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a b s t r a c t 

Accurate simulations of moving particles in a viscous flow require an adequate grid resolution near the 

surface of a moving particle. Within the framework of the lattice Boltzmann approach, inadequate grid 

resolution could also lead to numerical instability and large fluctuations of the computed hydrodynamic 

force and torque. Here we explore the use of local grid refinement around a moving particle to improve 

the simulation results using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). We 

first re-examine the necessary relationships, within MRT LBM, between the relaxation parameters and 

the distribution functions on the coarse and fine grids, in order to meet the physical requirements of 

the fluid hydrodynamics.We also propose additional relationships based on the Chapman–Enskog multi- 

scaling analysis. Several aspects of the implementation details are discussed, including the treatment of 

interface buffer nodes, the method to transfer information between the coarse domain and fine domain, 

and the computation of macroscopic variables including stress components. Our approach is then ap- 

plied in two numerical tests to demonstrate that the local grid refinement can significantly improve the 

physical results with a high computational efficiency. We compare simulation results from three grid con- 

figurations: a uniformly coarse grid, a uniformly coarse grid with local refinement, and a uniformly fine 

grid. For the lid-driven cavity flow, the local refinement essentially yields a local flow field that is com- 

parable to the use of uniformly fine grid, but with much less computational cost. In the Couette flow 

with a moving cylinder, the local refinement suppresses the level of force fluctuations. In these tests, the 

stress profiles are carefully examined to help illustrate the benefits of local grid refinement. We also con- 

firm that the coarse-fine grid relationships between the non-equilibrium moments of energy square and 

energy fluxes do not affect the simulation results. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As a highly efficient and capable mesoscopic computational

method, the lattice Boltzmann method (LBM) [1–4] has been

widely employed to solve a variety of fluid dynamics problems. The

standard LBM describes the fluid as made up by imaginative ele-

ments which can stream along a uniform lattice grid and collide

with one another only at lattice nodes. The method solves a quasi-

linear collision-streaming equation for a set of distribution func-

tions associated with discrete microscopic velocities. The macro-
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copic hydrodynamic variables such as pressure and velocity are

btained by taking the moments of the distribution functions. 

One of the popular LBM schemes is based on the single re-

axation time approach ( i.e. , Bhatnagar-Gross-Krook collision op-

rator [5] ), which is known as the LBGK model. Another popular

cheme is based on the multiple-relaxation-time (MRT) collision

odel [6,7] . The MRT collision is performed in the moment space

ith different moments relaxing at different rates. By decomposing

he particle relaxation process into several independent relaxation

rocesses, the MRT model has been shown to not only improve the

omputational stability but also the accuracy [6–8] . 

In order to obtain accurate macroscopic quantities, such as force

nd torque acting on a solid particle or the boundary, small grid

pacing is needed near the solid particle or a boundary. Away

rom the boundary or fluid-solid interfaces, the flow may be more

moother so a coarser grid is adequate to resolve the flow. The
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ost efficient approach in terms of both memory and overall accu-

acy is thus to use a coarse grid for most of the bulk flow region,

ombined with a local grid refinement near a fluid-solid interface

r wall boundary. 

Within the LBGK model, local grid refinement has been con-

idered for some time to simulate incompressible viscous flows

ith complex geometries. Filippova and Hanel [9] was among the

rst to consider patching certain regions with a fine grid in a

omain mostly covered by a coarse grid, values of the distribu-

ion functions on the coarse grid which are coming from the fine

atches are calculated on the nodes common to both grids. Filip-

ova and Hanel [10] presented an accelerated implementation of

rid refinement by using different particle speeds on the coarse

nd fine grids. A smaller time step size was used on the fine

rid while the spatial or temporal accuracy was kept. Steady-state

nd time-dependent problems were studied and the CPU time per

ime step was reduced by about 50% relative to the results com-

uted by the standard LBM. Yu et al. [11] proposed a multi-block

echnique with the LBGK model. Different mesh sizes are used

or different blocks that do not overlap. Macro-variables such as

ass, momentum, and stress components are assumed to be con-

inuous across the block-block interface, and this condition deter-

ines the relaxation parameters in the fine domain. The cubic

pline scheme was used for spatial interpolation and the three-

oint Lagrangian formula was used for temporal interpolation on

ll nodes at the fine block boundary after the distribution func-

ions are transferred from the coarse domain to the fine domain.

u and Girimaji [12] extended their approach to 3D using the LBGK

odel. Two 3D test cases, an isotropic decaying turbulence and a

id-driven cavity flow, were presented to show the improved com-

utational efficiency. Farhat and Lee [13] was the first to suggest

 migrating multi-block scheme to combine with the Gunstensen

odel for immiscible mixtures in 2D geometries. A fine grid block

overed the entire fluid interface and was allowed to migrate by

racking the center of mass of the body. The upstream and down-

tream coarse blocks are separated by the fine block. After the

ne domain shifted, extrapolation was used to compute the vari-

bles at all the newly created fine and coarse nodes as well as the

ld diminishing coarse nodes. Two benchmark simulations, namely,

ingle phase flow around an asymmetrically placed cylinder in a

hannel and the motion of a neutrally buoyant drop in a parabolic

ow, were simulated to validate their model. 

A more general and efficient approach is adaptive grid refine-

ent, where the computational grid is modified dynamically, with

s many refinement levels as needed and each level can be of arbi-

rary shape. Typically, a physical criterion is applied to determine

hether a local grid cell should be refined further or can be coars-

ned. An early example of adaptive grid refinement applied within

BGK is the study of Crouse et al. [14] in which they used a lo-

al divergence sensor to dynamically adjust the local grid spacing.

itel-Amor et al. [15] introduced a cell-centered lattice structure to

econstruct the pre-collision distribution functions via spatial in-

erpolation in LBGK model. They showed that, with hierarchically

efined meshes, each cell can be refined or coarsened regardless

f the refinement level of neighbor cells. Lagrava [16] introduced

 decimation technique to guarantee the stability of the numeri-

al scheme especially at high flow Reynolds number when the in-

ormation is transferred from the coarse nodes to the fine nodes.

ietzel and Sommerfeld [17] calculated flow resistance over ag-

lomerates with different morphology through LBGK local grid re-

nement. They slightly overlapped the coarse and fine regions and

esigned a method to communicate the distribution functions be-

ween the two grids at the interface. Premnath et al. [18] presented

 staggered mesh arrangement in large-eddy simulation of a com-

lex turbulent separated flow, using the MRT D3Q19 model. Sub-

rid scale model was employed in conjunction with the MRT to
ugment the relaxation time scales of hydrodynamic modes, in or-

er to represent the effect of subgrid scale fluid motion. 

One of the first attempts to implement local grid refinement

ithin MRT was performed by Peng et al. [19] using the D2Q9

odel, where they related the distribution functions and relaxation

arameters in the two domains based on the continuity of macro-

ariables at the coarse-fine interface. The method to communi-

ate distributions functions between the two domains was derived.

hey used lid-driven cavity flow, steady and unsteady flows past

 circular cylinder, and flow over an airfoil to validate their ap-

roach. As will be shown later in this paper, their implementation

as not fully consistent since they did not explicitly consider the

elationship of energy relaxation parameters between the fine and

oarse domains. Geller et al. [20,21] considered local grid refine-

ent within MRT and they noted that only the two stress mo-

ents in the D2Q9 model between the two grid levels need to be

roperly rescaled, while other relaxation times can be made flexi-

le. They considered pre-collision rescaling in 2D. The same group

ater extended local grid refinement to 3D LBM-MRT models under

he same strategy in order to simulate multi-phase flow with de-

ormable interfaces [22] , or to perform large-eddy simulations of a

urbulent flow around a sphere in a channel [23] or a turbulent jet

ow [24] . The rescaling in these papers was also performed before

ollision. Grid refinements using MRT have also been considered in

nother recent study [25] , without a careful consideration of the

ull flexibility in MRT to relate the distribution functions on fine

nd coarse grids.A shifting discontinuous-grid-block lattice Boltz-

ann method for moving boundary simulations using MRT model

as recently reported by Arora et al. [26] , where the fine domain

oves with the moving body. Three simulation cases, namely, a

ylinder in a shear flow, a single wing employing ’clap and fling’

otion, and rigid plunging flat plate, are presented to show the

ccuracy of their model. 

