).

4.1. Condensational growth and turbulence

Condensation in atmospheric clouds refers to the activation
and growth of micron-sized droplets that takes place if the
physical and thermodynamic conditions allow (pressure,
temperature, water content in air). Since growth by diffusion
of water vapour concerns cloud droplets with radii larger
than a few tenths of a micron, the corresponding Knudsen
number, defined by Kn = lm/a, with lm denoting the
molecular mean free path length of the air–vapour mixture
(approximately 0.06 µm, so that Kn ∼ 0.5 for a = 0.1 µm),
is relatively low (but not very small, which is why non-
continuum corrections are sometimes applied for a < 1
µm; e.g. Jennings, 1988). Therefore, a continuum approach
can be used in modelling the exchange of water vapour and
heat between the droplet and the ambient phase. A rigorous
treatment of droplet growth by condensation involves the
energy and mass balance of the fluid both inside and outside
the droplet, subject to appropriate boundary conditions on
the surface of all the droplets as well as in the far field of
the ambient phase. For many droplets in constant motion,
this direct approach is clearly not feasible for numerical
computation and simplifications to the governing equations
are therefore required. We start with a scale analysis of
condensational growth (see also Vaillancourt et al., 2001),
which provides the motivation for the simplifications to
come.

4.1.1. Length scales associated with condensational growth
of droplets

The condensational growth of droplets is characterized
by vapour pressure gradients in the ambient phase and
temperature gradients both inside and outside the droplet.
We consider first the length scales associated with spatial
variations in the ambient phase. In the classical theory of
droplet growth by water vapour diffusion (e.g. Sedunov,
1974, p. 10; Pruppacher and Klett, 1997, section 13.2),

ambient conditions are defined by prescribed temperature
and moisture fields far from an isolated droplet. Although
the classical theory imposes these conditions at infinity,
imposing them at a radius similar to the mean distance
between droplets does not result in significant modifications
(Fukuta, 1992). However, when the growth of an ensemble
of droplets in turbulent air is considered, the temperature
and the moisture fields away from the droplet may
vary considerably and the concept of ambient conditions
becomes vague. The ‘boundary conditions’ imposed between
droplets now depend on both the spatial distribution of
droplets as well as on the supersaturation and temperature
fields. Following Vaillancourt et al. (2001) we define the
ambient conditions to be the moisture and temperature
fields in the vicinity of a given droplet averaged over the
volume defined by the mean distance between droplets. This
simplification is frequently applied in numerical models of
droplet condensation in turbulence which employ the so-
called point-particle approach to describe the evolution of
the droplet phase (e.g. Vaillancourt et al., 2002; Celani et al.,
2007; Lanotte et al. 2009).

Most studies of the growth of an ensemble of droplets
in cloud physics neglect the direct interaction between
droplets. The conventional justification (e.g. Sedunov, 1974,
p. 133) is based on the argument that the mean distance
between cloud droplets (∼ 2 mm for a typical concentration
of 100 cm−3) is at least an order of magnitude larger than
the distance (∼ 10a or less) affected by the variation of
moisture and temperature due to cloud droplet growth.
Thus the volume of air occupied by a single cloud droplet
is much larger than the volume affected by variations in
the moisture and temperature. Although some authors
(Sedunov, 1974; Fukuta, 1992) have concluded that direct
competition between droplets is negligible under typical
cloud conditions, there is yet to be a clear demonstration
that these effects are not important.

4.1.2. Time-scales associated with condensational growth of
droplets

There are a number of time-scales associated with the
condensational growth of cloud droplets. The first is
associated with the diffusional growth of an isolated droplet.
During this process water vapour is transported from the
environment to the droplet surface by molecular diffusion
and by convective transport (the ventilation effect, which
accounts for the motion of the droplet; e.g. Rogers and Yau,
1989, p. 116). Latent heat released at the droplet surface
is transported both to the environment and inside the
liquid droplet by the same mechanisms. These processes
can be calculated explicitly by solving a set of three
convection–diffusion equations for water vapour, heat
outside the droplet and heat inside the droplet. Sedunov
(1974, p. 13) showed that, under typical atmospheric
conditions, the convective transport can be neglected when
considering the condensational growth of droplets with
radii smaller than 30 µm, which means that only diffusive
transport needs to be accounted for.

By considering the diffusion of water vapour and heat
on to or inside a still droplet (with constant surface
temperature), Sedunov (1974, p. 18) obtained three
characteristic time-scales for the approach to a steady state
for these processes. They are τq = a2/πKv, τTi = a2/πKw,
τTo = a2/πKa for respectively the diffusion of water vapour,
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temperature inside and outside the droplet, where Kv is the
diffusivity of water vapour and Ka, Kw are respectively the
thermal diffusivities of air and liquid water. The slowest
of the three time-scales is τTi which typically varies from
6 × 10−5 s for a = 5 µm to 1 × 10−3 s for a = 25 µm
(Vaillancourt et al., 2001). In comparison, the flux of water
vapour or heat in air to or from the droplet will approach its
steady-state value within a few microseconds, meaning that
for an isolated droplet the conditions in the ambient phase
(i.e. vapour pressure and temperature) will relax much faster
to their steady-state values (than occurs within the droplet).

Another time-scale occurs when the boundary conditions
for water vapour concentration and temperature at the
surface of the droplet are not assumed to be constant.
During condensation water vapour diffuses on to the surface
of the droplet, latent heat is released and consequently the
surface temperature (the psychrometric temperature) of the
droplet changes. The relaxation time associated with this
last process lies typically between 5 × 10−4 s and 1 × 10−2 s
for droplet radii between 5 and 25 µm (Vaillancourt et al.,
2001) and is therefore the slowest time-scale associated
with the condensational growth of a droplet. Vaillancourt
et al. (2001) showed that, for a � 20 µm and ε � 100
cm2 s−3, the ratio of this time-scale to the fastest time-
scale associated with changes to the ambient conditions due
to turbulence (either τη or τv) is much less than one and
hence that the assumption of a steady-state distribution
of water vapour concentration and temperature is valid.
This assumption becomes less valid for increasing a and
ε, so that it may be necessary to take into account a
time-varying psychrometric temperature for a � 20 µm and
ε � 200 cm2 s−3. However, for such large cloud droplets,
the condensational growth is generally slow compared with
growth associated with collision–coalescence and the error
due to the above quasi-equilibrium assumption becomes
irrelevant.

4.1.3. Theoretical models and numerical simulations of
condensational growth in a turbulent fluid

There has been much theoretical interest in what effect
vertical velocity fluctuations and spatial inhomogeneities in
the distribution of droplets have on the supersaturation field
and the subsequent condensational growth of droplets (see,
for example, Cooper, 1989; Srivastava, 1989; Khvorostyanov
and Curry, 1999). Here, we consider some of these ideas
and, in particular, the recent numerical simulations that
have been constructed to test them.

The theory of stochastic condensation was developed
to model the condensational growth of droplets in a
turbulent fluid (e.g. Sedunov, 1974, p. 192). The stochastic
condensation equation can be derived by Reynolds-
averaging the part of (1) that pertains to condensational
growth (e.g. Shaw, 2003). (Note that f (a) is not strictly a
probability density function (pdf) as it may evolve differently
in each realization of the flow; an ensemble average of
f (a) would give a true pdf.) Assuming the air is locally
incompressible, ignoring droplet inertia and any sources or
sinks of droplets, the stochastic condensation equation is
given by

∂f

∂t
+ ui

∂ f

∂xi
= −∂(u′

i f ′)
∂xi

− ∂(ȧ f )

∂a
− ∂(ȧ′f ′)

∂a
(4)

where an overbar represents a mean quantity and a prime
indicates a fluctuating quantity. By analogy with reacting
flows (e.g. Dimotakis, 2005) we introduce a Damköhler
number, Da = τr/τs, where τr is the time-scale of a turbulent
eddy of scale r. Equation (4) is usually solved in the low-
frequency limit, Da � 1. In this limit, turbulent fluctuations
are slow compared with thermodynamic changes to the
droplet and it is then appropriate to assume that s = sqe

(see the discussion following (3)). Reynolds-averaging of
sqe indicates that the mean and fluctuating parts of sqe are
directly related to the mean and fluctuating vertical velocity
component respectively.

The following scale analysis shows that the low-frequency
limit ceases to be valid for scales of several metres and smaller.
Since τr ∼ r2/3/ε1/3, the scale at which Da ∼ 1 is given by
r ∼ (ετ 3

s )1/2 which, for typical cloud conditions, can be
several metres (Shaw, 2003). Khvorostyanov and Curry
(1999) considered the stochastic condensation equation
for arbitrary values of τr and τs. They hypothesize that
there are fluctuations of s at the droplet scale which do
not depend directly on w′ (but may be indirectly related to
turbulent fluctuations via the distribution of droplets and the
properties of the air in the vicinity of the droplets through the
mixing of different air parcels). Khvorostyanov and Curry
(1999) argue that, at small scales, s′ should be proportional to
a and not w′. They base their arguments on the supposition
that larger droplets are more likely to benefit from an increase
in s′ at the expense of smaller droplets which cannot compete
as effectively for the available water vapour. (This scenario
is equivalent to the inhomogeneous mixing of dry and
cloudy air discussed in section 5.1 below.) Additionally, by
considering kinetic and curvature corrections to the water
vapour diffusivity (see also Pruppacher and Klett, 1997,
p. 506) they showed that s′(a, t) ∼ m(t)a, where m(t) has
a slope that decreases with time. Thus these corrections
become negligible at large times when the low-frequency
solution of (4) is the appropriate solution. It is the suppressed
growth of smaller droplets, which is inherent to their model,
that facilitates broadening of the droplet spectrum.

Vaillancourt et al. (2001) showed that randomly dis-
tributed non-sedimenting droplets create significant per-
turbations in the supersaturation with spectral broadening
dependent on the width of the initial size spectrum. When
the droplets are allowed to sediment, the correlation time
of the supersaturation perturbations is reduced and hence
also the integral of the supersaturation and the consequent
growth of the droplet spectrum. Vaillancourt et al. (2001)
concluded that a static random distribution of droplets is
insufficient to explain broadening of the droplet spectrum.
Pinsky et al. (1999a) consider the effect of turbulence on the
condensational growth rate by dividing a large cloud vol-
ume into centimetre-scale volumes each with its own droplet
velocity flux divergence which is related to the lifetime of a
centimetre-scale turbulent vortex. Pairs of centimetre-scale
volumes exchange droplets, leading to inhomogeneities in
the droplet concentration and differences in the supersatu-
ration and droplet growth rates. Pinsky et al. (1999a) found
that mimicking the effects of small-scale turbulence in this
way leads to a modest increase in the broadening of the
droplet spectrum. Shaw et al. (1998) consider the effect of
droplet clustering on the condensational growth rate by
using a Rankine vortex to model a typical turbulent eddy
along with (2) and (3). They find that the droplet spec-
trum broadens with time with a sensitivity to the values

Copyright c© 2012 Royal Meteorological Society and

British Crown Copyright, the Met Office

Q. J. R. Meteorol. Soc. 138: 1401–1429 (2012)



Droplet Growth in Warm Turbulent Clouds 1411

of ε and τs. Their model indicates that the production
of large droplets and spectral broadening are optimal for
ε = 100 cm2 s−3 and τs = 10 s. Shaw et al. (1998) argue that
turbulence-induced fluctuations in droplet concentration
induce large fluctuations in s, which means that individual
droplets grow at different rates depending on their location
in the flow. These arguments were extended by Shaw (2000),
who proposed a mechanism for the formation of bursts of
very high supersaturation levels based on the interaction
of droplets with rare but intense vortex tubes, which have
been observed in turbulent flows and are thought to be
related to fine-scale intermittency. This model suggests that
in undiluted regions of a turbulent cloud (e.g. the core
updraught of a cumulus cloud) the droplet size distribution
should be close to the distribution expected for the simple
macroscopic model described in section 3.1 but with an
increased number of small droplets due to secondary acti-
vation of droplets in regions of high supersaturation and a
small concentration of superadiabatic droplets which expe-
rience rapid growth in decaying vortex tubes. The studies
of Shaw (2000) and Vaillancourt et al. (2001) are not nec-
essarily contradictory since the latter assumes that droplet
growth is determined by mean-field quantities and does not
take account of intermittency effects; the importance of rare
events in the condensational growth of droplets remains an
open question.

