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Accurate simulations of moving particles in a viscous flow require an adequate grid resolution near the
surface of a moving particle. Within the framework of the lattice Boltzmann approach, inadequate grid
resolution could also lead to numerical instability and large fluctuations of the computed hydrodynamic
force and torque. Here we explore the use of local grid refinement around a moving particle to improve
the simulation results using the multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). We
first re-examine the necessary relationships, within MRT LBM, between the relaxation parameters and
the distribution functions on the coarse and fine grids, in order to meet the physical requirements of
the fluid hydrodynamics.We also propose additional relationships based on the Chapman-Enskog multi-
scaling analysis. Several aspects of the implementation details are discussed, including the treatment of
interface buffer nodes, the method to transfer information between the coarse domain and fine domain,
and the computation of macroscopic variables including stress components. Our approach is then ap-
plied in two numerical tests to demonstrate that the local grid refinement can significantly improve the
physical results with a high computational efficiency. We compare simulation results from three grid con-
figurations: a uniformly coarse grid, a uniformly coarse grid with local refinement, and a uniformly fine
grid. For the lid-driven cavity flow, the local refinement essentially yields a local flow field that is com-
parable to the use of uniformly fine grid, but with much less computational cost. In the Couette flow
with a moving cylinder, the local refinement suppresses the level of force fluctuations. In these tests, the
stress profiles are carefully examined to help illustrate the benefits of local grid refinement. We also con-
firm that the coarse-fine grid relationships between the non-equilibrium moments of energy square and
energy fluxes do not affect the simulation results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

scopic hydrodynamic variables such as pressure and velocity are
obtained by taking the moments of the distribution functions.

As a highly efficient and capable mesoscopic computational
method, the lattice Boltzmann method (LBM) [1-4] has been
widely employed to solve a variety of fluid dynamics problems. The
standard LBM describes the fluid as made up by imaginative ele-
ments which can stream along a uniform lattice grid and collide
with one another only at lattice nodes. The method solves a quasi-
linear collision-streaming equation for a set of distribution func-
tions associated with discrete microscopic velocities. The macro-
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One of the popular LBM schemes is based on the single re-
laxation time approach (ie., Bhatnagar-Gross-Krook collision op-
erator [5]), which is known as the LBGK model. Another popular
scheme is based on the multiple-relaxation-time (MRT) collision
model [6,7]. The MRT collision is performed in the moment space
with different moments relaxing at different rates. By decomposing
the particle relaxation process into several independent relaxation
processes, the MRT model has been shown to not only improve the
computational stability but also the accuracy [6-8].

In order to obtain accurate macroscopic quantities, such as force
and torque acting on a solid particle or the boundary, small grid
spacing is needed near the solid particle or a boundary. Away
from the boundary or fluid-solid interfaces, the flow may be more
smoother so a coarser grid is adequate to resolve the flow. The
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most efficient approach in terms of both memory and overall accu-
racy is thus to use a coarse grid for most of the bulk flow region,
combined with a local grid refinement near a fluid-solid interface
or wall boundary.

Within the LBGK model, local grid refinement has been con-
sidered for some time to simulate incompressible viscous flows
with complex geometries. Filippova and Hanel [9] was among the
first to consider patching certain regions with a fine grid in a
domain mostly covered by a coarse grid, values of the distribu-
tion functions on the coarse grid which are coming from the fine
patches are calculated on the nodes common to both grids. Filip-
pova and Hanel [10] presented an accelerated implementation of
grid refinement by using different particle speeds on the coarse
and fine grids. A smaller time step size was used on the fine
grid while the spatial or temporal accuracy was kept. Steady-state
and time-dependent problems were studied and the CPU time per
time step was reduced by about 50% relative to the results com-
puted by the standard LBM. Yu et al. [11] proposed a multi-block
technique with the LBGK model. Different mesh sizes are used
for different blocks that do not overlap. Macro-variables such as
mass, momentum, and stress components are assumed to be con-
tinuous across the block-block interface, and this condition deter-
mines the relaxation parameters in the fine domain. The cubic
spline scheme was used for spatial interpolation and the three-
point Lagrangian formula was used for temporal interpolation on
all nodes at the fine block boundary after the distribution func-
tions are transferred from the coarse domain to the fine domain.
Yu and Girimaji [12] extended their approach to 3D using the LBGK
model. Two 3D test cases, an isotropic decaying turbulence and a
lid-driven cavity flow, were presented to show the improved com-
putational efficiency. Farhat and Lee [13] was the first to suggest
a migrating multi-block scheme to combine with the Gunstensen
model for immiscible mixtures in 2D geometries. A fine grid block
covered the entire fluid interface and was allowed to migrate by
tracking the center of mass of the body. The upstream and down-
stream coarse blocks are separated by the fine block. After the
fine domain shifted, extrapolation was used to compute the vari-
ables at all the newly created fine and coarse nodes as well as the
old diminishing coarse nodes. Two benchmark simulations, namely,
single phase flow around an asymmetrically placed cylinder in a
channel and the motion of a neutrally buoyant drop in a parabolic
flow, were simulated to validate their model.