The above literature survey indicates that there are two gen-

ral ways of communicating the distribution functions at the fine-

oarse domain interface, namely, post-collision rescaling and pre-

ollision rescaling [9,19] . The connection of the rescaling process to

he Chapman-Enskog expansion for the MRT model has not been

ully explored. Our first objective is to re-examine the details of

oupling the distribution functions and model parameters between

he fine and course grids within the MRT framework. Our second

bjective is to test local grid refinement in moving particle simula-

ion. In Section 2 , a brief background description of the D2Q9 MRT

odel is provided. Details of local grid refinement implementation

re discussed in Section 3 , together with the development of re-

ationships between the course and fine grid. Our implementation

ollows in spirit the previous studies of Tölke et al. [20,22] . Neces-

ary interpolation details at the coarse-fine interface are presented

n Section 4 . In section 5 , we then validate our methodology us-

ng 2D lid-driven cavity flow, and a Couette flow with a fixed or

 moving cylinder. In the case of the moving cylinder, the refined

egion also moves with the cylinder. Test results demonstrate that

ocal grid refinement indeed improves the accuracy in the moving

article simulation. We also compare CPU time and memory con-

umption when different grid arrangements (e.g., hybrid coarse /

ne grid versus uniformly fine) are used. Key conclusions are sum-

arized in Section 6 . 

. The multiple-relaxation-time lattice Boltzmann method 

In this section, we briefly introduce the multiple-relaxation-

ime (MRT) lattice Boltzmann method (LBM) in order to prepare

or the discussions on the local grid refinement. The detailed de-

cription of MRT LBM can be found in [6,7] . 
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Fig. 1. The D2Q9 model with nine discrete velocities on two dimensional square 

lattice. 
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Specifically the D2Q9 model [27,28] is considered ( Fig. 1 ), with

discrete velocities given by: 

e i = 

{
( 0 , 0 ) ( 1 , 0 ) ( 0 , 1 ) ( −1 , 0 ) ( 0 , −1 ) 
( 1 , 1 ) ( −1 , 1 ) ( −1 , −1 ) ( 1 , −1 ) 

}
c. (1)

where i = 0 , 1 , 2 , . . . , 8 , c = δx/δt . All variables are given in lattice

units such that c = 1 . The MRT LBM evolution equation [6,7] can

be written as 

f ( x + e i δt, t + δt ) = f ( x , t ) − M 

−1 S [ m − m 

eq ] . (2)

where f is a vector representing a set of distribution functions de-

fined at a lattice node, m represents a set of independent mo-

ments, m 

eq is the equilibrium of m , M is an orthogonal transfor-

mation matrix that transforms f into m 

m = Mf , f = M 

−1 m . (3)

The macroscopic hydrodynamic variables, including density ρ ,

velocity u = 

(
u x , u y 

)
, and pressure p are obtained from the mo-

ments of the mesoscopic distribution function f . We use the nearly

incompressible formulation [6] , namely, the density is partitioned

as ρ = ρ0 + δρ with ρ0 = 1 , and δρ = 

∑ 

i f i , ρ0 u = 

∑ 

i f i e i , and

p = δρc 2 s , where c s = 1 / 
√ 

3 is the model speed of sound. For the

D2Q9 MRT model, other moments and the transformation matrix

are designed as 

m = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ρ

e 

ε 

j x 

q x 

j y 

q y 

p xx 

p xy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 1 1 1 1 

−4 −1 −1 −1 −1 2 2 2 2 

4 −2 −2 −2 −2 1 1 1 1 

0 1 0 −1 0 1 −1 −1 1 

0 −2 0 2 0 1 −1 −1 1 

0 0 1 0 −1 1 1 −1 −1 

0 0 −2 0 2 1 1 −1 −1 

0 1 −1 1 −1 0 0 0 0 

0 0 0 0 0 1 −1 1 −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 0 

f 1 

f 2 

f 3 

f 4 

f 5 

f 6 

f 7 

f 8 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. (4)

The three hydrodynamic moments, ρ, j x = ρ0 u x , j y = ρ0 u y , are lo-

cally conserved. The other six moments are not conserved, they are
nergy e , energy square ε, energy flux in x and y directions q x and

 y , normal stress p xx , and shear stress p xy . These non-conserved

oments are relaxed as follows ˜ e = e − S e ( e − e eq ) ˜ ε = ε − S ε ( ε − ε eq ) ˜ q x = q x − S q (q x − q eq 
x ) ˜ q y = q y − S q (q y − q eq 
y ) ˜ p xx = p xx − S ν (p xx − p eq 

xx ) ˜ p xy = p xy − S ν (p xy − p eq 
xy ) , (5)

here the symbol ∼ denotes the post-collision value. The equilib-

ium values of the non-conserved moments are designed to match

he Euler and Navier-Stokes equation through the Chapman–

nskog analysis, and the results are 

e eq = −2 δρ + 3 ρ0 u 

2 

ε eq = δρ − 3 ρ0 u 

2 

q eq 
x = −ρ0 u x 

q eq 
y = −ρ0 u y 

p eq 
xx = ρ0 

(
u 

2 
x − u 

2 
y 

)
p eq 

xy = ρ0 u x u y , (6)

here u 2 = u 2 x + u 2 y . While the equilibrium ε eq plays no role in the

avier-Stokes equation and thus its form can be flexible, the spe-

ific form stated above leads to the standard f eq = M 

−1 m 

eq as 

f eq 
i 

= w i 

{
δρ + ρ0 

[
e i · u 

c 2 s 

+ 

( e i · u ) 
2 

2 c 4 s 

− u · u 

2 c 2 s 

]}
. (7)

here the weighting coefficient w i is given as 

 0 = 

4 

9 

, w i = 

1 

9 

(i = 1 , 2 , 3 , 4) , w i = 

1 

36 

( i = 5 , 6 , 7 , 8 ) . (8)

It follows that the diagonal relaxation matrix S is 

 = Diag 
[

0 S e S ε 0 S q 0 S q S ν S ν
]
. (9)

The shear viscosity and bulk viscosity in the MRT model can be

erived from the Chapman–Enskog analysis as 

ν = c 2 s 

(
1 

S ν
− 0 . 5 

)
δt 

ξ = c 2 s 

(
1 

S e 
− 0 . 5 

)
δt. 

(10)

The evolution equation for f can be divided into two sub-steps:

ollision and streaming, as 

 

 ( x , t ) = f ( x , t ) − M 

−1 S [ m − m 

eq ] , (11)

 ( x + e i δt, t + δt ) = ̃

 f ( x , t ) . (12)

In summary, the key features of the MRT model is that colli-

ion is performed in moment space, and streaming occurs in dis-

rete velocity space. The two relaxation times S ν and S e determine

he shear and bulk viscosity , the other two relaxation parameters

 q and S ε may be viewed as free parameters that can be used to

mprove the accuracy of boundary conditions or to enhance nu-

erical stability [6] . 