Celani et al. (2005) considered condensational growth of
non-sedimenting droplets in a numerical simulation of a
turbulent velocity field by coupling an advection–diffusion
equation for s with a forcing term identical to the first term on
the right-hand side of (3), but without the second term, to the
Navier–Stokes equations. The results of their 2-D simulation
of turbulence showed a strong correlation between the
droplets and supersaturation even when they included
sedimentation in their model. This correlation means that
each droplet experiences the same supersaturation for a
long time (of the order of the large-eddy turnover time)
and hence droplets in regions of high s grow faster than
droplets in regions of low s, which leads to a broadening of
the droplet size distribution. Celani et al. (2007) extended
this model to a more realistic Boussinesq flow along with
a term representing the depletion of water vapour due to
condensation (i.e. the second term on the right-hand side of
(3)) in the advection–diffusion equation for s (though with
no sedimentation of droplets). They found that the spreading
of the droplet spectrum and the mean droplet growth rate
were reduced compared with their earlier simulations but
were more realistic. As discussed in section 3.1, the absence of
the second term on the right-hand side of (3) in simulations
of condensational growth of droplets in a turbulent fluid
can lead to unrealistically high values of s, which in turn can
result in broader droplet size distributions and higher-than-
observed liquid water content. This is particularly important
at larger scales, as here s should approach sqe.

Vaillancourt et al. (2002) were the first to study
the condensational growth of droplets in 3-D DNS of
homogeneous isotropic turbulence (for Rλ ranging from
12 to 34). In contrast to Celani et al. (2005), they found
that sedimentation significantly reduces the broadening of
the droplet spectrum; the reasons for this difference are
not clear but could be related to the dimensionality of the
simulations, the forcing of the flow or different parts of the
St–Sv parameter space. Vaillancourt et al. (2002) also found
that increasing ε leads to an increase in the instantaneous

standard deviation of the supersaturation fluctuations,
which the authors attribute to increased droplet clustering.
However, this does not compensate for a steadily decreasing
correlation time between the supersaturation fluctuations
and the droplets as ε increases. The result is that the width
of the droplet size distribution, which is a function of the
integrated supersaturation fluctuations along each droplet
trajectory, decreases with increasing ε. They concluded that
small-scale turbulence alone does not produce significant
spectral broadening. As the discussion here and in the
previous paragraph suggests, there remains some dispute
over the importance of gravity in the study of droplets
with radii less than 20 µm, with some authors arguing
that sedimentation substantially reduces the supersaturation
perturbations and consequently the width of the droplet
size distribution (Vaillancourt et al., 2001, 2002), while
others argue that it is not significant (see the discussion in
Grabowski and Vaillancourt, 1999, and Shaw et al., 1999).

Lanotte et al. (2009) also considered the condensational
growth of droplets in 3-D DNS (for Rλ ranging from 40 to
185). Their results show that the standard deviation of the
squared droplet radius, σa2 , grows linearly with the large-
eddy turnover time (for approximately constant ε), from

which they argued that σa2 ∼ R5/2
λ . This scaling assumes

that the standard deviation of the supersaturation, σs, does
not deviate significantly from its initial value. At Reynolds
numbers typical of real clouds, for which the large-eddy
turnover time will be much larger than in the DNS of
Lanotte et al. (2009), this assumption may no longer hold.
Lanotte et al. (2009) argue that a more appropriate scaling
follows from assuming that σs takes its equilibrium value.

This leads to σa2 ∼ R3/2
λ . These two scalings then represent

respectively lower and upper bounds on the Reynolds
number dependence of σa2 . Lanotte et al. (2009) test their
hypothesis by conducting a quasi-LES (DNS that matches
typical large-scale cloud parameters but with unrealistic
small scales such as η and τη) so that the large-eddy
turnover time is now much larger than τs and s tends
to sqe. They find that, at large times, σa2 is close to its lower
bound.

Sidin et al. (2009) studied condensational growth using
kinematic simulation. Rather than solving the Navier–Stokes
equations, a turbulent-like velocity field with an appropriate
spectrum is constructed from a linear superposition of
independent random Fourier modes (e.g. Fung et al.,
1992). Compared with DNS, kinematic simulation is
computationally inexpensive and so a much wider range
of scales is possible. Thus it may provide valuable insight
into the combined effects of large and small scales. However,
because the velocity field is synthesized rather than derived
from the Navier–Stokes equations, it may not give the correct
quantitative behaviour. Sidin et al. (2009) considered two
models of condensational growth: a two-way coupled model
which includes the effect of latent heating and water vapour
depletion and a simplified model in which there is no two-
way coupling. The simplified model shows a broadening of
the droplet size distribution and the more realistic two-way
coupled model also shows broadening but much less so than
the simplified model, though still broader than the classical
case of no turbulent mixing (i.e. latent heating and vapour
depletion alone). By examining the broadening as a function
of wave number, they argued that both large and small-
scale turbulence are required to achieve spectral broadening
within a control volume comparable with the smallest scales

Copyright c© 2012 Royal Meteorological Society and

British Crown Copyright, the Met Office

Q. J. R. Meteorol. Soc. 138: 1401–1429 (2012)



1412 B. J. Devenish et al.

of turbulence: the large scales transport droplets through
regions of different supersaturations whereas the small scales
mix droplets of different sizes. (Note that for a large control
volume an unrealistically broad spectrum may be achieved
with no mixing, since those droplets that experience high
values of s grow faster than they would otherwise if mixing
were to move them to regions of low values of s; mixing
can also limit spectral broadening over large volumes.) They
found that simulations with either large or small scales alone
did not produce spectral broadening in a control volume of
the same size. Large-scale effects are associated with droplets
growing at different rates in different eddies; sqe may vary
from one large-scale eddy to another since each eddy may
have a different vertical velocity. As postulated by Cooper
(1989), the width of the droplet spectrum depends on the
history of each droplet as it moves from one large-scale
eddy to another, large-scale eddy hopping, and it is the
small scales that allow a droplet to move in this way. The
coexistence of differently sized droplets in a small volume is
likely to be important for determining the collisional growth
rate.

4.2. Collisions, coalescence and turbulence

The collision and coalescence of droplets in a turbulent flow
are governed by (i) geometric collisions due to the effect of
turbulence on the droplets; (ii) collision efficiency due to
droplet-droplet interactions; and (iii) coalescence efficiency
due to droplet surface properties.

In practice, it is difficult to distinguish experimentally
between collision and coalescence and the preferred experi-
mentally measurable quantity is the collection efficiency. This
is defined in the absence of turbulence to be the ratio of the
actual coalescence cross-section, πx2

c , where xc is the critical
value of the horizontal distance between the two droplets
below which coalescence is certain to occur, to the geomet-
ric cross-section, πr2

c , where rc = a1 + a2 is the collision
radius for two droplets with radii a1 and a2 (Pruppacher
and Klett, 1997, p. 591; Rogers and Yau, 1989, p. 126). If
coalescence is assumed to follow whenever xc < rc, then
the collection efficiency is equal to the collision efficiency
(i.e. we can neglect (iii) above). Vohl et al. (1999) have
conducted wind tunnel experiments which show that this is
approximately the case for a < 100 µm (although the exper-
iments were performed at lower Reynolds numbers than
are typical of the atmosphere). Droplet growth through col-
lection thus reduces to a problem of determining collision
rates.

Collisions that result from the finite size of the droplets
(neglecting the disturbance flows due to droplets) are known
as geometric collisions and are considered in section 4.2.2.
Geometric collisions do not necessarily result in coalescence
between droplets; coalescence arises from interactions
between droplets as a result of the perturbed flow field
induced by one droplet in the vicinity of another. Such
interactions are often referred to as hydrodynamic or
aerodynamic droplet interactions and are considered in
section 4.2.4. Droplet–droplet interactions determine the
collision efficiency. In the absence of turbulence, gravity-
induced collision efficiencies for cloud droplets tend to
be in the range 0.001–0.1 (Pruppacher and Klett, 1997,
p. 582).

4.2.1. The collision kernel

We consider collisions of a bidisperse suspension of droplets
in a turbulent flow. The average collision rate per unit
volume, 〈N12〉, can be expressed as

〈N12〉 = 〈n1〉〈n2〉�12, (5)

where 〈n1〉 and 〈n2〉 are the average number densities (per
unit volume) of droplets with radii a1 and a2 respectively.
In the monodisperse case, the right-hand side of (5) would
have a factor of 1/2 for 〈n〉 � 1. Note that the average
collision rate per unit volume may be very different from
the instantaneous collision rate since 〈n1n2〉 �= 〈n1〉〈n2〉.

In the case of sedimenting droplets in stagnant air, the
collision kernel becomes (Rogers and Yau, 1989, p. 130)

�12 = πr2
c |vT2 − vT1|, (6)

where vT1, vT2 are respectively the terminal velocities of
the two droplets. For spherical droplets that are much
smaller than η and follow a turbulent flow exactly (i.e. with
no inertia), Saffman and Turner (1956) showed that the
collision kernel can be expressed as

�12 = r3
c

(
8πε

15ν

)1/2

. (7)

This represents the effect on the collision rate of the local
shear at the dissipation (Kolmogorov) scale. The collision
kernel can be generalized to the case where the finite inertia
of the droplets becomes important (but not so much so that
they are insensitive to changes in the turbulent flow).

More generally, �12 can be defined as the volume influx
containing droplets of radius a2 to a droplet of radius a1

over the collision surface Sc about the centre of droplets of
radius a1 and radius rc. For spherical droplets 〈N12〉 is given
by (Sundaram and Collins, 1997; Wang et al., 1998a, 2000;
Ayala et al., 2008b)

〈N12〉 = 4πr2
c 〈n1(a1)n2(a1 + rc) (−w12)|w12<0〉

≈ 4πr2
c

1

2
〈n1(a1)n2(a1 + rc) |w12|〉

≈ 2πr2
c 〈n1(a1)n2(a1 + rc)〉|w12|

≈ 2πr2
c 〈n1〉〈n2〉g12(rc)|w12|, (8)

where

g12(rc) = 〈n1(a1)n2(a1 + rc)〉
〈n1〉〈n2〉

is the radial distribution function (RDF) and

|w12| = 〈n1n2|w12|〉
〈n1n2〉

is the density-weighted longitudinal relative velocity between
droplets (evaluated at the collision radius rc). The general
collision kernel is then

�12 = 2πr2
c g12(rc)|w12|. (9)

In deriving (8) we have assumed that half the particles
are moving towards the surface as moving away, i.e. the
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droplet surface is perfectly reflecting. This is equivalent to
assuming that, when the surface is perfectly absorbing, the
concentration falls by one half over a short distance of order
the particle stop distance, which is infinitesimally small for
a passive tracer (see Figures 14–16 in Ammar and Reeks,
2009). If the droplets were passive tracers, they could only
coalesce by virtue of interception, which would mean that
g12(rc) < 1 for small rc. In reality, the influence of inertia
would alter this picture since droplets can coalesce by inertial
projection onto the collision surface or what is known in
turbulent deposition models as free flight to the wall (see
section 4.2.5).

The discussion in the preceding paragraph illustrates
the effect of the boundary conditions on the collision
rate: perfect absorption (coalescence) can be significantly
different from perfect reflection (no coalescence). In their
classic study of collision rates, Saffman and Turner (1956)
(see (10) below and attendant discussion) assumed that the
collision rate is the same whether the surface is perfectly
absorbing or reflecting. However, several studies (e.g.
Sundaram and Collins, 1997; Wang et al., 1998b; Chun et al.,
2005; Ammar and Reeks, 2009) have shown that this is not
the case. The persistence or finite lifetime of turbulent
structures can make droplet collision rates very much rate-
limited by diffusion in the vicinity of the droplets, as is the
case of particle transport in a turbulent boundary layer. For
geometric collisions, there are no boundary conditions since
the motion of each droplet is treated as being independent
of all the other droplets, collisions occurring when the sum
of the radii of two droplets equals the collision radius.