A more general and efficient approach is adaptive grid refine-
ment, where the computational grid is modified dynamically, with
as many refinement levels as needed and each level can be of arbi-
trary shape. Typically, a physical criterion is applied to determine
whether a local grid cell should be refined further or can be coars-
ened. An early example of adaptive grid refinement applied within
LBGK is the study of Crouse et al. [14] in which they used a lo-
cal divergence sensor to dynamically adjust the local grid spacing.
Eitel-Amor et al. [15] introduced a cell-centered lattice structure to
reconstruct the pre-collision distribution functions via spatial in-
terpolation in LBGK model. They showed that, with hierarchically
refined meshes, each cell can be refined or coarsened regardless
of the refinement level of neighbor cells. Lagrava [16] introduced
a decimation technique to guarantee the stability of the numeri-
cal scheme especially at high flow Reynolds number when the in-
formation is transferred from the coarse nodes to the fine nodes.
Dietzel and Sommerfeld [17] calculated flow resistance over ag-
glomerates with different morphology through LBGK local grid re-
finement. They slightly overlapped the coarse and fine regions and
designed a method to communicate the distribution functions be-
tween the two grids at the interface. Premnath et al. [18] presented
a staggered mesh arrangement in large-eddy simulation of a com-
plex turbulent separated flow, using the MRT D3Q19 model. Sub-
grid scale model was employed in conjunction with the MRT to

augment the relaxation time scales of hydrodynamic modes, in or-
der to represent the effect of subgrid scale fluid motion.

One of the first attempts to implement local grid refinement
within MRT was performed by Peng et al. [19] using the D2Q9
model, where they related the distribution functions and relaxation
parameters in the two domains based on the continuity of macro-
variables at the coarse-fine interface. The method to communi-
cate distributions functions between the two domains was derived.
They used lid-driven cavity flow, steady and unsteady flows past
a circular cylinder, and flow over an airfoil to validate their ap-
proach. As will be shown later in this paper, their implementation
was not fully consistent since they did not explicitly consider the
relationship of energy relaxation parameters between the fine and
coarse domains. Geller et al. [20,21] considered local grid refine-
ment within MRT and they noted that only the two stress mo-
ments in the D2Q9 model between the two grid levels need to be
properly rescaled, while other relaxation times can be made flexi-
ble. They considered pre-collision rescaling in 2D. The same group
later extended local grid refinement to 3D LBM-MRT models under
the same strategy in order to simulate multi-phase flow with de-
formable interfaces [22], or to perform large-eddy simulations of a
turbulent flow around a sphere in a channel [23] or a turbulent jet
flow [24]. The rescaling in these papers was also performed before
collision. Grid refinements using MRT have also been considered in
another recent study [25], without a careful consideration of the
full flexibility in MRT to relate the distribution functions on fine
and coarse grids.A shifting discontinuous-grid-block lattice Boltz-
mann method for moving boundary simulations using MRT model
was recently reported by Arora et al. [26], where the fine domain
moves with the moving body. Three simulation cases, namely, a
cylinder in a shear flow, a single wing employing ’clap and fling’
motion, and rigid plunging flat plate, are presented to show the
accuracy of their model.

The above literature survey indicates that there are two gen-
eral ways of communicating the distribution functions at the fine-
coarse domain interface, namely, post-collision rescaling and pre-
collision rescaling [9,19]. The connection of the rescaling process to
the Chapman-Enskog expansion for the MRT model has not been
fully explored. Our first objective is to re-examine the details of
coupling the distribution functions and model parameters between
the fine and course grids within the MRT framework. Our second
objective is to test local grid refinement in moving particle simula-
tion. In Section 2, a brief background description of the D2Q9 MRT
model is provided. Details of local grid refinement implementation
are discussed in Section 3, together with the development of re-
lationships between the course and fine grid. Our implementation
follows in spirit the previous studies of Tolke et al. [20,22]. Neces-
sary interpolation details at the coarse-fine interface are presented
in Section 4. In section 5, we then validate our methodology us-
ing 2D lid-driven cavity flow, and a Couette flow with a fixed or
a moving cylinder. In the case of the moving cylinder, the refined
region also moves with the cylinder. Test results demonstrate that
local grid refinement indeed improves the accuracy in the moving
particle simulation. We also compare CPU time and memory con-
sumption when different grid arrangements (e.g., hybrid coarse |
fine grid versus uniformly fine) are used. Key conclusions are sum-
marized in Section 6.

2. The multiple-relaxation-time lattice Boltzmann method

In this section, we briefly introduce the multiple-relaxation-
time (MRT) lattice Boltzmann method (LBM) in order to prepare
for the discussions on the local grid refinement. The detailed de-
scription of MRT LBM can be found in [6,7].
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Fig. 1. The D2Q9 model with nine discrete velocities on two dimensional square
lattice.

Specifically the D2Q9 model [27,28] is considered (Fig. 1), with
discrete velocities given by:

o [©O o on 10 ©-Dn]
Tlan <11 (-1.-1)  (1.-1) '
where i=0,1,2,...,8, c=4§x/5t. All variables are given in lattice

units such that ¢ = 1. The MRT LBM evolution equation [6,7] can
be written as

f(x +e;5t, t +8t) = f(x,t) — M~'S[m — m®]. (2)

where f is a vector representing a set of distribution functions de-
fined at a lattice node, m represents a set of independent mo-
ments, m® is the equilibrium of m, M is an orthogonal transfor-
mation matrix that transforms f into m

m=Mf f=M'm. (3)

The macroscopic hydrodynamic variables, including density p,
velocity u = (ux,uy), and pressure p are obtained from the mo-
ments of the mesoscopic distribution function f. We use the nearly
incompressible formulation [6], namely, the density is partitioned
as p=po+dp with pg=1, and Sp =Y, fi, pou=7Y; fie; , and
p=38pc2, where ¢ = 1/+/3 is the model speed of sound. For the
D2Q9 MRT model, other moments and the transformation matrix
are designed as

0
e
&
jX
m =y Qx
Jy
dy
pXX
pr
1T 1 1 1 1 1 1 17 (/o
-4 -1 -1 -1 -1 2 2 2 2 fi
4 2 2 2 211 1 1||pk
o 1 0 -1 0 1 -1 -1 1 f3
=0 -2 0 2 0 1 -1 =1 1 |{fayg- (4)
o o 1 0 -11 1 -1 -1 fs
0 0 2 0 2 1 1 -1 -1|]Ffs
o 1 -1 1 -1 0 0 0 O f7
L0 0 0 0 0 1 -1 1 -—-1]1lfs

The three hydrodynamic moments, p, jx = polx, jy = polly, are lo-
cally conserved. The other six moments are not conserved, they are

energy e, energy square ¢, energy flux in x and y directions gy and
gy, normal stress pxx, and shear stress pyy. These non-conserved
moments are relaxed as follows

e —Se(e—e®)
& —Sc (e —¢%
qx — Sq(qx — ax")
gy = qy — Sq(qy — q;q
Pxx = Pax — Sv (P — Dy
Dxy = Pxy — Sv(Py — D) (5)

where the symbol ~ denotes the post-collision value. The equilib-
rium values of the non-conserved moments are designed to match
the Euler and Navier-Stokes equation through the Chapman-
Enskog analysis, and the results are

X

U oy oy
I

el = —28p + 3pou?