. Implementation of local grid refinement in MRT LBM 

Without loss of generality, we consider a local fine-grid domain

urrounded by a coarse grid, as shown in Fig. 2 In the sketch, the

oundary of the coarse domain is defined by ABCDA and that of the

ne grid domain by KLMNK , without any overlap. However, to fa-

ilitate implementation and information transfer between the two
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Fig. 2. Grids structure with different space size in coarse and fine block. 
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rids, we add a buffer layer EFGHE to the coarse domain, which

s located inside the fine domain, the corresponding coarse grid

odes are referred to as the coarse interface nodes. Likewise, a

uffer layer for the fine domain, which coincides with the bound-

ry of the coarse domain are used to define additional popula-

ions for the fine domain, which consists of fine interface nodes

those coinciding with the coarse boundary nodes) and hanging

odes (those placed in-between the coarse boundary nodes). The

uffer layers are used to supply necessary information so that, af-

er streaming, all populations on the fine-grid nodes and coarse-

rid nodes are available. This arrangement followed the work of

17] . 

As a multi-block scheme [9] , the fine domain has a grid spacing

f δx f and the coarse domain has a grid spacing of δx c . The size

atio 

 = 

δx c 

δx f 
= 

δt c 

δt f 
(13) 

s assumed to be an integer, where the superscript c and f denote

he related variables located in coarse domain and fine domain.

he sketch shown in Fig. 2 has n = 2 . The time steps for the coarse

nd fine grids, δt c and δt f , are defined such that the streaming in

ach domain shifts a particle from a lattice grid node to a neigh-

oring node. By this setting, the lattice velocity unit in the two

omains are the same, namely, δx c /δt c = δx f /δt f . This also implies

hat the speed of sound and the transformation matrix are all iden-

ical for the two domains. 

The first physical requirement is that the hydrodynamic vari-

bles δρ , u x , u y must be continuous across the domain interface,

e must have δρ f = δρc , j 
f 
x = j c x , and j 

f 
y = j c y . All equilibrium mo-

ents defined on the two grids must be the same, namely, m 

eq, f =
 

eq,c . We only need to determine the relationships between the

on-equilibrium parts of the non-conservative moments. 

The second physical requirement is that the physical shear vis-

osity and bulk viscosity should be the same in the two domains,

eading to 

 

2 
s 

(
1 

S c ν
− 0 . 5 

)
δt c = c 2 s 

(
1 

S f ν
− 0 . 5 

)
δt f , (14)

 

2 
s 

(
1 

S c e 

− 0 . 5 

)
δt c = c 2 s 

(
1 

S f e 

− 0 . 5 

)
δt f . (15)

amely, the relaxation parameters for the fine domain should be

elated to those in the coarse domain as 

1 

S f ν
= 0 . 5 + n 

(
1 

S c ν
− 0 . 5 

)
, (16)
1 

S f e 

= 0 . 5 + n 

(
1 

S c e 

− 0 . 5 

)
. (17)

he third physical requirement is that the normal and shear stress

omponents should be the same at the domain interface. The

hapman–Enskog analysis states that 

τxx = −1 

6 

( 1 − 0 . 5 S e ) e 
neq − 1 

2 

( 1 − 0 . 5 S ν ) p 
neq 
xx 

yy = −1 

6 

( 1 − 0 . 5 S e ) e 
neq + 

1 

2 

( 1 − 0 . 5 S ν ) p 
neq 
xx 

τxy = −( 1 − 0 . 5 S ν ) p 
neq 
xy . (18) 

ere we demand the total normal stress components be continu-

us, to be more consistent with the hydrodynamics. Therefore, 

1 

6 

( 1 − 0 . 5 S c e ) e 
neq,c − 1 

2 

( 1 − 0 . 5 S c ν ) p 
neq,c 
xx 

= − 1 

6 

(
1 − 0 . 5 S f e 

)
e neq, f − 1 

2 

(
1 − 0 . 5 S f ν

)
p neq, f 

xx , (19) 

1 

6 

( 1 − 0 . 5 S c e ) e 
neq,c + 

1 

2 

( 1 − 0 . 5 S c ν ) p 
neq,c 
xx 

= − 1 

6 

(
1 − 0 . 5 S f e 

)
e neq, f + 

1 

2 

(
1 − 0 . 5 S f ν

)
p neq, f 

xx , (20) 

( 1 − 0 . 5 S c ν ) p 
neq,c 
xy = −

(
1 − 0 . 5 S f ν

)
p neq, f 

xy . (21) 

olving these three equations and in view of the conditions given

y Eqs. (16) and (17) , we obtain the following relationships be-

ween three non-equilibrium moments in the two domains, as 

 

neq, f = 

S c e 

nS f e 

e neq,c , p neq, f 
xx = 

S c ν

nS f ν
p neq,c 

xx , p neq, f 
xy = 

S c ν

nS f ν
p neq,c 

xy . (22)

or the three remaining non-equilibrium moments: energy square

nd two energy flux components, the Chapman–Enskog analysis

hows that 

 t1 

(
δρ − 3 ρ0 u 

2 
)

+ ∂ 1 x ( −ρ0 u x ) + ∂ 1 y ( −ρ0 u y ) = −S ε ε neq 

dt 
, (23)

 t1 ( −ρ0 u x ) + ∂ 1 x 
(
−1 + 6 u 

2 
y − 3 u 

2 
)

+ ∂ 1 y ( ρ0 u x u y ) = −S q q 
neq 
x 

dt 
, 

(24) 

 t1 ( −ρ0 u y ) + ∂ 1 x ( ρ0 u x u y ) + ∂ 1 y 
(
−1 + 6 u 

2 
x − 3 u 

2 
)
= −S q q 

neq 
y 

dt 
. (25)
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The left hand sides involve only the hydrodynamic variables and

should be the same when defined on the two grids, therefore, we

set 

S c ε ε 
neq,c 

dt c 
= 

S f ε ε 
neq, f 

dt f 
, (26)

S c q q 
neq,c 
x 

dt c 
= 

S f q q 
neq, f 
x 

dt f 
, (27)

S c q q 
neq,c 
y 

dt c 
= 

S f q q 
neq, f 
y 

dt f 
. (28)

The two remaining relaxation parameters, S ε and S q , do not en-

ter the Navier-Stokes equation and can be treated arbitrarily. For

convenience, we simple assume that these two relaxation param-

eters are the same in the two grid systems, namely, S 
f 
ε = S c ε and

S 
f 
q = S c q . Then Eqs. (26) –(28) becomes 

ε neq,c = nε neq, f , q neq,c 
x = nq neq, f 

x , q neq,c 
y = nq neq, f 

y . (29)

At this point, all necessary relationships are worked out for

constructing distribution functions and model parameters on the

fine grid from those on the coarse grid, and vice versa. They can

be summarized as follows 

m 

eq,c = m 

eq, f and m 

neq,c ≡

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ρ − ρeq 

e − e eq 

ε − ε eq 

j x − j eq 
x 

q x − q eq 
x 

j y − j eq 
y 

q y − q eq 
y 

p xx − p eq 
xx 

p xy − p eq 
xy 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

c 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

nS f e 

S c e 
n 

1 

n 

1 

n 

nS f ν
S c ν

nS f ν
S c ν

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

m 

neq, f . (30)

Therefore, we can introduce the following notations 

m 

neq,c = T f m 

neq, f , m 

neq, f = T c m 

neq,c , (31)

where 

T f = diag 

[
1 

nS f e 

S c e 

n 1 n 1 n 

nS f ν
S c ν

nS f ν
S c ν

]
, (32)

T c = diag 

[
1 

S c e 

nS f e 

1 

n 

1 

1 

n 

1 

1 

n 

S c ν

nS f ν

S c ν

nS f ν

]
. (33)

The above completes the necessary relationships for the pre-

collision rescaling implementation. 