4.2.2. Geometric collisions

DNS results (Pinsky et al., 2006; Franklin et al., 2007;
Ayala et al., 2008a) show that turbulence can increase the
collision kernel relative to the case of stagnant air through
increases in both the magnitude of the relative velocity and
the RDF. The effect of turbulence on geometric collisions
amounts to parametrizing these two effects: the droplet
relative velocity and droplet clustering.

4.2.2.1. Droplet relative velocity

In bidisperse suspensions, |w12| is always larger than
its monodisperse counterpart: |w12| � max(|w11|, |w22|)
(Zhou et al., 2001). This can be understood by considering
first a monodisperse suspension, which represents a limiting
case of the bidisperse suspension, in the absence of gravity.
For low St, velocities of equally sized droplets are strongly
correlated with the fluid (and so with each other), leading
to low relative velocities. As St increases, the correlation
of the droplets with the flow decreases and |w11| increases.
However, this increase is not unbounded since, for St � 1,
droplets respond slowly to changes in the fluid velocity and
hence |w11| decreases. For bidisperse droplets, the velocities
of the droplets decorrelate more rapidly than the equivalent
monodisperse cases since droplets with different inertia
respond differently to changes in the flow. The presence of
gravity further increases the decorrelation of the droplets,
leading to higher values of |w12|, as demonstrated in the
DNS results of Woittiez et al. (2009).

Saffman and Turner (1956) were the first to obtain an
analytical expression for |w12| that combines the effects of

droplet inertia and gravity:

|w12( rc)| =
(

8

3π

)1/2
[

3(τp2 − τp1)2

(
Du

Dt

)2

+1

3
r2

c

ε

ν
+ g2(τp2 − τp1)2

]1/2

, (10)

where τp1, τp2 are respectively the characteristic response
times of two droplets. The first term on the right-hand
side of (10) represents the effect of fluid acceleration, the
second term the local fluid shear and the third term the
effect of gravity. Equation (10) was derived assuming that
τp  τη (where τp is typical of either droplet). Note that
(10) does not account properly for gravity as it does not
reduce to (6) (via (9)) in the absence of turbulence (for which
g12(rc) = 1). Furthermore, when droplet inertia is neglected,
(7) cannot be recovered from (10). These discrepancies arise
from assuming that the effect of turbulence on the droplets
is isotropic, which is reasonable in the absence of gravity
but cannot be justified when gravity is included (Dodin and
Elperin, 2002; Wang et al., 1998a). These discrepancies can
be corrected as shown in Wang et al. (2005c).

There have been many further attempts to derive
improved analytical expressions for the droplet relative
velocity (see, for example, Ayala et al. (2008b) or
Xue et al. (2008) for a detailed review). Not surprisingly,
the limiting cases of small and large droplet inertia, usually
without gravity, have received more attention than cases
with moderate inertia. When τp � τη, Ayala et al. (2008b)
derived an analytical expression for sedimenting droplets
which is partly based on the work by Dodin and Elperin
(2002), who considered droplets with τp  τη.

The basic assumption of Ayala et al. (2008b) is
that the droplet relative velocity is mostly determined
by gravitational sedimentation and that droplet inertia
introduces a secondary correction. This assumption is
appropriate when the terminal velocity of droplets is large
relative to the Kolmogorov velocity and works best when
the two droplets are not close in size. Following Dodin
and Elperin (2002) they decompose the droplet relative
velocity into a deterministic part due to gravity, which
follows from assuming Stokes drag, and a random part
due to the turbulent fluctuations. Ayala et al. (2008b)
assume that the random variable in this decomposition
is normally distributed so that the problem of determining
|w12| reduces to that of determining the variance, σ 2

w, of
the longitudinal relative velocity, for which they derive an
analytical expression. In the limit τp  τη, their general
expression for σ 2

w becomes

σ 2
w = (τp2 − τp1)2

(
Du

Dt

)2

+ 1

15
r2

c

ε

ν

+(vT1τp1 − vT2τp2)2 2ε

15ν
.

The first two terms on the right-hand side are similar to the
first two terms on the right-hand side of (10). The third term
is new and represents a coupling between gravity and the
fluid shear. For typical cloud conditions, the ratio of this term
to the shear term quickly becomes important as the size of
the droplets increases. Ayala et al. (2008b) show that gravity
appears to enhance the turbulent fluctuations (see Figure 7 of
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Ayala et al., 2008b) but reduces the variance of the individual
droplet velocities and the droplet correlation coefficient (see
Figures 8 and 9 respectively of Ayala et al., 2008b).

Pinsky et al. (2006) consider the effects of non-Gaussian
Lagrangian fluid accelerations on the collision kernel.
They obtained lower values of �12 compared with the
theoretically derived collision kernel of Wang et al. (1998a).
They attribute this reduction to the assumption of
normally distributed droplet relative velocities made by
Wang et al. (1998a). Ayala et al. (2008b) find that the
dependence of |w12| on Rλ is weaker than that of
Pinsky et al. (2006). They argue that the reason for this
is that, because of sedimentation, the relative positions
of the droplets are continuously changing and hence the
fluid velocity experienced by each droplet within the pair
is not necessarily perfectly correlated as was assumed by
Pinsky et al. (2006). If the fluid velocity experienced by
each droplet is perfectly correlated then the interaction
between the two droplets occurs within the same fluid
eddy and the lifetime of the interaction is not affected by
sedimentation. By allowing for decorrelation between the
fluid velocity experienced by each droplet, the coupling
between the eddy–droplet interaction and sedimentation
can be explicitly accounted for. Ayala et al. (2008b) argue
that this results in a smaller enhancement of |w12| compared
with the perfectly correlated case (see Figure 14 in Ayala et al.,
2008b). When the two droplets in the pair are of similar size,
so that differential sedimentation is no longer important,
the model of Ayala et al. (2008b) underestimates w12(r)
compared with Pinsky et al. (2006).

As stated above, when nonlinear drag is assumed the
terminal velocity is reduced compared with Stokes drag.
This reduces the droplet relative velocity and the magnitude
of the collision kernel for bidisperse droplets (Franklin et al.,
2007; Ayala et al., 2008a). For monodisperse droplets larger
than approximately 40 µm, Ayala et al. (2008a) found that
nonlinear drag increases both |w12| and the collision kernel.

A recent DNS study by Onishi et al. (2009) suggests
that for monodisperse droplets gravity reduces collision
frequencies for certain values of St and Rλ. They attribute
this decrease to a decrease in the droplet relative velocity
most likely because of the reduced interaction time between
the droplet and the fluid eddies. These authors also derive a
model from their DNS on the basis of which they argue that
gravitational contributions to collisions can be neglected for
monodispersed cloud droplets.

4.2.2.2. Droplet clustering

The field of droplets that is advected by the air may be
regarded as a continuum (for St not too large). In the
parlance of multiphase flows, the air is known as the carrier
flow field. Even if the air is regarded as locally incompressible,
the droplet continuum may be compressible. Maxey (1987),
in his seminal work on settling in turbulent flows, was the
first to relate particle clustering to the local divergence of the
particle velocity field and gave an expression for it to first
order in St, namely

∇ · vp(x, t) ∼ −St(S2 − R2), (11)

where vp is here interpreted as the particle velocity field,
S is the local symmetric rate of strain tensor of the carrier
fluid and R is the local rotation tensor. In statistically

stationary homogeneous isotropic incompressible flows
〈S2〉p − 〈R2〉p = O(St) for inertial particles, where 〈·〉p

indicates an ensemble average following a particle, and
so

〈∇ · vp(x, t)
〉
p

= −O(St2). Equation (11) quantitatively

embodies the now commonplace and appealing view first
proposed by Maxey (1987) that inertial particles segregate
into the straining regions in the flow between the regions
of vorticity. The implication is that the net divergence
along a particle trajectory is negative and clustering is not a
statistically stationary process, so that the net concentration
along a particle trajectory would continually increase in
time. This small-St-number approximation for both the
particle velocity field and its divergence has been the
source of a number of analyses and simulations. In this
regard, particularly important have been the analytical
forms derived for the radial distribution function g(r)
and their power law dependence on r as r → 0 (see
below), which would indicate that g(r) → ∞ as r → 0.
Numerous simulations of particle motion for small St in
isotropic turbulence have led to confirmation of this long-
term equilibrium form (e.g. Chun et al., 2005; Kerstein
and Krueger, 2006).∗ For details of how this equilibrium
is approached and the need for an ever-increasing grid
refinement to observe the RDF accurately as r → 0 (since
more particles are required to preserve statistical accuracy)
the reader is referred to IJzermans et al. (2009). Insufficient
resolution leads to an apparent equilibrium at a shorter
time: in fact, for particles with a collision radius rc the time
for equilibrium te/τη → ∞ as rc/η → 0. This viewpoint of
an approach to equilibrium as t → ∞ is not incompatible
with a net finite negative divergence (compressibility) which
compresses an elemental volume of particles until they
touch. Balkovsky et al. (2001) considered this limit, and also
that imposed by Brownian motion, giving a lower bound
to the clustering as the separation distance approaches
rd ∼ (DB/S)1/2, where S ∼ √

ε/ν and DB is the Brownian
diffusion coefficient, for which te is of order λ−1

p ln(η/rd),
where λp is the typical value of the particle velocity field
gradient. Thus the limiting value of the power law for the
concentration depends on whether rc � rd.

Clustering of inertial particles has been extensively stud-
ied both experimentally (see section 4.2.6) and in numerical
simulations (e.g. Sundaram and Collins, 1997; Reade and
Collins, 2000) though with relatively few studies of sediment-
ing droplets. These studies indicated that particle clustering
reaches a maximum for St ∼ 1 and tends to zero (uniform
mixing) as St → ∞. They have also resulted in a number of
empirical formulations for g(r). For values of St not too large,
the RDF for a monodisperse system typically takes the form
of a power law which reflects the multi-scale self-similar
nature of droplet clustering (e.g. Figures 7 and 8 of Goto and
Vassilicos, 2006; Bec, 2005; Bec et al., 2007). This multi-scale
clustering has been accounted for in terms of the sweep-stick
mechanism, which explains why droplet clustering mimics
the multi-scale clustering of vanishing fluid acceleration
points in a turbulent flow (Coleman and Vassilicos, 2009).
Analytical expressions for the RDF have been derived by
Chun et al. (2005) for St  1 and Zaichik and Alipchenkov

∗Note that in both these simulations the simulated particle velocity field
is assumed to be zero. This neglects the component due to random
uncorrelated motion (see section 4.2.5), which manifests itself as a mean
drift velocity proportional to the gradient of the particle kinetic stresses
(referred to as turbophoresis).
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(2003) for values of St including St � 1. The latter was
derived using pdf methods (analogous to kinetic theory) but
does not give a closed-form expression for g(r). In princi-
ple, this approach can be extended to cover the Abrahamson
limit, St � 1 (Abrahamson, 1975). There has, until recently,
tended to be more interest in the limit St  1 than St � 1.
Particularly useful in the study of the latter region has been
the so-called fully Lagrangian method (Osiptsov, 2000) and a
similar method implemented by Falkovich and Pumir (2004,
2007) and Ducasse and Pumir (2009). The application of
either of these approaches means that as well as calculating
the droplet velocity and position along a trajectory, one can
also calculate the compressibility. This also enables one to
calculate the particle concentration (the rate of change of
which is proportional to the divergence of the particle veloc-
ity field) along a particle trajectory and in turn the statistical
moments of the volume-averaged particle concentration.
IJzermans et al. (2009, 2010) and Meneguz and Reeks (2010,
2011) report measurements of the moments at small St and
St = O(1) in simple periodic flows, kinematic simulations
(with a distribution of energy and length scales typical of
real turbulent flows) and in DNS of homogeneous isotropic
turbulence. For small St the moments grow exponentially
and smoothly with time, consistent with the behaviour pre-
dicted by Balkovsky et al. (2001). In contrast, the growth
for St = O(1) which, although the underlying trend is expo-
nential, is dominated by spikes, indicating the momentary
occurrence of singularities in the particle concentration in
time (as has also been observed in simple 2-D linear flow
fields of counter-rotating vortices; IJzermans et al., 2009).
They also observed a threshold value for St beyond which the
average compressibility was negative rather than positive,
meaning that the net continuum volume occupied by parti-
cles expands with time rather than contracts. However, this
interesting feature belies other important features of the clus-
tering process, since the exponential growth of the concen-
tration moments persists despite the possible occurrence of a
net negative compressibility indicating that there are always
segregated regions where the particles are highly concen-
trated. The existence of this threshold from net compression
to dilation was a feature common to all three flows investi-
gated, suggesting that this transition may well be a property
of particle flows in incompressible carrier flows in general,
the transition depending upon the combination of local
vorticity and straining encountered by a particle as it moves
through the carrier flow. Measurements of the rate of occur-
rence of singularities (Meneguz and Reeks, 2010, 2011) show
that it reaches a maximum at St = 1, with the distribution
of times between singularities following a Poisson process.