&% = 8p — 3pou?

qiq = —pPolx

Q;q = —Loly

Pt = po(uy — uy)

Ply = Polixlly, (6)

where u? = uZ + u2. While the equilibrium £ plays no role in the
Navier-Stokes equation and thus its form can be flexible, the spe-
cific form stated above leads to the standard 4 = M~'m® as

e-u (e-u)? u-u
< _ s i W wul
fi W,{ ,0+,00|: 2 + 2 2C521|}

()

where the weighting coefficient w; is given as
4

1. 1.
5 Wi=g(i=1234). w=3(=5678. (8

It follows that the diagonal relaxation matrix S is
S=Diag[ 0 S Se 0 S 0 S; S S | 9)

The shear viscosity and bulk viscosity in the MRT model can be
derived from the Chapman-Enskog analysis as

V= cf(sl—v - 0.5)8t

£ = cf(sle - O.5>8t.

The evolution equation for f can be divided into two sub-steps:
collision and streaming, as

f(x.t) = f(x.t) — M~'S[m — m*], (1)

Wo =

(10)

f(x +e;0t, t +8t) = f(x. 1). (12)

In summary, the key features of the MRT model is that colli-
sion is performed in moment space, and streaming occurs in dis-
crete velocity space. The two relaxation times S, and S, determine
the shear and bulk viscosity , the other two relaxation parameters
Sq and S may be viewed as free parameters that can be used to
improve the accuracy of boundary conditions or to enhance nu-
merical stability [6].

3. Implementation of local grid refinement in MRT LBM

Without loss of generality, we consider a local fine-grid domain
surrounded by a coarse grid, as shown in Fig. 2 In the sketch, the
boundary of the coarse domain is defined by ABCDA and that of the
fine grid domain by KLMNK, without any overlap. However, to fa-
cilitate implementation and information transfer between the two
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Fig. 2. Grids structure with different space size in coarse and fine block.

grids, we add a buffer layer EFGHE to the coarse domain, which
is located inside the fine domain, the corresponding coarse grid
nodes are referred to as the coarse interface nodes. Likewise, a
buffer layer for the fine domain, which coincides with the bound-
ary of the coarse domain are used to define additional popula-
tions for the fine domain, which consists of fine interface nodes
(those coinciding with the coarse boundary nodes) and hanging
nodes (those placed in-between the coarse boundary nodes). The
buffer layers are used to supply necessary information so that, af-
ter streaming, all populations on the fine-grid nodes and coarse-
grid nodes are available. This arrangement followed the work of
[17].

As a multi-block scheme [9], the fine domain has a grid spacing
of 8%/ and the coarse domain has a grid spacing of 8x¢. The size
ratio

ox¢ ot

is assumed to be an integer, where the superscript ¢ and f denote
the related variables located in coarse domain and fine domain.
The sketch shown in Fig. 2 has n = 2. The time steps for the coarse
and fine grids, 8t and 8¢/, are defined such that the streaming in
each domain shifts a particle from a lattice grid node to a neigh-
boring node. By this setting, the lattice velocity unit in the two
domains are the same, namely, §x¢/8t¢ = 8xf/5t/. This also implies
that the speed of sound and the transformation matrix are all iden-
tical for the two domains.

The first physical requirement is that the hydrodynamic vari-
ables 8p, ux, uy must be continuous across the domain interface,
we must have §p/ = §p°, j){ = j¢, and j{ = Jy- All equilibrium mo-
ments defined on the two grids must be the same, namely, m¢?-f =
m¢-c, We only need to determine the relationships between the
non-equilibrium parts of the non-conservative moments.

The second physical requirement is that the physical shear vis-
cosity and bulk viscosity should be the same in the two domains,
leading to

csz(slc - O.S)Stf _ c§<;f - 0.5)5tf, (14)

v

1 1
2( - c __
cs< 5 >8t cs (Sef
Namely, the relaxation parameters for the fine domain should be
related to those in the coarse domain as
1 1
— =05 — —05 16
g =05+ n(g -05). (16)

O.5>8tf. (15)

1 1
5——05+n<sc 0.5). (17)
e

The third physical requirement is that the normal and shear stress
components should be the same at the domain interface. The
Chapman-Enskog analysis states that

Tye = _%(1 —0.55,)e"™ — (1 —0.55,)pl’

Ty 71(1 0.55.)e™ + ~ (17055U)p"9q

Ty = —(1-0. SSv)p”eq (18)
Here we demand the total normal stress components be continu-
ous, to be more consistent with the hydrodynamics. Therefore,

—%(1 — 0.555)em< (1 — 0.555)pieae

=— 1(1 —0.55] )emea —

5 %(1 - 0.55)) piet’, (19)

”(1 — 0.55%)emd¢ 4+ — (1 — 0.55)plea<

S %(1 —0.55%)emea + %(1 —~0.55) pie?’. (20)

—(1-0.58) g™ = —(1 - 0.58]) piy?’. (21)

Solving these three equations and in view of the conditions given
by Egs. (16) and (17), we obtain the following relationships be-
tween three non-equilibrium moments in the two domains, as