To be complete, we shall now derive the necessary rescaling re-

lationships for the post-collision implementation. First, the post-

collision distribution function on the fine grid is determined as 

 f f = f f − M 

−1 S f 
(
m 

f −m 

eq, f 
)
= M 

−1 m 

f − M 

−1 S f 
(
m 

f −m 

eq, f 
)
, (34)
hich, after substituting Eq. (31) , becomes 

 

 

f = M 

−1 m 

eq, f + M 

−1 
(
I − S f 

)
T c m 

neq,c . (35)

n the other hand, the post-collision moments in the coarse do-

ain can be expressed as 

 ̃

 f c = m 

c − S c ( m 

c − m 

eq,c ) = m 

eq,c + ( I − S c ) m 

neq,c . (36)

o the non-equillibrium moments in the coarse block can be writ-

en in terms of its post-collision distribution function as 

 

neq,c = ( I − S c ) 
−1 
(
M ̃

 f c − m 

eq,c 
)
. (37)

ubstituting Eq. (37) into Eq. (35) , the post-collision distribution

unction in the fine domain can be computed in terms of the post-

ollision distribution function in the coarse region as 

 

 

f = M 

−1 
[
m 

eq,c + ̃

 T c 
(
M ̃

 f c − m 

eq,c 
)]

. (38)

here 

 

 

c = 

(
I − S f 

)
T c ( I − S c ) 

−1 

= diag 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
S c e 
(
1 − S f e 

)
nS f e ( 1 − S c e ) 

(
1 − S f ε 

)
n ( 1 − S c ε ) 

1 

(
1 − S f q 

)
n 
(
1 − S c q 

)
1 

(
1 − S f q 

)
n 
(
1 − S c q 

) S c ν
(
1 − S f ν

)
nS f ν ( 1 − S c ν ) 

S c ν
(
1 − S f ν

)
nS f ν ( 1 − S c ν ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (39)

Eq. (39) implies that the post-collision rescaling would suffer a

ingularity problem if the relaxation parameters are close to one, a

ell-known disadvantage [9] when compared to the pre-collision

escaling. 

Similarly, the post-collision distribution function can be trans-

erred from the fine domain to the coarse domain by 

 

 

c = M 

−1 
[
m 

eq, f + ̃

 T f 
(
M ̃

 f f − m 

eq, f 
)]

. (40)

here ˜ T f = 

[˜ T c 
]−1 

To summarize, the distribution functions between the coarse

nd fine grids can be converted either before the collision sub-

tep or after the collision substep. In the first case, Eq. (30) can

e used and then multiplying the converted moments by M 

−1 to

btain the distribution functions. In the second case after the col-

ision substep, then Eqs. (38) and (40) should be used. We have

eveloped two versions of the code based on the two approaches,

nd confirm that the results are identical. 

. The computational procedure on the domain interfaces 

Recalling the grid arrangement for the coarse and fine domains

hown in Fig. 2 , the coarse interface nodes are inside the fine re-

ion. They provide the buffer layer for the coarse-domain nodes

or information transfer from the fine domain to the coarse do-

ain. Basically, at the coarse interface nodes, the conversion of

istribution function from the fine grid to the coarse grid occurs

through either Eq. (30) or Eq. (40) , depending on whether the

onversion was done before or after the collision sub-step), fol-

owed by streaming which feeds this converted distribution to the

oarse-domain boundary nodes. 

Likewise, the fine interface nodes and fine hanging nodes sit

n the coarse-domain boundary and provide the buffer layer for

he fine-domain nodes for information transfer from the coarse do-

ain to the fine domain. First, the conversion of distribution func-

ion from the coarse grid to the fine grid is performed for the
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ne interface nodes, using either Eq. (30) or Eq. (38) , depending

n whether the conversion was done before or after the collision

ub-step. Second, there are no coarse nodes defined at the loca-

ions of the hanging nodes, so the fine-grid distribution functions

t the hanging nodes are obtained from the fine-grid distribution

unctions at the fine interface nodes. We employ the cubic spline

nterpolation at each edge of the coarse-domain boundary, namely,

f i ( s i ) = a i ( s − s i ) 
3 + b i ( s − s i ) 

2 + c i ( s − s i ) + d i , (41)

here f i is the distribution function being interpolated, s is the lo-

al coordinate at the edge, s i is the location of the hanging nodes

the interpolation points), as shown in Fig. 2 , s − s i = 1 / 2 , a i , b i , c i ,

 i are cubic spline coefficients which are determined by fitting the

nown values at finite interface nodes, following Eq. (30) in [13] . 

Furthermore, for each time step corresponding to the coarse do-

ain, there are n time steps for the fine domain. The distribution

unctions at these sub-timesteps are interpolated in time between

 and t + δt . The converted fine-grid distribution functions at the

ne interface nodes and hanging nodes are then streamed onto the

ne boundary nodes. If the conversion between the two grids at

he buffer layers are performed before the collision sub-step, the

ollision operation should be executed on the buffer layers before

he streaming substep. 

The arrangement of the buffer layers for the fine and coarse

egions ensures each domain is fully extended, such that the dis-

ribution functions at all nodes in the fine or coarse domain are

omplete after the streaming sub-step. The two domains do not

verlap, and the buffer layers provide the bridges for information

ransfer. 

Fig. 3 provides a flow chart for the code when the local refine-

ent is applied to a moving particle, namely, the grid refinement

s done around a moving solid particle, with the fine domain mov-

ng with the solid particle. For this chart, it is assumed that the

istribution functions between the coarse and fine grids are com-

unicated after the collision sub-step ( i.e. , post-collision rescaling)

sing Eqs. (38) and (40) , as in the work of Peng et al. [19] . Here-

fter we shall refer to this treatment as the post-collision rescaling

mplementation. 

The better approach, free of the rescaling singularity, is to

erform the rescaling before the collision sub-step (i.e., the pre-

ollision rescaling implementation). The flow diagram of this

re-collision rescaling implementation with local grid refinement

round a moving particle is provided in Fig. 4 . In this case, data

ransfer as implied by Eqs. (30) and (31) , becomes 

 

f = M 

−1 [ m 

eq,c + T c ( Mf c − m 

eq,c ) ] , (42) 

 

c = M 

−1 
[
m 

eq, f + T f 
(
Mf f − m 

eq, f 
)]

. (43) 

In summary, we have developed two versions of local grid-

efinement implementation around a moving particle: the post-

ollision rescaling implementation ( Fig. 3 ) and the pre-collision

escaling implementation ( Fig. 4 ). In the first case, Eqs. (38) and

40) should be used for coarse-fine data conversions; while in the

econd case, Eqs. (42) and (43) are used instead for coarse-fine

ata conversions. It is important to point out that the hydrody-

amic variables and the normal and shear stress components must

lways be computed after the streaming sub-step. Another impor-

ant difference between the two implementations is that in the

ost-collision rescaling implementation, no collision operation is

eeded for the interface nodes; while in the pre-collision rescal-

ng implementation, the distribution functions on the interface grid

odes must participate in the collision sub-step. When the above

mplementation details and the conversion relationships are rigor-

usly followed, we found that the results from the two implemen-

ations are identical. 
In the moving-solid-particle case, the fine domain surrounds

he solid particle. Initially, the fine domain is chosen with its cen-

er coinciding with the center of the solid particle. When the solid

article moves one coarse grid length in any direction, the particle

enter moves from O to O 

′ , as shown in Fig. 5 , the fine domain si-

ultaneously shifts its center by the same distance following the

enter of the solid particle, namely, the initial fine domain ABCD

hifts to a newly defined fine domain A 

′ B ′ C ′ D 

′ . The fine domain

hifting philosophy is similar to that reported in Arora et al. [26] .