For St  1, both Chun et al. (2005) and Zaichik and
Alipchenkov (2003) predict that g(r) ∼ r−α̃St2

, although the
values of the constant α̃ differ. This reflects a fundamental
difference between the two approaches. The method of
Chun et al. (2005) assumes that the form of g(r) arises
from a balance between turbulent diffusion and drift. The
drift velocity they evaluate turns out to have the same
form as that derived by Maxey (1987), who considered
the difference in settling velocity in homogeneous isotropic
turbulence due to preferential sweeping of the particles
through turbulent structures in the direction of gravity (see
also section 4.2.3 below). Although gravity had no influence
in Chun et al. (2005), the Maxey formula also applies equally
to the transport of particles in inhomogeneous turbulence:
in this case the inhomogeneity is in the relative velocity of

fluid elements as a function of their separation. In either case
it involves the compressibility of the particle flow field along
a particle trajectory. In contrast, the form derived by Zaichik
and Alipchenkov (2003) is based on the droplet momentum
equation (in the frame of reference moving with a colliding
droplet) and in particular a force balance between the drag
and the particle kinetic stresses. That is, given a uniform
concentration of particles in an inhomogeneous flow, there
would be a force acting on the particles due to gradients
of the radial kinetic stresses. Because this force would be
balanced by the drag force, which is proportional to the
particle mean velocity, it would give rise to a drift velocity.
The fact that both approaches give the same St dependence
is coincidental. It turns out that the actual drift velocity is
the sum of the two contributions (drift due to gradients in
the radial kinetic stresses and local inhomogeneity in the
instantaneous particle concentration).

Neither Chun et al. (2005) nor Zaichik and Alipchenkov
(2003) take gravitational settling into account, which may
decrease droplet clustering as it reduces the interaction time
of a droplet with the turbulent eddies. This has been observed
in DNS for sedimenting droplets (Vaillancourt et al., 2002;
Wang et al., 2006a; Franklin et al., 2007; Ayala et al., 2008a).
Falkovich et al. (2002) used a heuristic argument to include
gravitational settling in their expression for g(r). However,
for bidisperse droplets, their formula is not closed, which
makes it difficult to compare with other models.

A closed-form empirical formula for g(r) that includes the
effect of gravity has been proposed by Ayala et al. (2008b). In
the monodisperse case, it may be expressed as (Chun et al.,
2005)

g(r) = C0

(η

r

)C1
, (12)

which holds for r  η, the appropriate range for cloud
droplets. This expression may hold for sedimenting droplets
by assuming functional forms for C0 and C1 that depend on
St, Rλ and Frf (Ayala et al., 2008b). An empirical expression
for C1 was obtained by Ayala et al. (2008b) from their DNS
data for C0 = 1:

C1 = Fr
f1(Rλ)
f f2(St), (13)

where f1(Rλ) = 0.1886 exp(20.306/Rλ) and f2(St) is a
fourth-order polynomial in St (with f2(0) = 0). Any model
of the RDF must have the correct form in several limiting
cases: for weak-inertia particles, it follows from (12) and
(13) that g(r) → 1 as St → 0. If Frf  1, i.e. the fluid
acceleration is much less than the gravitational acceleration,
or equivalently the limit of small ε, since Frf ∼ ε3/4, then
C1  1 and g(r) = 1. In the limit Rλ → ∞, C1 depends
only weakly on gravity. It is important to note that this
model is a fit to DNS data for sedimenting cloud droplets
where the droplet inertia and terminal velocity are related to
one another (i.e. Sv and St increase together as a increases).

For non-sedimenting bidisperse droplets, clustering
rapidly decreases as the difference in droplet size becomes
larger (Zhou et al., 2001; Woittiez et al., 2009). The
correlation between two droplets decreases with increasing
difference in inertia as droplets with different inertia respond
differently to changes in the flow. Thus the RDF of a
bidisperse suspension is bounded above by the RDF of the
monodisperse case. The DNS results of Woittiez et al. (2009)
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show that the addition of gravity can cause droplets
with slightly different sizes to cluster in different regions.
Woittiez et al. (2009) also found that gravity facilitates
the clustering of large droplets (a � 50 µm), particularly
monodisperse droplets–something which is not observed
for non-sedimenting droplets. The precise reasons for this
are not clear and the authors caution that the large-scale
forcing and periodic boundary conditions employed in their
DNS may introduce artefacts at large scales. We note here
that when a nonlinear drag is assumed Ayala et al. (2008a)
found that, for bidisperse droplets, there was no significant
difference in droplet clustering compared with Stokes drag.

For a pair of droplets of two different sizes, any
acceleration due to gravity or due to the turbulent fluid
induces a relative velocity between the pair. This gives
rise to a diffusive-like motion that tends to smooth out
any inhomogeneities in the particle pair concentration
and reduces the RDF. For bidisperse droplets, (12) can
be extended to (Chun et al., 2005; Ayala et al., 2008b)

g12(r) = C0

(
η2 + r2

D

r2 + r2
D

)C1/2

,

where rD is a parameter representing the diffusion-like
process. If r  rD, then g12(r) is independent of r, as expected
when the acceleration-induced diffusion is important.
Conversely, if r � rD, then g12(r) = g(r) and the droplets
in the pair both react similarly to the local acceleration.
It is worth noting here that Lu et al. (2010) derived an
analytical form of rD (for St  1) that is similar in form to
that derived empirically by Ayala et al. (2008b). Moreover,
Lu et al. (2010) extend the RDF of Chun et al. (2005)
to include charged particles which compares well with
experiments. The inclusion of electric charge allows the effect
of gravity to be modified: as the difference in the settling
velocities increases (by increasing the effective gravity), the
RDF decays less rapidly with decreasing r.

As discussed in section 3.2, observations of droplet
clustering in real clouds remain ambiguous, which has
led some authors (e.g. Grabowski and Vaillancourt, 1999)
to question its importance in real clouds. However,
Shaw et al. (1999) argue that, although clustering of inertial
particles tends to decrease rapidly with decreasing St � 1,
there is some evidence (e.g. Reade and Collins, 2000)
that the range of Stokes numbers for which clustering is
significant increases with increasing Rλ. Shaw et al. (1999)
argue that the vortex tubes that are associated with small-
scale turbulence at high Reynolds numbers persist for longer
than either τη or the large-eddy turnover time and so
droplets with a much larger range of St are able to spin
out of the vortex. The importance of intermittency in
potentially increasing droplet clustering has also been raised
by Falkovich et al. (2002). Based on theoretical arguments
they found that clustering can increase collisions by a factor
of ten. However, without a clear theoretical basis for the
Rλ-dependence of clustering, which will remain valid in the
large-Rλ limit, it is likely that these arguments will continue.

4.2.3. Preferential sweeping

Droplets falling under gravity in a turbulent fluid may
fall at speeds which are significantly faster than their
terminal velocity in a quiescent fluid (although under
some conditions the speed of droplets may decrease relative

to the terminal velocity; see section 4.2.6). Sedimenting
(inertial) droplets can bias their trajectories towards
regions of downward fluid motion around vortices: the
crossing-trajectory effect (which occurs primarily because
of sedimentation; Csanady, 1963) causes the particle to be
preferentially swept to the downward side of the vortex
and hence the mean effect of turbulence is a net force that
accelerates the particle downwards. The increased settling
occurs for Sv � 1 and a certain range of τp (Wang and
Maxey, 1993; Dávila and Hunt, 2001).

The DNS results of Ayala et al. (2008a) show that the
turbulent settling velocities of droplets with radii less than
40 µm are larger than the settling velocities in still air.
They find that large droplets (a ≥ 40 µm) have a mean
velocity approximately equal to the terminal velocity and
that droplets with a = 20 µm always exhibit the largest
increase in settling velocity. The latter result can be explained
by the analysis of Dávila and Hunt (2001) for inertial particles
settling near a Rankine vortex. Dávila and Hunt (2001)
introduced a particle Froude number, Frp = St3/Fr2

f =
St Sv2 = τ 3

p g2/ν = τpv2
T/ν, which is independent of ε. They

showed that for Sv < 1 and Frp  1 the turbulent settling
velocity is always larger than the terminal velocity and that
it increases with increasing Frp, reaching a maximum when
Frp ∼ 1. For typical cloud conditions, Frp ≈ 1 for droplets
with a = 20 µm. Thus the enhancement of the settling
velocity reaches a maximum for a = 20 µm regardless of
the value ε. In this case τp ≈ ν/v2

T = vηη/v2
T = �̃η/v2

T = τ� ,

where �̃η is the circulation around an eddy of scale η and τ�

is the time-scale for the droplet to move around an eddy of
order η. The time-scales τv and τ� have the same order of
magnitude when Sv ∼ 1.

4.2.4. Droplet–droplet interactions

In reality, interactions between droplets (hydrodynamic or
aerodynamic interactions) play an important role in cloud
physics particularly for droplets with radii less than 60 µm
which have a short inertial response time and small settling
rate (Wang et al., 2006b). In the case of a quiescent fluid, the
collision kernel for two droplets falling under gravity alone
(6), may be modified to give

�12 = πr2
c |vT2 − vT1|E12(a2/a1, a2),

where E12 is the collision efficiency (ignoring changes
in the density and viscosity of air with height). The
qualitative shape of E12(a2/a1, a1) may be anticipated from
the following considerations (Pruppacher and Klett, 1997,
p. 571). Viscosity tends to ensure that the smaller of the two
droplets (with radius a2) moves around the larger droplet
(with radius a1) and hence is deflected from the collision
trajectory. Thus, in general, one would expect that E12 < 1.
With increasing inertia, this deflection becomes less likely
and hence E12 should be a monotonically increasing function
of a1. Similarly for increasing a2/a1, at least when a2/a1  1.
As a2/a1 → 1, the situation becomes more complex as the
relative velocity decreases and allows more time for viscous
forces to act and hence prevent a collision. On the other
hand, the trailing droplet may fall into the wake of the
leading droplet, wake capture, which may increase E12 to
values greater than one.