S¢ S5 S§
erend = S greic, plenf - 2bpne el - b piac (22)
ns’ ns! ns!
For the three remaining non-equilibrium moments: energy square
and two energy flux components, the Chapman-Enskog analysis
shows that

neq

O (5,0 - 3,00U2) + 01x(—polix) + 01y (—polly) = — Edt ; (23)
S gred
91 (—Pollx) + 81X(—1 +6uf — 3u2) + Oy (Polixlly) = — qg’t‘ ,
(24)
qneq
Bt1 (— Potly)+Brx(Lotixtly )+ 1y (— 14613 — 3u?) = qdi (25)
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The left hand sides involve only the hydrodynamic variables and
should be the same when defined on the two grids, therefore, we
set

. [ oneq,
Sggneq c B Ssgneq f

dte  — dtf (26)
Sc qneq,c quneq,f

qix _ Tq1x

dte  —  dtf @7
s -

dtc  —  dtf

The two remaining relaxation parameters, S¢ and Sg, do not en-
ter the Navier-Stokes equation and can be treated arbitrarily. For
convenience, we simple assume that these two relaxation param-
eters are the same in the two grid systems, namely, S£ =S¢ and
Sqf = Sg- Then Egs. (26)-(28) becomes

gheq.c — ngneq,f’ q)r(zeq,c _ nq)r:eq,f’ q;eq.c _ nq;eq,f. (29)

At this point, all necessary relationships are worked out for
constructing distribution functions and model parameters on the
fine grid from those on the coarse grid, and vice versa. They can
be summarized as follows
c

p—p
e —e®
e —¢g%
Jx—
me< — meq,f and m"4°¢ = qx — qiq
y—5
qy — gy’
Pxe — D
Dxy — Pif/
-1 -
ns;
Se
n
1
- " : S (30)
n
nS{
S5
nS{
L S
Therefore, we can introduce the following notations
m"eac — Tfmneq‘f’ mneq,f — Tcmneq,c’ (31)
where
f f f
f_ g ns, nS nS
T = dzag|:1 Sge n 1 n 1 n Sﬁv Sf,v . (32)
(4 C C
T = dlag 1 SEf 1 1 1 1 1 svf Svf ) (33)
ns, N n n nS, nS)

The above completes the necessary relationships for the pre-
collision rescaling implementation.

To be complete, we shall now derive the necessary rescaling re-
lationships for the post-collision implementation. First, the post-
collision distribution function on the fine grid is determined as

=t/ — M1/ (m/—m ) =M"'m/ - M~'S/ (m/ —meS), (34)

which, after substituting Eq. (31), becomes
=M 'meS ¢ M (1 - §)Tem e, (35)

On the other hand, the post-collision moments in the coarse do-
main can be expressed as

MF* = m® — $(m° — m®<) = m®-< + (] — S°)m™4-<. (36)

So the non-equillibrium moments in the coarse block can be writ-
ten in terms of its post-collision distribution function as

m"ed-c — (I _ 56)71 (Mfc _ meq.c)_ (37)

Substituting Eq. (37) into Eq. (35), the post-collision distribution
function in the fine domain can be computed in terms of the post-
collision distribution function in the coarse region as

= M1 [m®¢ 4 T(MF — m®0)]. (38)
where

T = (I-s")1e(—57"

se(1-5{) (1-5) ]
nsf(1 -5 n(1-S¢)
_f
= diag| 1 M . (39)
n(1-5)
(1-s)  ss(1-s)  ss(1-50)
n(1-55)  nsf(1-s5)  nSf(1-s5)

Eq. (39) implies that the post-collision rescaling would suffer a
singularity problem if the relaxation parameters are close to one, a
well-known disadvantage [9] when compared to the pre-collision
rescaling.

Similarly, the post-collision distribution function can be trans-
ferred from the fine domain to the coarse domain by
£ =M [m*S 4 T/ (M —m/)]. (40)
where T/ = [TC]_1

To summarize, the distribution functions between the coarse
and fine grids can be converted either before the collision sub-
step or after the collision substep. In the first case, Eq. (30) can
be used and then multiplying the converted moments by M~! to
obtain the distribution functions. In the second case after the col-
lision substep, then Eqs. (38) and (40) should be used. We have
developed two versions of the code based on the two approaches,
and confirm that the results are identical.

4. The computational procedure on the domain interfaces

Recalling the grid arrangement for the coarse and fine domains
shown in Fig. 2, the coarse interface nodes are inside the fine re-
gion. They provide the buffer layer for the coarse-domain nodes
for information transfer from the fine domain to the coarse do-
main. Basically, at the coarse interface nodes, the conversion of
distribution function from the fine grid to the coarse grid occurs
(through either Eq. (30) or Eq. (40), depending on whether the
conversion was done before or after the collision sub-step), fol-
lowed by streaming which feeds this converted distribution to the
coarse-domain boundary nodes.

Likewise, the fine interface nodes and fine hanging nodes sit
on the coarse-domain boundary and provide the buffer layer for
the fine-domain nodes for information transfer from the coarse do-
main to the fine domain. First, the conversion of distribution func-
tion from the coarse grid to the fine grid is performed for the
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fine interface nodes, using either Eq. (30) or Eq. (38), depending
on whether the conversion was done before or after the collision
sub-step. Second, there are no coarse nodes defined at the loca-
tions of the hanging nodes, so the fine-grid distribution functions
at the hanging nodes are obtained from the fine-grid distribution
functions at the fine interface nodes. We employ the cubic spline
interpolation at each edge of the coarse-domain boundary, namely,

fi(si) = ai(s —s;)> + bi(s — s;)* + ci(s —sp) + i, (41)

where f; is the distribution function being interpolated, s is the lo-
cal coordinate at the edge, s; is the location of the hanging nodes
(the interpolation points), as shown in Fig. 2, s —s; = 1/2, q;, b;, ¢;,
d; are cubic spline coefficients which are determined by fitting the
known values at finite interface nodes, following Eq. (30) in [13].