he distribution functions of the nodes sitting on the left buffer

ayer A 

′ D 

′ of the new fine domain and the right buffer layer BC

f the old fine domain have already been computed. However, the

nknown distribution functions for the fine interface nodes EF and

he new hanging nodes on the right buffer layer B ′ C ′ of the new

ne domain must be constructed. For the new fine interface nodes

n B ′ C ′ , the conversion relation, Eqs. (38) , can be used for the post-

ollision rescaling implementation, or Eq. (42) is used for the pre-

ollision rescaling implementation. The hanging nodes on B ′ C ′ can

hen be constructed by interpolation, and the fine-domain distri-

ution functions on EF are interpolated from the distribution func-

ions of the two layers BC and B ′ C ′ . At the end of the above pro-

ess, the array indices for the fine domain are shifted accordingly

o keep the data array size of the fine-domain distributions un-

hanged during domain shift. 

At the same time, the old coarse-domain buffer layers KL,

M, MN, NK must be shifted accordingly to K 

′ L ′ , L ′ M 

′ , M 

′ N 

′ , N 

′ K 

′ .
long the new layer N 

′ K 

′ which lies within the old fine domain,

he coarse-domain distributions can be computed from the fine-

omain distributions, using Eq. (40) and Eq. (43) for the post-

ollision rescaling case and the pre-collision rescaling case, re-

pectively. The coarse-domain distributions on the remaining three

ides, K 

′ L ′ , L ′ M 

′ , and M 

′ N 

′ , of the new coarse domain are already

vailable. At this point, the distributions on all buffer layers of new

ne domain and new coarse domain are available, and the treat-

ent for the fine-domain shift associated with the moving solid

article is complete. 

Here, we should point out that the differences between our

odel and the model of Farhat and Lee [13] include: 

(1) The FL’s model was based on the BGK collision and ours as-

sumed the use of MRT collision model. 

(2) We explicitly demonstrate that there are two ways of trans-

ferring data between the fine and coarse grids, one is doing

this before the collision sub-step, and the second is after the

collision sub-step. To our knowledge, the comparison of two

implementations in one study has not been performed pre-

viously. 

(3) In FL’s paper, the flow field was divided into three separated

blocks, named as the upstream coarse block, the fine block

and the downstream block. The fine domain size is too large

and obviously requires more storage space than our model. 

(4) In FL’s paper, after the fine domain was migrated, extrapo-

lation was used to compute the variables at all the newly

created fine and coarse nodes. As we know, the extrapola-

tion may cause some numerical diffusion which affects the

accuracy of LBM. In our paper, no extrapolation is used. 

(5) In our paper, we also investigate the minimum or optimal

fine domain size in Section 5.2.2 , which is relevant to the

overall numerical efficiency. 

The differences between our model and the model of Arora

t al. [26] include points (2) and (5) above, as well as the follow-

ng: (1) We have developed a method for relating all the non-

quilibrium moments across the subdomain boundaries, based on

he Chapman–Enskog analysis. We obtain the relationship between

on-equilibrium energy, energy square and energy flux moments

n two different domains. Our derivations are more systematic and
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Fig. 3. The flow chart for the post-collision rescaling implementation with fine block shifting, assuming n = 2 . 
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I

complete, and LBM users may find these details beneficial. On the

other hand, only two non-equilibrium stress moments and three

conserved moments were explicitly related according to the trans-

fer matrix of T , stated in Eq. (23) in Arora et al.’s model. (2) Also
elated to the present model, we will demonstrate that the ghost

oments could not be completely ignored during the data trans-

erring between the coarse and fine subdomains in Section 5.2.4 .

n Arora et al.’s model, the ghost moments were not considered. 
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Fig. 4. The flow chart for the pre-collision rescaling implementation with fine block shifting, assuming n = 2 . 
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. Results from numerical simulations and discussions 

In order to validate the approach and to highlight the benefits

f local grid refinement in improving computational accuracy us-

ng the MRT LBM model, we apply the approach to solve two flow
roblems. The first is the lid-driven cavity flow and we implement

ocal grid refinement on the upper-left corner, to show that the

ocal grid refinement can provide more accurate results for this re-

ion where large velocity gradients exist. The second is a 2D Cou-

tte flow over a fixed or moving cylinder. Here local grid refine-
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Fig. 5. A sketch to illustrate the necessary rearrangements of the buffer layer nodes for the new coarse and fine domains after the fine domain shifts its location relative to 

the coarse domain. 

Fig. 6. Local grid refinement block layout for a 2D cavity flow. 
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ment is applied to a region near the cylinder to demonstrate that

grid refinement can suppresses fluctuations in the hydrodynamic

force acting on the moving cylinder. 

5.1. Lid driven cavity flow 

The lid-driven cavity flow has been extensively used as a

benchmark case to test a numerical method [29] . In this flow, the

two corners under the moving lid are singular points, and higher

grid resolution is desired in order to obtain more accurate stress

distribution near the corner points. We apply local grid refinement

to the top-left corner ( Fig. 6 ). The cavity flow Reynolds number

Re = LU w 

/ν is fixed to 10 0 0, where L is the width of the square

cavity, U w 

is the lid velocity, ν = 0 . 01 is the kinematic viscosity. 

The bulk viscosity ξ was set to be equal to ν , and these lead to

S c e = 1 . 8868 , S c ν = 1 . 8868 in the coarse region where δt c = 1 and

δx c = 1 . The two remaining relaxation parameters in the coarse re-

gion are S c ε = 1 . 54 and S c q = 1 . 9 . 

For the local grid refinement case, a refined grid with dx f = 0 . 5

is applied to a region near the top-left corner of the size N xx ×
N yy . These lead to the setting that S 

f 
e = 0 . 641 , S 

f 
ν = 0 . 641 , S 

f 
ε =

1 . 54 , and S 
f 
q = 1 . 9 . 

In order to demonstrate quantitatively the convergence of our

uniform coarse grid with local grid refinement method (UCG-L)

with the grid resolution, we set the fine-domain grid-length to
alf of the coarse-domain grid-length. The flow is initially at rest.

fter a sufficiently long time (typically over 20 0,0 0 0 coarse-grid

ime steps), the flow reaches to a steady state. All velocity profiles

hown below are results at steady state. We computed the abso-

ute error relative to the benchmark data of Ghia et al. [29] . As

hown in Fig. 7 , the normalized velocity profiles along the verti-

al mid-plane and horizontal mid-plane of the cavity agree well

ith the benchmark data, for all the three resolutions (129 × 129,

49 × 149 and 199 × 199) considered. Using the same 17 discrete

ocations of the benchmark data, the normalized velocities u x / U w 

re interpolated to determine the average normalized velocity,

1 
17 

∑ 17 
1 u x /U w 

, and the average absolute error, 1 
17 

∑ 17 
1 

∣∣∣ (u x /U w ) 
u Ghia 

− 1 

∣∣∣.
oth are shown in Table 1 . The resolutions in the parentheses on

he first row indicate the fine domain size in the coarse-domain

nit. Table 1 shows that the computed absolute error decreases

rom 1.27% – 0.86% as the grid resolution is increased from 129

129 to 199 × 199. Fig. 7 shows how the velocity profiles con-

erge to the benchmark as the grid resolution is increased, consis-

ent with the error data in Table 1 . 