Compared with the study of geometric collision rates,
there have been relatively few studies of the effect of
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turbulence on droplet–droplet interactions. The geometric
collision kernel (9) can be modified to account for droplet–-
droplet interactions by defining a turbulent collision effi-
ciency (Wang et al., 2005b, 2006b; Pinsky et al., 2007):

E12 = �12(HI)

�12(No HI)
, (14)

where ‘HI’ and ‘No HI’ respectively indicate that �12 has
been computed with or without droplet–droplet interac-
tions (keeping all other pertinent quantities fixed). In terms
of the radial relative velocity and the RDF (14) becomes

E12 = |w12(HI)|g12(HI)

|w12(No HI)|g12(No HI)
,

with the dependence on rc now implied rather than explicit.
Pinsky et al. (1999b) proposed a mathematical formula-

tion to study the effect of far-field turbulent fluctuations
on droplet–droplet interactions. Working in a frame of ref-
erence moving with the local air flow, they proposed the
addition of a far-field inertia-induced turbulence contribu-
tion, τpdU/dt, to the droplet–air relative motion, where
U is the undisturbed local air flow velocity. Their main
conclusion is that the collision efficiency in a turbulent
flow is a random number with a mean value that is typi-
cally larger than the gravitational collision efficiency, due to
turbulence-enhanced droplet–droplet relative velocity and
the associated variation of the droplet–droplet angle of
approach (see also Wang et al., 2006c). Their formulation
relies on a number of assumptions, including that St is very
small, the inertia-induced relative motion has a time-scale
much greater than the time-scale associated with droplet–-
droplet interaction and the two interacting droplets remain
in the same dissipative eddy during the whole time interval
of their interaction. These assumptions are not always valid
for large ε or large droplet size. Furthermore, their turbulent
flow was kinematically constructed as a two-dimensional
frozen pseudo-turbulent flow generated by a large number
of random Fourier modes designed to yield the desired
inertial-to-dissipation range energy spectrum. This flow
model does not adequately describe the fine structure of a
turbulent flow and leads to an overestimation of the mag-
nitudes of the Lagrangian accelerations as noted in Pinsky
and Khain (2004). For these reasons, Pinksy et al. (1999b)
stated that their results should be viewed as ‘qualitative to a
certain degree’.

Pinsky et al. (2001) recognized that the droplet terminal
velocity can increase with height (decreasing ambient air
pressure and density) and this will increase the relative
motion between a pair of droplets. They showed that a
small change (5% to 20%) in the relative velocity due to
the decreased ambient pressure could lead to a significant
increase (up to a factor of two) in collision efficiency. They
introduced an approximate representation of disturbance
flow at finite-droplet Reynolds numbers and calculated the
collision efficiency between droplets of radius up to 300 µm
at several ambient pressures (100, 750 and 500 mb).

Using the same approximate formulation of
Pinksy et al. (1999b), Pinsky and Khain (2004) studied
the effects of fluid accelerations at high-flow Reynolds num-
bers. They showed that the collision efficiency for collector
droplets exceeding 10 µm can be increased by 25–40%
for ε = 200 cm2 s−3 and by a factor of 2.5–5 at ε = 1000

cm2 s−3. They also showed that the effect of intermittency on
collision efficiency is insignificant. However, it appears that
they misinterpreted the fluid acceleration seen by a droplet
as the Lagrangian fluid acceleration. This misinterpretation
may be problematic for high Rλ flow, even in the limit of
small St number.

Wang et al. (2005b) proposed a hybrid DNS approach
to modelling hydrodynamic interactions based on the
superposition method. This method (Pruppacher and Klett,
1997, p. 571) assumes that each sphere moves in a flow field
generated by the other sphere falling in isolation. However,
it becomes inaccurate when the separation distance between
the two droplets is comparable with the collision radius.
Wang et al. (2005a) formulated a revised superposition
method which avoids this limitation by imposing proper
boundary conditions on the surface of the droplets. The
hybrid DNS results of Wang et al. (2005b), with the revised
superposition method, show that air turbulence increases
both the geometric collision rate and the collision efficiency,
particularly as a2/a1 → 1. They found that the results
depend sensitively on the size of the larger droplet. Relative
to a quiescent fluid, for a1 = 30 µm, the geometric collision
rate is more enhanced than the collision efficiency, whereas
for a1 = 20 µm the situation is reversed. They observed
that hydrodynamic interactions are less effective at reducing
the average droplet relative velocity in a turbulent flow
compared with sedimenting droplets in a quiescent flow.
For this reason, turbulence enhances the collision efficiency
as well as the geometric collision rate. Hydrodynamic
interactions also increase the pair density in the vicinity of
the collision, giving a higher RDF at contact compared with
geometric collisions. Wang et al. (2006b) also noted that the
collision efficiency among equally sized droplets depends on
the presence of differently sized droplets in the suspension–a
cumulative effect of all the droplet interactions in the flow.
This means that theoretical treatments of hydrodynamic
interactions that are based on two isolated droplets may not
be applicable to a suspension of many droplets, even in the
absence of turbulence.

Another revised formulation of the superposition method
has been proposed by Pinsky et al. (2007). They decomposed
the droplet velocity (relative to the fluid) into an undisturbed
part (without the impact of the other droplet) and a
disturbed part, representing the velocity induced by the
other droplet. They obtained two equations of motion for
each of the two velocities and simplified the equation for
the undisturbed velocity by assuming that it is equal to
its quasi-stationary value. They justified this assumption
by assuming that the collision between the two droplets
takes place in an elemental volume in which the droplet
velocity relaxes to its quasi-stationary value on a time-scale
shorter than that on which the fluid velocity is changing.
Pinsky et al. (2007) examined the pdf of the instantaneous
collision efficiency for a droplet pair with radii 10 and 15
µm for three different cloud types, stratiform (Rλ = 5000,
ε = 10 cm2 s−3), cumulus (Rλ = 20 000, ε = 200 cm2 s−3)
and cumulonimbus (Rλ = 20 000, ε = 1000 cm2 s−3) (see
Figure 6 in Pinsky et al., 2007). They found that the
tails of the pdf become increasingly elongated as ε

increases, particularly if the statistics of the acceleration
and velocity gradients were assumed to be non-Gaussian.
For both cumulus and cumulonimbus clouds, they found
that the pdf becomes positively skewed, indicating that
turbulence may increase the local collision efficiency
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considerably. For cumulonimbus clouds they showed that
the mean collision efficiency relative to purely gravity-
induced collision efficiency can be greater than a factor
of three (see Figure 10 in Pinsky et al., 2007).

4.2.5. Random uncorrelated motion: its relationship to the
formation of caustics and singularities

Sundaram and Collins (1997) recognized that both
clustering and velocity decorrelation between particle pairs
have an important influence on inter-particle collisions:
clustering enhances the neighbouring concentration of
particles about any given particle and the velocity
decorrelation between particles causes two nearby particles
to collide (other than through interception). Since the
interplay between these two effects determines the collision
rate in a turbulent flow, it is essential to quantify as accurately
as possible not only the clustering but also the mechanism
that lies behind the increase in the relative velocity between
adjacent particles. Stokes disturbance flow is known to have
extended long-range effects: the finite response time of
inertial particles in turbulent flows means that droplets can
retain a memory of a fluid eddy with which it has previously
come into contact. This means that the particle velocity
contains an element that is non-local and uncorrelated with
the local fluid. Based on their studies of particle motion in
DNS turbulence, Février et al. (2005) and Masi et al. (2010)
partitioned the particle motion into a spatially random
uncorrelated motion (RUM) and a mesoscopic motion
derived from a smoothly varying particle velocity field
which is responsible for the spatially correlated part of the
particle motion. By measuring the spatial velocity correlation
between pairs of particles, they were able to calculate the
contribution the RUM and the mesoscopic velocity fields
make to the particle’s turbulent kinetic energy and how this
varied with St. This feature is attributed to the ability of
the trajectories of particles with inertia to cross one another
with different and uncorrelated velocities as these particles
retain the memory of their interaction with very distant
and statistically independent eddies in the flow field. It is
RUM that allows droplets to collide. Falkovich et al. (2002)
recognized this feature of particle motion, showing that
in the limit St  1 droplets that overlap exhibit different
velocities. They described this as particles being spun out
of regions of vorticity and collecting together with different
velocities at the moment of contact (as a consequence of
their different histories of motion). They referred to this
process as the sling-shot effect. We note also the analogy with
the concept of free flight to the wall (Brooke et al., 1994) used
to explain the deposition of particles in turbulent boundary
layers.

The occurrence of singularities and RUM is contrary to
the commonplace picture of clustering as a local process
intimately related to the local straining and vorticity of the
carrier flow. What these features have highlighted is the
opposite and in particular a consequence of a particle’s
memory of many encounters with straining and vorticity
regions in the flow. RUM is entirely non-local and so is the
occurrence of singularities. Important in this regard is the
analysis of Wilkinson and Mehlig (2005), who considered
particle motion in a mixture of potential and solenoidal flows
that lead to the existence of a filamental network of caustics
(where the particle velocity field becomes multi-valued)
with a very high accumulated concentration of particles at

the edges and within which particle trajectories cross. While
their analysis was only strictly applicable to flows with a Kubo
number (Ku, defined as the ratio of the velocity decorrelation
time-scale to the sweeping time-scale) of zero, it suggested
a strong link between the existence of singularities and
the occurrence of RUM, i.e. that they coexist in the same
region. Recent investigations using the fully Lagrangian and
similar methods would appear to confirm this relationship
(e.g. Ducasse and Pumir, 2009). Singularities in the particle
velocity field can lead to greatly enhanced collision rates
(because droplets at the same position can have different
velocities). For large Reynolds numbers this effect could
be as important as the effects of intermittency in fluid
accelerations, which can also cause extreme peak values in
droplet collision rate fluctuations (e.g. Shaw and Oncley,
2001).

Wilkinson et al. (2006) argued that the process of droplet
coalescence and growth cannot be explained in terms of
particle clustering, firstly because this mostly occurs when
St ∼ 1 (whereas typically St  1 for cloud droplets), and
secondly because the volume loading of droplets in a cloud
is very low and so it would be hard to find particles at
separation distances of order η. Instead they proposed that
the collision kernel be composed of two parts:

� = �a + exp(−A/St) �g ,

where �a is a collision kernel appropriate for tracer particles,
i.e. (7), and the second term on the right-hand side is an
additional kernel arising from the activation of caustics.
Here, �g is the collision kernel based on the kinetic theory
of gases for totally random trajectories (Abrahamson, 1975)
and A depends on Ku and has a value of 0.7 for Ku = 1, which
is appropriate for real turbulence. The term exp(−A/St)
describes the fraction of space for which the velocity field has
become multi-valued (due to the formation of caustics). This
formulation of the collision kernel has much in common
with the decomposition of the particle velocity field into its
mesoscopic and RUM components. Their kernel leads to an
increase in the collision rate through the crossing-trajectory
effect which occurs when the dimensionless turbulence
intensity (which is proportional to St) exceeds the action
for forming caustics. Note, however, that it is �a that is the
dominant term when St  1, which is the more appropriate
limit for most cloud droplets.

4.2.6. Laboratory experiments

There have been a number of advances in experimental
studies of inertial particles in turbulent flows in recent years
(e.g. Warhaft, 2009). In this section we provide a brief
overview of recent results.

There is very strong evidence for inertial particle
clustering from laboratory experiments in both ‘box’
turbulence (homogeneous turbulence without a mean
flow) and in wind tunnel turbulence. In box turbulence,
Wood et al. (2005) show, from the 2-D RDF for 0.57 ≤
St ≤ 8.1, that particle clustering peaks for St ∼ 1 and for
scales less than approximately 10η. The numerical values
of the 2-D RDFs were not in quantitative agreement with
earlier DNS but this was attributed to the reduction in
dimension of the measurement (Holtzer and Collins, 2002).
Yang and Shy (2005) also show that, for 0.3 ≤ St ≤ 1.9,
clustering is greatest for St ∼ 1. Salazar et al. (2008) and de
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Jong et al. (2010) study (experimentally) the full 3-D RDF
for 0.21 ≤ St ≤ 0.6 and the former also provide excellent
confirmation of their clustering measurements at the small
scales using DNS. All of these box turbulence measurements
were made for Rλ of the order of a few hundred.