Furthermore, for each time step corresponding to the coarse do-
main, there are n time steps for the fine domain. The distribution
functions at these sub-timesteps are interpolated in time between
t and t + 8t. The converted fine-grid distribution functions at the
fine interface nodes and hanging nodes are then streamed onto the
fine boundary nodes. If the conversion between the two grids at
the buffer layers are performed before the collision sub-step, the
collision operation should be executed on the buffer layers before
the streaming substep.

The arrangement of the buffer layers for the fine and coarse
regions ensures each domain is fully extended, such that the dis-
tribution functions at all nodes in the fine or coarse domain are
complete after the streaming sub-step. The two domains do not
overlap, and the buffer layers provide the bridges for information
transfer.

Fig. 3 provides a flow chart for the code when the local refine-
ment is applied to a moving particle, namely, the grid refinement
is done around a moving solid particle, with the fine domain mov-
ing with the solid particle. For this chart, it is assumed that the
distribution functions between the coarse and fine grids are com-
municated after the collision sub-step (i.e., post-collision rescaling)
using Eqgs. (38) and (40), as in the work of Peng et al. [19]. Here-
after we shall refer to this treatment as the post-collision rescaling
implementation.

The better approach, free of the rescaling singularity, is to
perform the rescaling before the collision sub-step (i.e., the pre-
collision rescaling implementation). The flow diagram of this
pre-collision rescaling implementation with local grid refinement
around a moving particle is provided in Fig. 4. In this case, data
transfer as implied by Eqs. (30) and (31), becomes

f/ = M7 [m®€ + T(Mf° — m®*°)], (42)

e =M [meq‘f +Tf (Mff —mf )]. (43)

In summary, we have developed two versions of local grid-
refinement implementation around a moving particle: the post-
collision rescaling implementation (Fig. 3) and the pre-collision
rescaling implementation (Fig. 4). In the first case, Eqs. (38) and
(40) should be used for coarse-fine data conversions; while in the
second case, Eqs. (42) and (43) are used instead for coarse-fine
data conversions. It is important to point out that the hydrody-
namic variables and the normal and shear stress components must
always be computed after the streaming sub-step. Another impor-
tant difference between the two implementations is that in the
post-collision rescaling implementation, no collision operation is
needed for the interface nodes; while in the pre-collision rescal-
ing implementation, the distribution functions on the interface grid
nodes must participate in the collision sub-step. When the above
implementation details and the conversion relationships are rigor-
ously followed, we found that the results from the two implemen-
tations are identical.

In the moving-solid-particle case, the fine domain surrounds
the solid particle. Initially, the fine domain is chosen with its cen-
ter coinciding with the center of the solid particle. When the solid
particle moves one coarse grid length in any direction, the particle
center moves from O to O/, as shown in Fig. 5, the fine domain si-
multaneously shifts its center by the same distance following the
center of the solid particle, namely, the initial fine domain ABCD
shifts to a newly defined fine domain A’B'C’D’. The fine domain
shifting philosophy is similar to that reported in Arora et al.[26].
The distribution functions of the nodes sitting on the left buffer
layer A’D’ of the new fine domain and the right buffer layer BC
of the old fine domain have already been computed. However, the
unknown distribution functions for the fine interface nodes EF and
the new hanging nodes on the right buffer layer B'C’ of the new
fine domain must be constructed. For the new fine interface nodes
on B'C/, the conversion relation, Egs. (38), can be used for the post-
collision rescaling implementation, or Eq. (42) is used for the pre-
collision rescaling implementation. The hanging nodes on B'C’ can
then be constructed by interpolation, and the fine-domain distri-
bution functions on EF are interpolated from the distribution func-
tions of the two layers BC and B'C’. At the end of the above pro-
cess, the array indices for the fine domain are shifted accordingly
to keep the data array size of the fine-domain distributions un-
changed during domain shift.

At the same time, the old coarse-domain buffer layers KIL,
LM, MN, NK must be shifted accordingly to K'L’, L'M’, M'N’, N'K'.
Along the new layer N'K’ which lies within the old fine domain,
the coarse-domain distributions can be computed from the fine-
domain distributions, using Eq. (40) and Eq. (43) for the post-
collision rescaling case and the pre-collision rescaling case, re-
spectively. The coarse-domain distributions on the remaining three
sides, K'L’, 'M’, and M'N’, of the new coarse domain are already
available. At this point, the distributions on all buffer layers of new
fine domain and new coarse domain are available, and the treat-
ment for the fine-domain shift associated with the moving solid
particle is complete.

Here, we should point out that the differences between our
model and the model of Farhat and Lee [13] include:

(1) The FL's model was based on the BGK collision and ours as-
sumed the use of MRT collision model.

(2) We explicitly demonstrate that there are two ways of trans-
ferring data between the fine and coarse grids, one is doing
this before the collision sub-step, and the second is after the
collision sub-step. To our knowledge, the comparison of two
implementations in one study has not been performed pre-
viously.

(3) In FL's paper, the flow field was divided into three separated

blocks, named as the upstream coarse block, the fine block

and the downstream block. The fine domain size is too large
and obviously requires more storage space than our model.

In FL’s paper, after the fine domain was migrated, extrapo-

lation was used to compute the variables at all the newly

created fine and coarse nodes. As we know, the extrapola-
tion may cause some numerical diffusion which affects the
accuracy of LBM. In our paper, no extrapolation is used.

In our paper, we also investigate the minimum or optimal

fine domain size in Section 5.2.2, which is relevant to the

overall numerical efficiency.