The results in Fig. 7 show that a coarse mesh resolution of 129

129 is adequate in resolving the flow in the central region of the

avity at Re = 10 0 0 . In Fig. 8 , we demonstrate that the profiles in

he center region are independent of the grid refinement applied

n the corner region and the size of the refined domain. Here three

ne-domain sizes 26 × 26, 39 × 39, 80 × 80 for the upper left

orner all used a grid length of 0.5 L /129, so they covered a spatial

egion of the size 0.1 L × 0.1 L , 0.15 L × 0.15 L , and 0.31 L × 0.31 L ,

espectively. 

An important question is whether the local grid refinement af-

ects the numerical stability. We examined this aspect by finding

he minimum shear viscosity that one can use without encounter-

ng numerical instability for Re = 10 0 0 . Table 2 provides this min-

mum shear viscosity value. The uniform coarse grid (UCG) simu-

ations are numerically stable for a shear viscosity above 0.00829

hile the UCG-L simulations are stable with a shear viscosity at

nd above 0.00835. The difference in the minimum viscosity is

herefore negligibly small. Therefore, we conclude that the local

rid refinement has a very little impact on the numerical stabil-

ty of the LBM scheme. 

Next, we demonstrate the effects of local grid refinement on

he quality of the simulation results, by comparing to the results

btained with the uniform coarse grid. First, we compare the pres-

ure contours in Fig. 9 for the case of Re = 400 , where Fig. 9 (a)

hows the contours with the uniform coarse grid, Fig. 9 (b) shows

he contours using the same coarse grid but with local refine-
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Fig. 7. Comparison of normalized velocity profile computed with UCG-L and Reference 29 (Ghia et al), (a): u x / U w along the vertical line through geometric center; (b): u y / U w 
along the horizontal line through geometric center. Re = 10 0 0 . 

Fig. 8. Comparison of normalized velocity profile computed with same coarse mesh 129 × 129, different fine resolution using UCG-L and Reference 29 (Ghia et al), (a): 

u x / U w along the vertical line through geometric center; (b): u y / U w along the horizontal line through geometric center. Re = 10 0 0 . 

Table 1 

Simulation error of u x / U w along vertical mid-plane with different resolution in UCG-L via Refer- 

ence 29 (Ghia et al). 

Ghia 129 ∗129 129 ∗129 (26 ∗26) 149 ∗149 (39 ∗39) 199 ∗199 (80 ∗80) 

Average u x / U w 0 .12105 0 .12318 0 .12290 0 .12249 

Absolute Error 1 .27% 1 .19% 0 .86% 

Table 2 

Parameters for numerical stability test of cavity flow (Re = 10 0 0). 

Shear 

viscosity ν

Grids 

number 

Driven 

velocity U w 

Fine domain 

size 

UCG 0 .00829 16641 0 .064264 

UCG-L 0 .00835 18721 0 .064981 26 × 26 

m  

t  

b  

T  

u  

F  

s  

t  

s  

t  

r  

i  

t  

i  

p  

F  

c

ent at the left top corner, and Fig. 9 (c) shows the contours with

he uniform fine grid. The refinement region is indicated by the

lack square in Fig. 9 (b). Here the shear viscosity is set to 0.01.

he coarse resolution is 129 × 129, and the refinement domain
ses a grid of 39 × 39. Several observations can be made here.

irst, the noise in the pressure field within the refined region is

omewhat reduced by the local refinement, as seen by the size of

he noisy region there. The local refinement yields essentially the

ame results as the uniform fine grid case in Fig. 9 (c). The origin of

he pressure noise is associated with the corner singularity occur-

ing at both top left and top right corners, where the local veloc-

ty is discontinuous. Second, the contour lines are smooth across

he boundaries of the refinement region in Fig. 9 (b), validating the

nterface treatment. Third, the local refinement also seems to im-

rove the quality of the contours outside the refinement region.

inally, the contour lines are very similar in regions away from the

orner singularity. 
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Fig. 9. Comparison of pressure contours of the simulated cavity flow with Re = 400 . (a): computed by uniform coarse grid; (b): computed by local grid refinement; 

(c): computed by uniform fine grid. The two thin lines in (b) denote the interface of refinement region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Parameters used in the simulations of two dimensional 

square cavity flow under three different grid configura- 

tions. 

UCG UCG-L UFG 

U w 0.07752 0.07782 0.03876 

L 129 128.5 258 

ν 0.01 0.01 0.01 

Re 10 0 0 10 0 0 10 0 0 

N x × N y 129 × 129 129 × 129 258 × 258 

N xx × N yy 26 × 26 

s  

o  

b  

fi  

a  
A more quantitative comparison is now discussed, with simu-

lations performed using three different grid configurations: a uni-

form coarse grid (UCG), a uniform coarse grid with local grid re-

finement (UCG-L) at the top-left corner, and a uniform fine grid

(UFG). The UCG run has a grid resolution of 129 × 129. In the

UCG-L run, the refined region has a grid resolution of 26 × 26.

The physical and simulation parameters are listed in Table 3 . 

The two velocity components along a vertical line at x = 13 and

a horizontal line at y = 116 are shown in Fig. 10 and 11 , respec-

tively. Both lines cut through the fine domain. Clearly, the profiles

are continuous at the fine-coarse boundary (marked by the vertical

line). Second, the results from the three grid configurations essen-

tially overlap, but the UCG-L profiles match better the UFG results,

when compared to the UCG results. This shows that the local grid

refinement improves the physical results. 

Near the upper lid and left wall, there exists an area of large

velocity gradients. The shear stress ( τ xy ) and normal stress com-

ponents ( τ xx and τ yy ) profiles obtained from the three grid con-

figurations are shown in Fig. 12 and 13 , respectively. The viscous
 c  
tress components are computed using Eq. (18) . The continuity

f the stress profiles at the fine-coarse boundary (marked by the

lack vertical line) validates our implementation. Such stress pro-

les are rarely shown in published literature. Interestingly, there

re some oscillations in the profiles of normal viscous stresses that

ould be caused by undamped acoustic waves or simply due to in-
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Fig. 10. Comparison of normalized velocity profiles along vertical line x = 13 computed with three grid configurations, Re = 10 0 0 , (a): u x / U w ; (b): u y / U w . The vertical line 

marks the boundary between the coarse domain and the fine domain. 

Fig. 11. Comparison of normalized velocity profiles along horizontal line y = 116 computed via three grid configurations, Re = 10 0 0 , (a): u x / U w ; (b): u y / U w . The vertical line 

marks the boundary between the coarse domain and the fine domain. 

Fig. 12. Comparison of normalized shear stress τ xy along vertical line x = 13 computed via three grid configurations, Re = 10 0 0 , (a): whole domain view; (b): the zoom-in 

plot. The vertical line marks the boundary between the coarse domain and the fine domain. 
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Fig. 13. Comparison of normalized normal stress along vertical line x = 13 computed via three grid configurations, Re = 10 0 0 , (a): τ xx ; (b): τ yy . The vertical line marks the 

boundary between the coarse domain and the fine domain. 

Table 4 

Computer CPU and memory occupied by three 

grid structures with cavity flow. 

UCG UCG-L UFG 

CPU time (ms) 5 .866 12 .836 22 .388 

Memory (kB) 2260 2890 7212 

Fig. 14. Sketch of 2D Couette flow containing a cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Parameters setting of three grid structures in lattice 

Boltzmann space. 

Parameter UCG UCG-L UFG 

N x × N y 201 × 101 201 × 101 402 × 202 

D 25 .25 25 .25 50 .5 

( X c 0 , Y c 0 ) (30, 54) (30, 54) (60, 108) 

u 0 0 .005 0 .005 0 .0025 

U b 0 .1 0 .1 0 .05 
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adequate grid resolution. These two figures demonstrate a great

benefit of local grid refinement: without the refinement, the re-

sults from UCG show unphysical oscillations. On the other hand,

the UCG-L and UFG results are almost identical. 