Saw et al. (2008) determined the 1-D RDF in a wind
tunnel with water sprays for an St range from 0.3 to 1.5 at
Rλ ≈ 500. They too find that the clustering is strongest for
scales less than 10η and for St ∼ 1, although in these and
in the other experiments reported here there is significant
clustering at lower St. The results of Saw et al. (2008)
show scale separation of inertial-range clustering due to
mixing and dissipation-range clustering due to inertia. The
behaviour of bidisperse and polydisperse RDFs were found
to be in good agreement with DNS (Saw, pers. comm.,
2011). By analysing Voronoi diagrams of wind tunnel data,
Monchaux et al. (2010) also find that clustering peaks at
St ∼ 1. Both DNS and experiment show that the RDF
approaches a plateau at small separations and the exponent
of the bidisperse RDF approaches that of the equivalent
monodisperse RDF for the particle with the smaller Stokes
number.

There have also been a number of experiments on the
particle-settling velocity in turbulence. Aliseda et al. (2002)
and Yang and Shy (2005) show enhanced particle-settling
velocities which are consistent with the numerical work of
Wang and Maxey (1993). Gerashchenko et al. (2011) show
the strong effects of gravity on the selective transport of
particle sizes by changing the orientation of the apparatus
in the gravitational field. Good et al. (2011) show that
the particle-settling velocity can either be enhanced or
diminished (in comparison with the terminal velocity in
a quiescent fluid) depending on the value of Sv. When
the turbulence is weak relative to the terminal velocity
the settling speed is diminished, while if it is strong it is
enhanced. These results confirm earlier findings of Nielsen
(1993).

Lagrangian measurements of inertial particles using
particle tracking techniques (Ayyalasomayajula et al., 2006)
show that as St is increased the tails of the particle
acceleration pdf become narrower compared with those
of fluid particles. These results are supported by the
DNS of Bec et al. (2006). Nevertheless, the tails are still
strongly stretched compared with those of a Gaussian
distribution and become increasingly so with increasing
Rλ. Ayyalasomayajula et al. (2008) show that there is a
clear connection between the particle acceleration pdf
and clustering: the inertial particles selectively sample
the flow field, oversampling regions with high strain
and undersampling regions with high vorticity. At low
St (pertaining particularly to cloud droplets) this biased
‘sampling’ of the flow is responsible for the reduction in the
particle acceleration variance and, to first order, explains the
attenuation of the tails of the acceleration pdf.

4.2.7. Impact of turbulent collision–coalescence on droplet
growth and warm rain initiation

Several attempts have been made to address specifically the
impact of selected aspects of air turbulence on the time
evolution of the droplet size spectrum. Typically, these
studies begin with an empirical formulation or tabulated
data of the turbulent collision kernel that exceeds the
gravitational collision kernel. Pinsky and Khain (2002)

demonstrated that collision kernels taking into account
the effect of air turbulence on the relative motion of droplets
can lead to the acceleration of large droplets and raindrop
formation. Falkovich et al. (2002) proposed a semi-analytical
kernel that includes the effects of clustering of droplets and
local fluid acceleration due to cloud turbulence and showed
that cloud turbulence could substantially accelerate the
formation of large droplets. Ghosh and Jonas (2001) applied
the ideas of Dávila and Hunt (2001) on preferential sweeping
(see section 4.2.3) to an approximate equation for droplet
growth and found that the results compared favourably with
observations of stratocumulus. Ghosh et al. (2005) argued
that the preferential sweeping of droplets in clouds could
make droplets grow rapidly from 20 µm to 80 µm and that
this occurs irrespective of the level of cloud turbulence (see
also section 4.2.3). These studies, however, are based on
phenomenological formulations of the turbulent collision
kernel.

Turbulent collision kernels derived from DNS data have
also been used to study droplet growth. Franklin (2008)
studied the mass conversion rate of cloud droplets to
raindrops by solving the stochastic coalescence equation
with the use of turbulent collision kernels. She observed that
the conversion rate increases with increasing flow dissipation
rate. Hsieh et al. (2009) calculated the conversion rate using
the turbulent collision kernel of Ayala et al. (2008b) and
found that turbulence effects can increase the conversion
rate by a factor of 1.24 to 1.82 for two specific initial cloud
droplet size distributions, relative to purely gravitational
collection. Figure 2 shows the typical effect of turbulence
on the collision kernel relative to a purely gravitational
collision kernel both in its totality and broken down into
its constituent parts, i.e. the individual effects of the droplet
relative velocity, droplet clustering and collision efficiency.
Figure 2 shows a noticeable enhancement for ε = 200
cm2 s−3 and droplets less than 100 µm, although the overall
enhancement is moderate, with a value ranging from 1.3
to 2.6 for most regions (Grabowski and Wang, 2009). This
enhancement factor increases with increasing ε with, for
example, the typical enhancement factor varying between
one and five for ε = 400 cm2 s−3. Figure 2 also shows
that the dominant contribution to the enhancement factor
comes from droplet clustering and the collision efficiency.
However, the droplet relative velocity plays an important
role in facilitating collisions between droplets of comparable
size.

The levels of enhancement found by Grabowski and Wang
(2009) and replicated in Figure 2(a) can be compared with
the tabulated results in Pinsky et al. (2008a), who compiled
collision kernel enhancement factors by turbulence for
droplets in the size range from 1 to 21 µm and ε in
the range 10–1000 cm2 s−3 (based on the formulation
developed in Pinsky et al., 2007). For ε = 200 cm2 s−3,
Pinsky et al. (2008a) found that the enhancement factors
can vary from approximately 1.5 to approximately 8, with
an average value around 2–3. In Grabowski and Wang (2009)
the enhancement factors for droplets with a = 21 µm or less
are in the range 1.2–1.6 at ε = 100 cm2 s−3 and 1.5–4.5 at
ε = 400 cm2 s−3. Thus the values of Pinsky et al. (2008a) are
comparable with those in Figure 2 with a somewhat larger
range of variation. This shows that different approaches
appear to lead to similar levels of enhancement factors by
air turbulence.
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Figure 2. (a) The ratio of a typical turbulent collision kernel to a purely gravitational collision kernel (Wang and Grabowski, 2009) for ε = 200 cm2 s−3.
The ratio on the 45◦ degree line is undefined owing to the zero value of the gravitational kernel. The ratio is essentially one when droplets are greater than
100 µm. The constituent parts of the turbulent collision kernel are shown in (b) the droplet relative velocity, (c) the RDF and (d) the collision efficiency.

The values shown in Figure 2 should be taken as
preliminary results owing to the limitations of DNS, as
noted in Pinsky et al. (2007), Ayala et al. (2008a) and
Wang et al. (2008). The most significant limitation is that not
all scales of turbulence affecting droplet–droplet interactions
are included in DNS, making the enhancement factors
shown in Figure 2 most likely a lower bound of what
might occur in real clouds. A related issue is the effect of
flow intermittency at high flow Reynolds numbers, which
requires further investigation. The study of Pinsky and Khain
(2004) suggests that the effect of flow intermittency is not
significant owing to the very low probability of large local
fluctuations. However, as discussed above, this neglects the
possibility of a ‘lucky droplet’ that benefits from such a rare
event. A nonlinear drag law is also needed to describe the
motion of large droplets, as done in Ayala et al. (2008a).

By solving the stochastic coalescence equation using an
accurate bin integral method with the turbulent collision
kernel of Ayala et al. (2008b), Xue et al. (2008) showed that,
under conditions typical of cumulus clouds, air turbulence
can shorten the time for the formation of drizzle drops by
20–40% relative to gravitational collection alone. When the

effect of turbulence on collision efficiency is also considered,
Wang and Grabowski (2009) concluded that the warm
rain initiation time could be reduced up to a factor of
two. Using the same turbulent collision kernel and a rising
adiabatic parcel model that combines droplet activation,
diffusional growth and turbulent collision–coalescence,
Grabowski and Wang (2009) showed that air turbulence
could reduce the warm rain initiation time by 25–40%.
Seifert et al. (2010) incorporated the turbulent collision
kernel of Ayala et al. (2008b) in LES of small cumulus clouds
and found that this led to an increase in the production of
rain. They also found that the effect was most pronounced
near the cloud top, where dissipation rates tend to be highest.
This region plays a decisive role in the initial formation of
rain and shows that dissipation rates correlate well with the
liquid water content.

5. Effect of entrainment on droplet size distribution

The very narrow droplet spectra that are a consequence
of (2) (and serve as a reference against which all broader
droplet spectra are compared) would only exist in reality if all
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the droplets experienced the same supersaturation or, more
precisely, the same integral of the supersaturation along their
trajectories (as follows from (2)). The quasi-adiabatic core of
cumulus clouds most closely approximates such an idealized
situation in which the droplets are activated at cloud base and
grow in a closed convective cell. In reality, convective cells are
not adiabatically closed and turbulence continuously mixes
droplets that have followed different trajectories and so
have different supersaturation histories, resulting in broader
spectra than in a purely adiabatic cell. Thus very narrow
(adiabatic) spectra are likely to be the exception rather
than the rule; indeed, airborne cloud traverses show that
narrow spectra are only observed when the liquid water
content is high and close to its adiabatic value. Moreover,
when enough dry air is entrained and mixed with a cloudy
parcel, some droplets can evaporate completely. If this
parcel then experiences a strong updraught, the remaining
droplets might not be able to fully deplete the available water
vapour and new CCN can be activated, thus producing small
droplets. Indeed, bimodal spectra have long been observed
in regions of diluted liquid water content (e.g. Warner,
1969a).

Brenguier and Grabowski (1993) developed a model that
is useful for examining the impact of entrainment on droplet
spectra in LES of realistic clouds. When the effects of
small-scale turbulence are neglected, all droplets in a given
cloud volume are exposed to the same supersaturation,
which means that their surface growth rates are equal (a
consequence of (2)). In other words, the magnitude of
the droplet surface distribution, f (a2)da2, is changed by
condensation or evaporation but its shape is kept constant.
Assuming a given initial droplet spectrum after CCN
activation, f0(a2)da2, the droplet spectrum in any adiabatic
cell can thus be expressed as f (a2)da2 = f0(a2 − b2)da2,
where b2 is proportional to the integral of supersaturation
along the droplet trajectory. Mixing between grid boxes in
LES is accounted for by the pdf of b2, which is calculated
on an Eulerian grid. The b2 distribution in a given grid box
describes the proportion of droplets of different sizes which
have experienced the same amount of diffusional growth.
The results of a 2-D simulation of a cumulus cloud (see
Figures 6, 7 and 8 in Brenguier and Grabowski, 1993) show
a large variability of b2 distributions, with narrow ones in
the core of the updraught, while bimodal distributions with
a peak at low values of b2 reflect the impact of new CCN
activation on the droplet spectra. Note also that, while the
initial effects of entrainment are noticeable at the cloud edge,
they can also affect the core of the cloud when enveloped by
large eddies. Such Eulerian simulations illustrate the strong
constraints large-scale thermodynamics (at the LES grid
scale) impose on simulations of the small scales alone.

Problems with the comprehensive representation of
physical and thermodynamic processes in Eulerian LES
and cloud-resolving models (associated with both model
complexity and numerical aspects such as numerical
diffusion) have prompted an interest in Lagrangian methods
where some of these difficulties can be overcome. The
idea is to combine an Eulerian fluid-flow model with an
ensemble of Lagrangian fluid trajectories. Such methods
have been quite successful in explaining some aspects
of the impact of turbulence on cloud microphysics (see,
for example, the discussion in Stevens et al., 1996;
Feingold et al., 1998; Lasher-Trapp et al., 2005; Pinsky et al.,
2008b; Magaritz et al., 2009). However, the main problem

with such approaches is that, in a turbulent environment,
a fluid parcel loses its identity relatively quickly. If the
fluid parcel is assumed to have spatial extent l, then such
a parcel can keep its identity up to approximately time
tl given by tl ∼ (l2/ε)1/3. Taking l ∼ 10 m and ε ∼ 10
cm2 s3–reasonable choices for atmospheric boundary layer
flows–one gets tl ∼ 1 min. It follows that results from
such models need to be treated with much caution unless
interactions among the parcels are explicitly included, which
is typically not the case. Recently, a different Lagrangian
approach was developed, with the focus not on air parcels
but on particles carried by the flow such as cloud droplets. In
such an approach, the Eulerian fluid flow model is coupled
to the Lagrangian representation of the thermodynamics
(see, for example, Andrejczuk et al., 2008, 2010; Shima et al.,
2009). This approach is in the spirit of the pseudo-LES
simulations presented in Lanotte et al. (2009) and discussed
in section 4.1.3.