=

—
wul
~

The differences between our model and the model of Arora
et al.[26] include points (2) and (5) above, as well as the follow-
ing: (1) We have developed a method for relating all the non-
equilibrium moments across the subdomain boundaries, based on
the Chapman-Enskog analysis. We obtain the relationship between
non-equilibrium energy, energy square and energy flux moments
in two different domains. Our derivations are more systematic and
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Fig. 3. The flow chart for the post-collision rescaling implementation with fine block shifting, assuming n = 2.

complete, and LBM users may find these details beneficial. On the
other hand, only two non-equilibrium stress moments and three
conserved moments were explicitly related according to the trans-
fer matrix of T, stated in Eq. (23) in Arora et al’s model. (2) Also

related to the present model, we will demonstrate that the ghost
moments could not be completely ignored during the data trans-
ferring between the coarse and fine subdomains in Section 5.2.4.
In Arora et al.’s model, the ghost moments were not considered.
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Fig. 4. The flow chart for the pre-collision rescaling implementation with fine block shifting, assuming n = 2.

5. Results from numerical simulations and discussions

In order to validate the approach and to highlight the benefits
of local grid refinement in improving computational accuracy us-
ing the MRT LBM model, we apply the approach to solve two flow

problems. The first is the lid-driven cavity flow and we implement
local grid refinement on the upper-left corner, to show that the
local grid refinement can provide more accurate results for this re-
gion where large velocity gradients exist. The second is a 2D Cou-
ette flow over a fixed or moving cylinder. Here local grid refine-
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Fig. 6. Local grid refinement block layout for a 2D cavity flow.

ment is applied to a region near the cylinder to demonstrate that
grid refinement can suppresses fluctuations in the hydrodynamic
force acting on the moving cylinder.

5.1. Lid driven cavity flow

The lid-driven cavity flow has been extensively used as a
benchmark case to test a numerical method [29]. In this flow, the
two corners under the moving lid are singular points, and higher
grid resolution is desired in order to obtain more accurate stress
distribution near the corner points. We apply local grid refinement
to the top-left corner (Fig. 6). The cavity flow Reynolds number
Re = LUy /v is fixed to 1000, where L is the width of the square
cavity, Uy is the lid velocity, v = 0.01 is the kinematic viscosity.

The bulk viscosity & was set to be equal to v, and these lead to
S¢ =1.8868, S§ = 1.8868 in the coarse region where 6t =1 and
6x° = 1. The two remaining relaxation parameters in the coarse re-
gion are 57 = 1.54 and Sf = 1.9.

For the local grid refinement case, a refined grid with dx/ = 0.5
is applied to a region near the top-left corner of the size Nyx x
Nyy. These lead to the setting that S{ = 0.641, S, =0.641 , S/ =
1.54,and S§ = 1.9.

In order to demonstrate quantitatively the convergence of our
uniform coarse grid with local grid refinement method (UCG-L)
with the grid resolution, we set the fine-domain grid-length to

half of the coarse-domain grid-length. The flow is initially at rest.
After a sufficiently long time (typically over 200,000 coarse-grid
time steps), the flow reaches to a steady state. All velocity profiles
shown below are results at steady state. We computed the abso-
lute error relative to the benchmark data of Ghia et al. [29]. As
shown in Fig. 7, the normalized velocity profiles along the verti-
cal mid-plane and horizontal mid-plane of the cavity agree well
with the benchmark data, for all the three resolutions (129 x 129,
149 x 149 and 199 x 199) considered. Using the same 17 discrete
locations of the benchmark data, the normalized velocities uy/Uy
are interpolated to determine the average normalized velocity,
(ux/Uw) ~1|.
UgGhia
Both are shown in Table 1. The resolutions in the parentheses on
the first row indicate the fine domain size in the coarse-domain
unit. Table 1 shows that the computed absolute error decreases
from 1.27% - 0.86% as the grid resolution is increased from 129
x 129 to 199 x 199. Fig. 7 shows how the velocity profiles con-
verge to the benchmark as the grid resolution is increased, consis-
tent with the error data in Table 1.

The results in Fig. 7 show that a coarse mesh resolution of 129
x 129 is adequate in resolving the flow in the central region of the
cavity at Re = 1000. In Fig. 8, we demonstrate that the profiles in
the center region are independent of the grid refinement applied
in the corner region and the size of the refined domain. Here three
fine-domain sizes 26 x 26, 39 x 39, 80 x 80 for the upper left
corner all used a grid length of 0.5L/129, so they covered a spatial
region of the size 0.1L x 0.1L, 0.15L x 0.15L, and 0.31L x 0.31L,
respectively.

An important question is whether the local grid refinement af-
fects the numerical stability. We examined this aspect by finding
the minimum shear viscosity that one can use without encounter-
ing numerical instability for Re = 1000. Table 2 provides this min-
imum shear viscosity value. The uniform coarse grid (UCG) simu-
lations are numerically stable for a shear viscosity above 0.00829
while the UCG-L simulations are stable with a shear viscosity at
and above 0.00835. The difference in the minimum viscosity is
therefore negligibly small. Therefore, we conclude that the local
grid refinement has a very little impact on the numerical stabil-
ity of the LBM scheme.

Next, we demonstrate the effects of local grid refinement on
the quality of the simulation results, by comparing to the results
obtained with the uniform coarse grid. First, we compare the pres-
sure contours in Fig. 9 for the case of Re =400, where Fig. 9(a)
shows the contours with the uniform coarse grid, Fig. 9(b) shows
the contours using the same coarse grid but with local refine-

117 1 17
17 2.1 Ux/Uw, and the average absolute error, 37 >°;
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Table 1

Simulation error of uy/Uy, along vertical mid-plane with different resolution in UCG-L via Refer-

ence 29 (Ghia et al).