In Table 4 , we compare the CPU time per running step used and

memory required for the three cases. While the UFG run required

a longer CPU time (by a factor of 4) and larger memory (by a factor

3.5) when compared to the UCG run, these factors for the UCG-L

reduced to 2.19 in CPU and 1.29 in memory. 

5.2. An asymmetrically placed cylinder in a 2D Couette flow 

Next, we consider the same flow studied in [30] , namely, an

asymmetrically placed cylinder in a 2D Couette flow ( Fig. 14 ). The

flow can be simulated in two frames of reference to study the ac-

curacy of a moving particle simulation. In the first (or the fixed

cylinder case) case, the cylinderical particle is fixed relative to the

lattice grid and the upper and lower channel boundaries move in

opposite direction with the same constant velocity ( U b ). In the sec-

ond case (the moving cylinder case), the cylinder moves at a ve-
ocity u 0 , with the top wall and bottom wall moving at velocity

 b1 = U b + u 0 and U b2 = −U b + u 0 , respectively. Initially, the flow

tarts from the rest in the two cases. Physically, the two cases are

dentical. Numerically, the second case is much more difficult due

o the need to treat the curved moving fluid-cylinder surface. We

mplemented local grid refinement in both cases. For the moving

ylinder case, the fine domain shifts by one lattice grid every time

he center of the cylinder is moved by one lattice grid. 

The geometric parameters for this problem include the chan-

el width L y and length L x , the diameter of the cylinder D , and

he cylinder center at the initial time ( X c 0 , Y c 0 ). Periodic bound-

ry condition is used in the x direction, and the no-slip condi-

ion is assumed at the top and bottom channel walls as well as

n the cylinder surface. Again, we consider three grid configura-

ions: uniform coarse grid (UCG), uniform coarse grid with local

rid refinement around the cylinder (UCG-L), and uniform fine grid

UFG). The kinematic viscosity is ν = 1 / 9 , which yields S ν = 1 . 2

n the coarse domain. Other relaxation parameters in the coarse

omain are set to S ε = 1 . 4 and S e = S q = 1 . 5 ( i.e. , the bulk viscos-

ty is 1/18). The other parameters in the moving cylinder simu-

ations are set in Table 5 . Note that the parameters for the fixed

ylinder case are the same, except u 0 = 0 . In the fine domain with

 = 2 , the resulting relaxation parameters are S 
f 
ν = 6 / 7 , S 

f 
e = 1 . 2 ,

 

f 
q = 1 . 5 , S 

f 
ε = 1 . 4 . The number of iterations for all the following

ase is T = 50 0 0 . 

.2.1. The fixed cylinder case 

In this case, u 0 = 0 . The size of the fine domain is a square of

ize equal to 36. The region covers 12 < x < 48 and 36 < y <

2. The no-slip condition on the cylinder surface was handled by a

uadratic interpolation scheme [19,30,31] . 

Figs. 15 , 16 and 17 show the drag force F x , lift force F y , and

orque M as functions of time acting on the particle, respectively.
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Fig. 15. The normalized hydrodynamic force F x acting on the fixed cylinder, (a): the whole time interval; (b): zoom-in plot. 

Fig. 16. The normalized hydrodynamic force F y acting on the fixed cylinder, (a): the whole time interval; (b): zoom-in plot. 

Fig. 17. The normalized hydrodynamic torque acting on the fixed cylinder, (a): the whole time interval; (b): zoom-in plot. 
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Fig. 18. The normalized hydrodynamic force F x acting on the moving cylinder, (a): the whole time interval; (b): zoom-in plot. 

Fig. 19. The normalized hydrodynamic force F y acting on the moving cylinder, (a): the whole time interval; (b): zoom-in plot. 
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The force and torque are computed by the Galilean invariant mo-

mentum exchange method [19,32] . 

Overall, the results from the three grid configurations are in ex-

cellent agreement. The zoom-in plots for 40 0 0 < t < 410 0 show a

very minor difference, typical 0.05% relative difference or less. This

is clearly negligible. Therefore, each of these fixed cylinder results

can be used as a benchmark to examine results for the moving

cylinder case. 

5.2.2. Moving particle flow simulation 

When the cylinder is moving at u 0 , the fine domain is also a

square but with width equal to 32, initially covering 14 < x < 46

and 38 < y < 70. It is more or less placed with the cylinder near

the center. Every time the cylinder moves by one lattice unit, the

fine domain is shifted in the same direction. When the cylinder

moves relative to the grid, a solid node may become a fluid node

and the distribution functions at such new fluid nodes need to be

filled. The refilling scheme is based on a newly developed velocity-

constrained extrapolation scheme [31] . In Figs. 18–20 , we show the

drag force F x , lift force F y , and torque as functions of time acting on

the particle, respectively. Note that due to the improved scheme,

the level of force fluctuations in Figs. 18 and 19 is significantly less
han the level of force fluctuations shown in Fig. 5 of [30] , that was

omputed with UCG case. 

The zoom-in view shows that the UCG run has larger magni-

ude of force fluctuations when compared to that of the UFG run.

he results from the UCG-L run are more similar to the UFG run

han to the UCG run, showing the benefit of local grid refinement.

n order to compare the level of force fluctuations quantitatively,

e use the data from the fixed cylinder case as the benchmark

nd compute the L 2 norm of the difference as [30] , 

= 

√ ∑ | F 1 − F 0 | 2 ∑ | F 0 | 2 
(44)

here F 1 and F 0 are the force values of the later part simulated

ith moving particle and fixed particle, respectively. The results

re listed in Table 6 . The local grid refinement reduces the level of

nphysical force fluctuations by roughly a factor of 2. 

In Fig. 21 , we show the normal stress components τ xx , τ yy and

hear stress τ xy at the end of the simulation T = 50 0 0 . The two

gures (a) and (b) represent the stress distributions before the left

olid wall and after the right solid boundary of the particle, respec-

ively. The vertical line marks the fine-coarse boundary. Of impor-

ance is that all stress profiles show a consistency at fine-coarse
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Fig. 20. The normalized hydrodynamic torque acting on the moving cylinder, left: the whole time interval; right: zoom-in plot. 

Fig. 21. Normalized stress distribution along y = 51 . The thin vertical lines mark the fine-coarse domain boundary. (a) stresses distribution before the left solid wall. 

(b) stresses distribution after the right solid wall. 

Table 6 

L 2 error norm for three grid configurations: the 

moving cylinder case. 

Force UCG UCG-L UFG 


x ( t ) 0 .00151 0 .0 0 0771 0 .0 0 0589 


y ( t ) 0 .00942 0 .005648 0 .002972 

Table 7 

Computer CPU and memory occupied by three 

grid structures. 

UCG UCG-L UFG 

CPU time (ms) 19 .274 24 .432 64 .827 

Memory (kB) 7400 9416 25480 

g  

b  

o

 

m  

s  

f

Fig. 22. Comparison of normalized F x computed with four different sizes of the fine 

domain. 
rid interface, namely, both the value and slope at the fine-coarse

oundary are continuous. This again validates our implementation

f the local grid refinement. 

The CPU time per running step and computer memory require-

ents are compared in Table 7 . We find that the computing re-

ources needed for UCG-L run are very similar to UCG, while these

or UFG are much larger. 
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Table 8 

The relative error in the shear stress for the Poiseuille flow 

simulated by UCG-L with different channel widths. 