5.1. Homogeneous and inhomogeneous mixing

Airborne observations (e.g. Warner, 1955, 1969a, 1969b,
Blyth et al., 1988; Gerber et al., 2005, 2008; Burnet and
Brenguier, 2007; Haman et al., 2007) tend to show that
stratocumulus is only slightly diluted by entrainment,
whereas cumulus is much more strongly diluted. In cumulus
clouds the droplet number concentration is less reduced
by entrainment than the liquid water content because
the majority of droplets exhibit some evaporation. In
stratocumulus, on the other hand, entrainment dilutes the
droplet number concentration and the liquid water content
by a similar amount, while the size of the droplets is relatively
unaffected compared with cumulus clouds (e.g. Burnet and
Brenguier, 2007).

Latham and Reed (1977), Baker and Latham (1979) and
Baker et al. (1980) characterized mixing in terms of the
relative time-scales of droplet evaporation and turbulent
homogenization of a given control volume. If the length
scale of the control volume lies within the inertial subrange
of turbulence, then the ratio of these two time scales is
the Damköhler number introduced in section 4.1. When
Da � 1, thermodynamic changes to the droplets occur on
faster time-scales than any turbulent mixing and the mixing
is said to be inhomogeneous. In this case, evaporation does
not occur uniformly throughout the control volume and a
fraction of the droplets in part of the control volume may
evaporate completely, whereas other droplets are unaffected
by thermodynamic changes. In the inhomogeneous limit,
sometimes referred to as extreme inhomogeneous mixing,
the number of droplets decreases but their size remains
fixed. When Da  1, the turbulent mixing of droplets takes
place on a faster time-scale than thermodynamic changes
to the droplets and the mixing is said to be homogeneous.
In this case the rate of droplet evaporation is the same
for all droplets and so the number of droplets remains
constant (but not their density, n, which decreases with
dilution) but their mean size decreases. The choice of control
volume clearly determines the turbulent mixing time-scale
and hence the degree to which mixing is homogeneous or
inhomogeneous, a point we return to below. A further factor
concerns the point in the evolution of the cloud at which the
measurements are taken: intuitively one may expect mixing
to become more inhomogeneous as the cloud becomes less
vigorous.
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Figure 3. Schematic example of a mixing diagram. The horizontal
dashed line indicates inhomogeneous mixing and the solid lines indicate
homogeneous mixing for different relative humidities (saturation deficits)
of the entrained air. The suffix a refers to adiabatic values and d is the
droplet diameter.

As the liquid water content is proportional to na3, the
microphysical properties of mixing can be examined on
a mixing diagram as shown schematically in Figure 3, in
which the abscissa is n and the ordinate is proportional
to the mean droplet volume, both normalized by their
respective adiabatic values (Burnet and Brenguier, 2007).
The inhomogeneous limit then appears as a horizontal line
on this diagram, while homogeneous mixing is represented
by curved lines for different values of the relative humidity, or
saturation deficit (negative s), of the entrained air (note that
the final mixture returns to equilibrium i.e. s = 0). Different
points along these lines represent different fractions of
entrained and cloudy air (lines of constant mass fraction
of cloudy air would appear as vertical lines on the mixing
diagram in Figure 3; see also Figures 1 and 2 of Burnet
and Brenguier, 2007). When the entrained air is close to
saturation, i.e. for relative humidities greater than 90%,
there is almost no difference between homogeneous and
inhomogeneous mixing (except when n/na is small).

Lehmann et al. (2009) argue that the classification of
mixing in terms of a single Damköhler number may be
ambiguous since there is no a priori reason to fix a mixing
length scale and hence τr. As turbulence consists of a
spectrum of eddy sizes, in any given cloud the mixing
could be inhomogeneous at some scales and homogeneous
at other scales. Since τs � 10 s, mixing at scales greater than
several metres will be inhomogeneous but not necessarily

at centimetre scales. A length scale, lc = ε1/2τ
3/2
s , can

be defined (Baker et al., 1980; Lehmann et al., 2009)
at which there is a transition from inhomogeneous
to homogeneous mixing (i.e. Da = 1). Observations of
cumulus by Lehmann et al. (2009) show that there are
regions of high ε where the transition length scale is greater
than 10 cm. Entrainment leads to a decrease in buoyancy
of the cloud, which in turn decreases ε. Hence the mixing
time-scale increases and lc decreases, implying that mixing
is more likely to be inhomogeneous. However, there is
some evidence (e.g. Siebert et al., 2006a, 2006b) that ε is
higher around the cloud edges than in the cloud core,
perhaps as a result of the initial entrainment, which would
suggest that lc is larger near the cloud edge (leading to
a greater prevalence of homogeneous mixing). In general,
though, one would expect that over a sufficiently long time

period ε would decrease as a result of mixing. The type of
mixing near the cloud edge also depends on the amount of
dilution of the cloud due to entrainment of dry air, with the
mixing in cumulus being homogeneous when the dilution
is low but becoming more inhomogeneous as the dilution
increases (Burnet and Brenguier, 2007). Comparisons of
stratocumulus and cumulus by Burnet and Brenguier (2007)
(in which the turbulent homogenization time-scale, τr, and
the evaporation time-scale, τe are calculated for a length
scale of 10 m) show that mixing in stratocumulus appears
more inhomogeneous than in cumulus: values of ε tend to
be lower in stratocumulus compared with cumulus, hence
the value of lc is, on average, smaller in stratocumulus than
in cumulus, which explains why inhomogeneous mixing is
more likely in stratocumulus compared with cumulus.

Lasher-Trapp et al. (2005) considered the effect of
entrainment on the droplet size distribution in LES of a
cumulus cloud. They used a Lagrangian stochastic model
(which introduces subgrid variability) to calculate the
trajectories of fluid particles along which they calculated
the supersaturation, which in turn was used to calculate
the growth of cloud droplets. Droplet size distributions
at a given location in the cloud were calculated from an
ensemble of trajectories reaching that point. Their model
allowed for explicit variation of the degree to which mixing
was assumed to be homogeneous or inhomogeneous (see
equations (7) and (9) in Lasher-Trapp et al. (2005) and
the attendant discussion for details). They found that
for purely homogeneous mixing (see Figure 6 of Lasher-
Trapp et al., 2005) entrainment led to a broadening of
the droplet size distribution near the cloud top, with
a peak occurring at a value of a several microns larger
than for a control simulation with adiabatic ascent alone
(no entrainment). As the degree to which the mixing
became more inhomogeneous, so the number of smaller
droplets increased with a bimodal structure emerging
for 20% inhomogeneous mixing (see Figure 7 of Lasher-
Trapp et al., 2005). For 100% inhomogeneous mixing the
dominant mode occurs at a value of a several microns
smaller than both the homogeneous and adiabatic cases.
Lasher-Trapp et al. (2005) attribute this to the dominance
of entrained CCN rather than droplets formed at cloud
base. The importance of entrainment in broadening the
droplet size distribution can be appreciated by comparing
the droplet size distribution at a central point in the
cloud early in its evolution, which is close to its adiabatic
form, with a droplet size distribution near the cloud top
(which exhibits significant broadening). However, Lasher-
Trapp et al. (2005) do not consider particle inertia or
sedimentation in their simulations. Moreover, their method
does not account for mixing between different Lagrangian
particle trajectories except at the end point (each particle is
treated independently of the other particles) and so a droplet
may experience a more favourable environment for growth
than would otherwise be the case if mixing were allowed.
Hence, as Lasher-Trapp et al. (2005) acknowledge, their
method can produce an overestimation of droplet spectra
broadening.

Homogeneous and inhomogeneous mixing has also been
studied in DNS (e.g. Andrejcuk et al., 2004, 2006, 2009;
Malinowski et al., 2008) and using pdf methods (Jeffery
and Reisner, 2006; Jeffery, 2007). From DNS of cloud–clear
air interfacial mixing with a range of initial kinetic energy
levels, mixing fractions of cloudy and clear air, relative
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humidities and droplet sizes, Andrejczuk et al. (2009) found
a strong correlation between the instantaneous value of Da
and the instantaneous rate of change of the droplet number
concentration with droplet volume. Andrejczuk et al. (2009)
observe a power law scaling when they plot dn/da3,
the gradient on the mixing diagram in Figure 3, against
Da (see Figure 2 in Andrejczuk et al., 2009). They find
that the range of Da for which the power law scaling
holds best is similar to the range for which the model
of cloud front evaporation by Jeffrey and Reisner (2006)
predicts the maximum correlation (magnitude) between
subsaturation and droplet concentration at the cloud front.
For Da ≈ 5, Jeffery (2007) predicts that mixing changes
from inhomogeneous to homogeneous which is similar in
magnitude to the transition value of Da for the DNS results
of Andrejczuk et al. (2009).

5.2. Mechanisms for entrainment in clouds

Bulk (average) modelling of the effects of condensation
and evaporation is commonplace in cloud-resolving models
where the typical resolution may be tens or hundreds of
metres. In this approach, the change in the amount of
water vapour due to condensation or evaporation is equal
to the amount required to maintain exact saturation over
the model grid box. However, this approach neglects the
possibility that a grid box whose mean water vapour mixing
ratio is saturated or supersaturated may have filaments of
strongly subsaturated air at subgrid scales as a result of
entrainment.

The entrainment process proceeds first by the engulfment
of dry air by the turbulent cloud which, through the
action of turbulence, gradually forms filaments of dry and
cloudy air and finally homogenizes the mixture when the
filaments approach the Kolmogorov scale. As discussed in
the previous subsection, homogenization does not occur
instantaneously and the time-scale on which it occurs is
important because evaporative cooling may lead to buoyancy
reversal. Since observations suggest that mixing in cumulus
clouds is more homogeneous than in stratocumulus, the
mixing (filamentation) process takes place more rapidly
in cumulus than in stratocumulus. The modelling of the
entrainment process has been considered in the context of
linear-eddy models by Krueger (1993), Krueger et al. (1997)
and Su et al. (1998). These studies highlight the importance
of small-scale mixing: a broader droplet spectrum and larger
droplet formation occurred for mixing on a finite time-
scale compared with instantaneous mixing, which produced
narrow spectra. Su et al. (1998) found that the limiting
case of mixing by molecular diffusion alone produced
the broadest spectra. In the context of LES, a subgrid
model for filamentation has been developed by Grabowski
(2007) and Jarecka et al. (2009) drawing on developments
in combustion modelling.

Grabowski (2007) proposed an advection–diffusion
equation for the length scale, λ, of a filament based on the
similarity arguments of Broadwell and Breidenthal (1982),
who suggested that filaments of a conserved scalar field
should obey

dλ

dt
= −αε1/3λ1/3, (15)

where α is a constant. The advection–diffusion equation
for λ includes a forcing term of the same form as the

right-hand side of (15) and a source–sink term which resets
λ to the grid scale or zero depending on whether cloudy
air forms as a result of grid-scale condensation, complete
evaporation of the grid-scale cloudy air occurs or there is
homogenization of a cloudy volume. The coupling of this
equation to the governing LES equations and the application
of this model to shallow cumulus shows a significant impact
on mean liquid water path, cloud depth and cloud water
content when the grid spacing is large (Grabowski, 2007).
This model was extended by Jarecka et al. (2009) to include
an advection–diffusion equation for the fraction of grid box
with cloudy air, β. The addition of a prognostic equation
for β did not result in significant changes to the mean
cloud properties but, by allowing a local diagnosis of the
homogeneity of the mixing process, does indicate a method
for predicting changes to the droplet size spectrum as a result
of entrainment. Grabowski (2007) noted a considerable
sensitivity to the value of α and, although theoretical
arguments based on linear-eddy modelling suggest that
α ≈ 1.8, more detailed simulations, especially DNS, are
required to provide a reliable estimate of this parameter.