Ghia 129*129

129129 (26+26)

149+149 (39°39) 199199 (80+80)

Average uy/U,  0.12105 0.12318
Absolute Error 1.27%

0.12290 0.12249
1.19% 0.86%

Table 2
Parameters for numerical stability test of cavity flow (Re=1000).

Shear Grids Driven Fine domain
viscosity v number velocity Uy size

ucG 0.00829 16641 0.064264

UCG-L 0.00835 18721 0.064981 26 x 26

ment at the left top corner, and Fig. 9(c) shows the contours with
the uniform fine grid. The refinement region is indicated by the
black square in Fig. 9(b). Here the shear viscosity is set to 0.01.
The coarse resolution is 129 x 129, and the refinement domain

uses a grid of 39 x 39. Several observations can be made here.
First, the noise in the pressure field within the refined region is
somewhat reduced by the local refinement, as seen by the size of
the noisy region there. The local refinement yields essentially the
same results as the uniform fine grid case in Fig. 9(c). The origin of
the pressure noise is associated with the corner singularity occur-
ring at both top left and top right corners, where the local veloc-
ity is discontinuous. Second, the contour lines are smooth across
the boundaries of the refinement region in Fig. 9(b), validating the
interface treatment. Third, the local refinement also seems to im-
prove the quality of the contours outside the refinement region.
Finally, the contour lines are very similar in regions away from the
corner singularity.
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A more quantitative comparison is now discussed, with simu-
lations performed using three different grid configurations: a uni-
form coarse grid (UCG), a uniform coarse grid with local grid re-
finement (UCG-L) at the top-left corner, and a uniform fine grid
(UFG). The UCG run has a grid resolution of 129 x 129. In the
UCG-L run, the refined region has a grid resolution of 26 x 26.
The physical and simulation parameters are listed in Table 3.

The two velocity components along a vertical line at x = 13 and
a horizontal line at y = 116 are shown in Fig. 10 and 11, respec-
tively. Both lines cut through the fine domain. Clearly, the profiles
are continuous at the fine-coarse boundary (marked by the vertical
line). Second, the results from the three grid configurations essen-
tially overlap, but the UCG-L profiles match better the UFG results,
when compared to the UCG results. This shows that the local grid
refinement improves the physical results.

Near the upper lid and left wall, there exists an area of large
velocity gradients. The shear stress (Tyy) and normal stress com-
ponents (Txx and tyy) profiles obtained from the three grid con-
figurations are shown in Fig. 12 and 13, respectively. The viscous

Table 3
Parameters used in the simulations of two dimensional
square cavity flow under three different grid configura-

tions.
UcG UCG-L UFG
Uy 0.07752 0.07782 0.03876
L 129 128.5 258
v 0.01 0.01 0.01
Re 1000 1000 1000
Ny x Ny 129 x 129 129 x 129 258 x 258
N x Ny 26 x 26

stress components are computed using Eq. (18). The continuity
of the stress profiles at the fine-coarse boundary (marked by the
black vertical line) validates our implementation. Such stress pro-
files are rarely shown in published literature. Interestingly, there
are some oscillations in the profiles of normal viscous stresses that
could be caused by undamped acoustic waves or simply due to in-
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Fig. 10. Comparison of normalized velocity profiles along vertical line x = 13 computed with three grid configurations, Re = 1000, (a): ux/Uy; (b): uy/Uy. The vertical line
marks the boundary between the coarse domain and the fine domain.
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Table 4
Computer CPU and memory occupied by three
grid structures with cavity flow.

UCG UCG-L UFG

CPU time (ms) 5.866  12.836  22.388
Memory (kB) 2260 2890 7212

Up:
y
D
U 0 ) X Ly
Xo ;
——c - v,
Ub2
Lx

Fig. 14. Sketch of 2D Couette flow containing a cylinder.

adequate grid resolution. These two figures demonstrate a great
benefit of local grid refinement: without the refinement, the re-
sults from UCG show unphysical oscillations. On the other hand,
the UCG-L and UFG results are almost identical.

In Table 4, we compare the CPU time per running step used and
memory required for the three cases. While the UFG run required
a longer CPU time (by a factor of 4) and larger memory (by a factor
3.5) when compared to the UCG run, these factors for the UCG-L
reduced to 2.19 in CPU and 1.29 in memory.

5.2. An asymmetrically placed cylinder in a 2D Couette flow

Next, we consider the same flow studied in [30], namely, an
asymmetrically placed cylinder in a 2D Couette flow (Fig. 14). The
flow can be simulated in two frames of reference to study the ac-
curacy of a moving particle simulation. In the first (or the fixed
cylinder case) case, the cylinderical particle is fixed relative to the
lattice grid and the upper and lower channel boundaries move in
opposite direction with the same constant velocity (Uy). In the sec-
ond case (the moving cylinder case), the cylinder moves at a ve-

Table 5
Parameters setting of three grid structures in lattice
Boltzmann space.

Parameter ucG UCG-L UFG

Ny x Ny 201 x 101 201 x 101 402 x 202
D 25.25 25.25 50.5

(Xc0, Yeo) (30, 54) (30, 54) (60, 108)
Up 0.005 0.005 0.0025
Uy 0.1 0.1 0.05

locity ug, with the top wall and bottom wall moving at velocity
Uy =Up+up and Uy, = —Uy + ug, respectively. Initially, the flow
starts from the rest in the two cases. Physically, the two cases are
identical. Numerically, the second case is much more difficult due
to the need to treat the curved moving fluid-cylinder surface. We
implemented local grid refinement in both cases. For the moving
cylinder case, the fine domain shifts by one lattice grid every time
the center of the cylinder is moved by one lattice grid.