Ly 100 200 300 400 

e 2.5706E-3 6.6931E-4 2.8548E-4 1.6212E-4 

Fig. 23. The relative error in the shear stress for the Poiseuille flow simulated by 

UCG-L, as a function of channel grid resolution. The dash lines show a slope of −2 . 
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Fig. 22 shows the effect of fine-domain size in the computed

F x with four sizes of 36, 40, 44, 48. Here, the level of force fluc-

tuations are independent of the fine-domain size. The minimum

fine-domain size in this case is 

S min = D + 6 , (45)

which is 31. 

5.2.3. Accuracy 

Here, we use the 2D Poiseuille flow driven by a constant pres-

sure gradient to examine if the numerical accuracy of the LBM

scheme is affected by the local grid refinement. As shown in

Fig. 14 , the refinement domain size is fixed at 48 × 48, the channel

length is also fixed as L x = 200 . The maximum velocity in the mid-

plane along the flow direction is fixed at u f = 0 . 1 . Four different

channel widths ( Ly = 10 0, 20 0, 30 0, 40 0) are considered. The pres-

sure gradient is set to 8 νu f /( Ly ) 2 , which is 8 . 9 × 10 −6 , 2 . 22 × 10 −6 ,

9 . 87 × 10 −7 and 5 . 57 × 10 −7 , respectively. We calculated the rela-

tive error of the shear stress, defined as e = (τ − τth ) /τth , where τ
is computed by the third equation of Eq. (18) , the theoretical shear

stress τ th is, 

τth = 

4 νu f 

Ly 

[ 
2 

(
y 

Ly 

)
− 1 

] 
. (46)

The relative error data are shown in both Table 8 and Fig. 23 .

Clearly, the relative errors in Fig. 23 confirm that the local grid

refinement treatment maintains the second-order accuracy of the

lattice Boltzmann method. 

5.2.4. Simplified treatment for the ghost moments 

From the Chapman-Enskog analysis, energy square ε and en-

ergy fluxes q x and q y are ghost moments. They do not affect the

hydrodynamic variables including the stress components. We use

Eqs. (23) –(25) to relate the non-equilibrium parts of these mo-

ments. If these relations are ignored and we simply make each the

fl

ame in the coarse domain and fine domain, namely, by setting the

iagonal conversion matrix defined by Eq. (32) as follows 

 

f = diag 

[
1 

nS f e 

S c e 

1 1 1 1 1 

nS f ν
S c ν

nS f ν
S c ν

]
. (47)

In order to reproduce the simulation results reported in Peng

t al. [19], we also did an additional simulation with the second

erm in T f set to one (denoted as the Peng et al. treatment). The

esults with these two simple alternative treatments are shown

n Fig. 24 and are compared with results based on the formula-

ion presented in Section 3 . The results in Fig. 24 demonstrate that

he relationships for the non-equilibrium parts of these ghost mo-

ents between the coarse and fine grids do not affect the result-

ng hydrodynamic forces and their fluctuations. This is anticipated

s the non-equilibrium parts of these moments do not enter the

avier-Stokes equations. Here, the treatment in Eq. (47) for the

host moments is the same as Peng et al. [19] . When compared to

ur treatment and the alternative one shown in Eq. (47) , Peng et al.

esults show a slight difference of 0.03%. We also compared results

or pressure and velocity divergence distributions along the chan-

el centerline, it is found that the pressure distributions computed

y three different treatments agree well with each other (not plot-

ed here), but the velocity divergence from Peng’s treatment ap-

ears to have larger oscillations near the domain interfaces than

he results based on the treatments of Eqs. (32) and (47) . 

Therefore, although the energy moment is not relevant to the

ncompressible Navier–Stokes equations, it is better to treat this

oment consistently, as suggested in this paper, in the lattice

oltzmann approach since the energy moment can have an im-

act on the local bulk viscosity. Fig. 25 shows that an inconsistent

reatment of the energy moment can cause larger oscillations in

elocity divergence. 

. Summary and conclusions 

This paper was motivated by the desire to improve LBM simula-

ion of the interaction of a moving particle with the carrier viscous

ow. The use of uniform grid in LBM is not the ideal choice for re-

olving the viscous boundary layer near the surface of a moving

olid particle. As one option, local grid refinement near the surface

f the solid particle can be used to improve the simulation results.

We first re-examined the necessary relationships, within the

RT LBM approach, between the relaxation parameters and the

istribution functions on the coarse and fine grids, in order to

eet the physical requirements of the fluid hydrodynamics (con-

inuity in pressure, velocity, and stress). We also proposed addi-

ional relations to relate the non-equilibrium components of the

on-conservative moments, based on the Chapman-Enskog multi-

caling analysis. The details of grid arrangement, specifically the

nformation transfer on interface (or buffer) layers have been pre-

ented. As known previously [6,9] , the conversion between the two

omains can be performed either before or after the collision sub-

tep,but it is stressed that the conversion relations are different

or the two implementations. Both forms of the conversion rela-

ions have been developed in detail within the MRT LBM model.

lthough not shown explicitly in the paper, we found that the

hysical results from these two alternatives of information transfer

etween the two domains are identical provided that the hydro-

ynamic variables including the stress components are computed

fter the streaming sub-step. Our approach is general in that multi-

le levels of grid refinement could be implemented. The boundary

etween the coarse domain and fine domain can be arbitrary and

ove with the solid particle. We should note here that adaptive

rids have already been developed for LBM simulations of various

ows [14,23] . 
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Fig. 24. The computed normalized hydrodynamic forces using different treatments of the conversion matrix, left: F x ; right: F y . 

Fig. 25. The computed normalized velocity divergence using different treatments of the conversion matrix, left: whole view; right: zoom-in. The thin vertical lines denote 

the solid boundary of the particle. 

 

d  

p  

S  

f  

a  

p  

p  

l  

p  

l  

d  

R  

fi  

n  

t  

m  

t  

n  

t  

a  

o  

a  

n  

t  

g  

o  

i  

p  

r

A

 

d  

N  

A  

g  

M  

e  

s

Our approach was then applied to two numerical test cases to

emonstrate that the local grid refinement can significantly im-

rove the physical results with a high computational efficiency.

imulations from three grid configurations were compared: a uni-

ormly coarse grid, a uniformly coarse grid with local refinement,

nd a uniformly fine grid. In addition to velocity profiles, stress

rofiles were carefully examined in these tests, which were rarely

erformed in previous studies. For the lid-driven cavity flow, the

ocal refinement essentially yields a local flow field that is com-

arable to those based on the uniformly fine grid, but with much

ess computational cost. In the Couette flow with a moving cylin-

er, the local refinement suppresses the level of force fluctuations.

esults from the moving particle test case show that even grid re-

nement in a small region surrounding the solid particle can sig-

ificantly improve the simulation results, implying a great poten-

ial for the local grid refinement strategy in the lattice Boltzmann

ethod for moving particle problems. Numerical tests showed that

he local grid refinement treatment has very little influence on the

umerical stability. We also confirm that the coarse-fine grid rela-

ionships between the non-equilibrium moments of energy square

nd energy fluxes do not affect the simulation results, as previ-
usly noted in Geller et al. [20] . Therefore, there is some flexibility

t the domain interface which may be used to further optimize the

umerical stability. We are in the process of applying our approach

o a freely moving particle suspended in a turbulent flow. Local

rid refinement could help resolve turbulent flow near the surface

f solid particles while increasing accuracy and numerical stabil-

ty [31] . There are, however, other difficulties in implementing the

resent algorithm due to multiple solid-particle interactions and

elated scalable implementation. 
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Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.compfluid.2016.06.009 . 
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