The effect of off-source heating on entrainment in
a turbulent jet has been studied in both laboratory
experiments (e.g. Elavarasan et al., 1995; Bhat and
Narasimha, 1996; Agrawal and Prasad, 2004) and numerical
simulations (e.g. Basu and Narasimha, 1999; Agrawal et al.,
2004). Here, additional energy is injected into a well-
developed jet far from the source and over a finite streamwise
extent. The results indicate that off-source heating disrupts
the large-scale eddies and so decreases the entrainment rate.
However, the precise mechanisms are complicated and vary
within the region of off-source heating (Agrawal and Prasad,
2004). Since off-source heating may mimic latent heating,
these results have been used as a basis for explaining why
lateral entrainment rates in cumulus clouds have sometimes
been observed to be low. However, as pointed out in section
2.2.1, cumulus clouds are characterized by a descending
shell of negative buoyancy which could impact on the
entrainment rate.

The entrainment interfacial layer that characterizes the
top of stratocumulus clouds plays a similar role to the
descending shell in cumulus clouds. Although the dynamics
in the two cases may be very different, it suggests that a
layer containing air of more than one origin may play an
important role in entraining dry air into a cloud. It is also
a distinguishing feature of turbulent clouds that does not
occur in laboratory jets or plumes. A detailed study of the
cloud-top structure of stratocumulus by Moeng et al. (2005)
led to the question: where is the interface and which
interface should be considered as the interface through
which mixing occurs? These questions have been addressed
by Kurowski et al. (2009), who followed passive tracers
in LES of stratocumulus. Their simulations confirm the
existence of an entrainment interfacial layer and show
that only a small fraction of air undergoing mixing at
the cloud top, in proportions which are just right to produce
negative buoyancy, sinks down into the cloud layer. The
complexity of the mixing and entrainment processes at
the top of stratocumulus has motivated the application
of level-set methods used in the study of combustion
to study entrainment and mixing in idealized models of
stratocumulus. The level-set method is a computational
technique for tracking propagating interfaces, for which
the interface is described by a single non-reacting scalar
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equation (see, for example, Peters, 2000, sections 2.5–2.8).
An example of its application to the cloud–clear air interface
is described next.

Mellado et al. (2009) consider two unbounded fluids: a
warmer subsaturated fluid above a cooler supersaturated one
with gravity directed downwards and an advection–diffusion
equation for the mixture fraction. They characterize the
results of their two-dimensional simulations in terms
of a buoyancy reversal parameter, D, introduced by
Siems et al. (1990) and Shy and Breidenthal (1990) and
defined to be the ratio of maximum density change of
the mixture (relative to the lower fluid) to the density
difference of the unmixed fluids. Buoyancy reversal occurs
when D > 0 and a critical value for instability is thought
to be of order unity (Siems et al., 1990). Realistic cloud-
top conditions typically have D  1 and this limit is the
focus of Mellado et al. (2009). A linear stability analysis by
Mellado et al. (2009) leads naturally to the condition D > 0
required for buoyancy reversal and showed that the system
sustains an unstable mode. The authors provide another
interpretation of

√
D as the ratio of the time-scale of the

(equilibrium) restoring force of the density interface to the
time-scale of the unstable downdraught. Since D  1 the
system returns to equilibrium faster than a mixture with
negative buoyancy is able to descend; the turbulence within
the cloud is too weak to destabilize the inversion, which
could in turn break up the cloud layer and is consistent
with a large (convection-scale) Richardson number that
also increases with time. Three-dimensional simulations by
Mellado (2010) support these arguments: they find that
convoluted flow patterns can be generated by evaporative
cooling even for D  1 but that there is no enhanced
entrainment of upper fluid in the absence of shear. Indeed,
they find that the rate of mixing with the upper layer is
limited by the molecular diffusivity, which constrains the
rate at which a convective layer can develop below the
inversion. The simulations of Mellado (2010) show that
buoyancy reversal is a consequence of molecular mixing
with the upper layer, which in turn leads to a turbulent state
in the lower layer, but that buoyancy reversal alone does not
lead to the break-up of the inversion. Their results show that
the enhancement of turbulent mixing by evaporative cooling
is restricted to the lower layer. These results support earlier
results (e.g. Shy and Breidenthal, 1990; Siems et al., 1990)
that buoyancy reversal alone is not sufficient to destabilize
stratocumulus.

As mentioned at the beginning of this section,
entrainment is usually characterized as a three-stage
process in which the initial engulfment of dry air is
followed by a process of filamentation (stirring) and finally
diffusion or mixing at the viscous scale (e.g. Eckart,
1948; Dimotakis, 1986; Dimotakis, 2005). Entrainment
has also been characterized as ‘nibbling’: the diffusion
of irrotational ambient air into the turbulent fluid (e.g.
Corrsin and Kistler, 1955; Dimotakis, 1986). The terms
‘engulfment’ and ‘nibbling’ have also been used more loosely
to describe essentially large-scale or small-scale motions
respectively. Laboratory experiments (Westerweel et al.,
2009) and numerical simulations (Mathew and Basu,
2002) of entrainment by a turbulent jet both show that
the dominant process is nibbling rather than engulfing,
although neither the experiments nor the simulations had
the wide range of scales typical of real clouds. Because this
entrainment process extends only over a limited distance,

there is very little unmixed external fluid in the interior of the
jet (Westerweel et al., 2009). When additional turbulence is
generated within the plume or jet, such as would result from
latent heating, it has been speculated that engulfment may
become more important (Westerweel et al., 2009). Indeed,
dry air may penetrate the core of a cumulus cloud in so
far as this picture of entrainment and mixing in cumulus
is valid. In their laboratory experiments on mixing across
a density interface, Shy and Breidenthal (1990) note that
engulfment only occurs when D � 1.3, whereas nibbling is
apparently negligible in this case. For D < 1.3 the reverse is
true. The results of Mellado et al. (2009) appear to support
this finding, indicating that perhaps molecular diffusion is
the dominant mechanism for entrainment in stratocumulus
clouds (although ambient shear may change this picture).
The conceptual view of entrainment as either engulfment
or nibbling may be oversimplified but, in the context of
cumulus and stratocumulus, could merit further attention,
especially as there are indications that the dominant
entrainment processes differ in the two cloud types. Whether
entrainment is primarily engulfing or nibbling may impact
on the nature of the mixing process and the droplet size
distribution, particularly how far broadening of the droplet
size distribution by entrainment extends into the core of
cumulus clouds or well below the top of stratocumulus.

6. Conclusions

This survey has shown that turbulence plays a significant and
widespread role in the process of cloud formation. Clouds
are an example of a naturally occurring turbulent multiphase
flow: warm clouds are a turbulent suspension of droplets
that exhibit strong aerodynamic and thermodynamic inter-
phase couplings (Bodenschatz et al., 2010). They share
many similarities with other geophysical and engineering
flows, yet also differences that need to be appreciated
when extrapolating the results of simplified models to
real clouds. The importance of sedimentation is an
obvious example, as is the importance of latent heating
in cloud dynamics. Nevertheless, this survey has shown
that significant improvements in the understanding of
cloud processes can be made by studying relatively simple
models even if they do not capture all aspects of clouds.
Despite the obvious difficulties, much progress has been
made theoretically in recent years, such as a derivation of
the collision kernel for finite St. However, it remains a
formidable challenge to extend these approaches to more
realistic situations, even just the anisotropy introduced by
gravity. Similarly, as remarked by Khain et al. (2007), a
rigorous averaging of the stochastic coalescence equation
that takes into account differential sedimentation remains
an open problem. It is thus likely that numerical simulations
and laboratory experiments will offer much valuable insight
in the foreseeable future.

DNS has been used extensively to study cloud-like
processes despite its limited range of scales. By focusing
on parameter ranges which are relevant to clouds, such
as appropriate values of ε and bidisperse suspensions of
droplets, it has been possible, for example, to deduce the
relative contributions to the turbulent enhancement of the
collision kernel from the relative velocity of the droplets,
droplet clustering and collision efficiency. Of course, the
extension of these models to higher Reynolds numbers
is not guaranteed since the range of relevant values of
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parameters such as St and Sv may grow. This highlights
the lack of a theoretical framework for constructing the
Rλ-dependence of the turbulent collision kernel and makes
it difficult to assess the validity of parametrizations derived
from DNS particularly when used in more realistic models
of clouds such as LES. These limitations mean that the effects
of turbulence on cloud formation, such as the importance
of droplet clustering, are likely to remain controversial
for some time to come. The lack of observations of
real clouds at the smallest scales that can simultaneously
measure the statistics of the flow (turbulence), the scalar
fields (thermodynamics) and the droplets (microphysics)
compounds these limitations. However, recent observations
at centimetre scales and the 3-D statistics that can be
obtained with holographic cameras offer grounds for
encouragement.

This survey indicates many areas where there is scope for
further simulations and laboratory experiments: a wider
range of St, Sv and Frp values should be considered
as computers become more powerful and laboratory
experiments improve. The relative importance of local
versus long-range effects is still uncertain: more research
is required on the role of caustics, particularly their
Reynolds number dependence, and there is scope for
developing parametrizations of the collision kernel that
combine both these effects. As discussed in this survey, there
still remains much debate over the relative importance of
processes such as entrainment and mixing and the small-
scale processes that affect the turbulent collision kernel. An
example of the potential complexity was remarked upon by
Lehmann et al. (2007): the higher dissipation rates that are
typically found at cloud edges could increase the collision
rate via enhanced clustering because of higher values of St at
the same time as entrainment reduces the droplet number
density and hence the collision rate. However, the processes
involved are not necessarily competing since mixing due
to entrainment is associated with the inertial subrange of
turbulence, whereas droplet clustering as discussed in section
4.2.2.2 is associated with the viscous dissipation range (with
the caveat mentioned throughout this survey that all scales
of turbulence affect the statistics of even the smallest scales).
Nevertheless, there is much scope here for a range of studies
from DNS of idealized interfacial flows with and without
droplets to LES with refined subgrid models of droplet
microphysics. Such simulations may be expensive now but
increasing computer power will make them more feasible in
the future.

In this survey, we have reviewed the very diverse processes
that contribute to droplet growth and rain formation in
warm clouds, from the cloud scale to the microscale. These
concepts and theories have been developed to explain
how convective clouds can precipitate in a short time.
Surprisingly, the time it takes for a cloud to precipitate
is one of the least certain parameters in cloud physics.
Observations are common with cloud radars, but clouds only
start to become visible with a radar once a few raindrops
have already formed. Innovative strategies are needed to
detect clouds at their inception and to follow them until
precipitation starts in order to quantitatively assess the
ubiquitous, though unclear, statement that warm clouds are
precipitating faster than expected.
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List of principal symbols

a Droplet radius
f Droplet size distribution or spectral density function

g12 Radial distribution function
n Droplet number concentration per unit volume
rc Collision radius: rc = a1 + a2

s Supersaturation
sqe Quasi-equilibrium value of s

u Velocity of air
vp Droplet velocity
w Vertical component of u

wr Longitudinal relative velocity component of two
droplets

Da Damköhler number: Da = τr/τs

E12 Collision efficiency
Frf Froude number of fluid: Frf = v2

η/(gη)

Frp Froude number of particle: Frp = St3/Fr2
f

N12 Geometric collision rate per unit volume
Rλ Taylor-scale Reynolds number
St Stokes number: St = τp/τη

Sv Non-dimensional terminal velocity:
Sv = vT/vη = τη/τv

vT Droplet terminal velocity: vT = gτp

vη Kolmogorov velocity scale
ε Mean kinetic energy dissipation rate
η Kolmogorov length scale

ρa Density of air
ρw Density of liquid water
τp Droplet response time
τr Time-scale of a turbulent eddy of scale r: τr ∼

r2/3/ε1/3

τη Kolmogorov time-scale
τs Phase relaxation time-scale
τv Sedimentation time-scale

�12 Collision kernel
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