The geometric parameters for this problem include the chan-
nel width Ly and length Ly, the diameter of the cylinder D, and
the cylinder center at the initial time (X., Y.). Periodic bound-
ary condition is used in the x direction, and the no-slip condi-
tion is assumed at the top and bottom channel walls as well as
on the cylinder surface. Again, we consider three grid configura-
tions: uniform coarse grid (UCG), uniform coarse grid with local
grid refinement around the cylinder (UCG-L), and uniform fine grid
(UFG). The kinematic viscosity is v = 1/9, which yields S, =1.2
in the coarse domain. Other relaxation parameters in the coarse
domain are set to Se = 1.4 and S, = Sq = 1.5 (i.e,, the bulk viscos-
ity is 1/18). The other parameters in the moving cylinder simu-
lations are set in Table 5. Note that the parameters for the fixed
cylinder case are the same, except ug = 0. In the fine domain with
n =2, the resulting relaxation parameters are sh = 6/7, S{ =1.2,
Sqf =1.5, Sg = 1.4. The number of iterations for all the following
case is T = 5000.

5.2.1. The fixed cylinder case

In this case, ug = 0. The size of the fine domain is a square of
size equal to 36. The region covers 12 < x < 48 and 36 < y <
72. The no-slip condition on the cylinder surface was handled by a
quadratic interpolation scheme [19,30,31].

Figs. 15, 16 and 17 show the drag force Fy, lift force F,, and
torque M as functions of time acting on the particle, respectively.
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Fig. 15. The normalized hydrodynamic force Fy acting on the fixed cylinder, (a): the whole time interval; (b): zoom-in plot.
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The force and torque are computed by the Galilean invariant mo-
mentum exchange method [19,32].

Overall, the results from the three grid configurations are in ex-
cellent agreement. The zoom-in plots for 4000 < t < 4100 show a
very minor difference, typical 0.05% relative difference or less. This
is clearly negligible. Therefore, each of these fixed cylinder results
can be used as a benchmark to examine results for the moving
cylinder case.

5.2.2. Moving particle flow simulation

When the cylinder is moving at ug, the fine domain is also a
square but with width equal to 32, initially covering 14 < x < 46
and 38 < y < 70. It is more or less placed with the cylinder near
the center. Every time the cylinder moves by one lattice unit, the
fine domain is shifted in the same direction. When the cylinder
moves relative to the grid, a solid node may become a fluid node
and the distribution functions at such new fluid nodes need to be
filled. The refilling scheme is based on a newly developed velocity-
constrained extrapolation scheme [31]. In Figs. 18-20, we show the
drag force Fy, lift force Fy, and torque as functions of time acting on
the particle, respectively. Note that due to the improved scheme,
the level of force fluctuations in Figs. 18 and 19 is significantly less

than the level of force fluctuations shown in Fig. 5 of [30], that was
computed with UCG case.

The zoom-in view shows that the UCG run has larger magni-
tude of force fluctuations when compared to that of the UFG run.
The results from the UCG-L run are more similar to the UFG run
than to the UCG run, showing the benefit of local grid refinement.
In order to compare the level of force fluctuations quantitatively,
we use the data from the fixed cylinder case as the benchmark
and compute the L2 norm of the difference as [30],

(44)

Where F; and Fy are the force values of the later part simulated
with moving particle and fixed particle, respectively. The results
are listed in Table 6. The local grid refinement reduces the level of
unphysical force fluctuations by roughly a factor of 2.

In Fig. 21, we show the normal stress components Txx, Tyy and
shear stress Ty, at the end of the simulation T = 5000. The two
figures (a) and (b) represent the stress distributions before the left
solid wall and after the right solid boundary of the particle, respec-
tively. The vertical line marks the fine-coarse boundary. Of impor-
tance is that all stress profiles show a consistency at fine-coarse
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Fig. 20. The normalized hydrodynamic torque acting on the moving cylinder, left: the whole time interval; right: zoom-in plot.
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Fig. 21. Normalized stress distribution along y = 51. The thin vertical lines mark the fine-coarse domain boundary. (a) stresses distribution before the left solid wall.
(b) stresses distribution after the right solid wall.

Table 6
L2 error norm for three grid configurations: the 1.989 | | |
moving cylinder case. :
Force  UCG UCG-L UFG | ; ‘k\,
/
Ay(t) 000151  0.000771  0.000589 1.986 - \,f ,’ l’ -
Ay(t) 000942  0.005648  0.002972 i 3 ! n,’ i
Table 7 1.983 — -
Computer CPU and memory occupied by three FxLy | "1\. |
rid structures. FONTTES \
& 2p0vU,,D A \* . L
ucG UCG-L  UFG 1980 4 /M UCG-L size=48
CPU time (ms) 19274 24432  64.827 1 & e UCG-L size=44 3
Memory (kB) 7400 9416 25480 i p' L
'K L UCG-L size=40
1.977 | -
i V‘H ——————— UCG-L size=36 L
grid interface, namely, both the value and slope at the fine-coarse i L
boundary are continuous. This again validates our implementation I I I
of the local grid refinement. 0.720 0.740 0.760 0.780 0.800

The CPU time per running step and computer memory require- T
ments are compared in Table 7. We find that the computing re-
sources needed for UCG-L run are very similar to UCG, while these Fig. 22. Comparison of normalized F, computed with four different sizes of the fine
for UFG are much larger. domain.
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Table 8
The relative error in the shear stress for the Poiseuille flow
simulated by UCG-L with different channel widths.

Ly 100 200 300 400
e 2.5706E-3  6.6931E-4  2.8548E-4  16212E-4
1.0 L L L L L
2.0 - e u
] L i
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. - ~ I
log(le) | = e i
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1 Reference Line : i
-5.0 B LR Reference Line B
1 - e Relative Error Logarithm i
-6.0 T T T T T

1.50 1.80 2.10 240 2.70 3.00
log (N ,)

Fig. 23. The relative error in the shear stress for the Poiseuille flow simulated by
UCG-L, as a function of channel grid resolution. The dash lines show a slope of —2.

Fig. 22 shows the effect of fine-domain size in the computed
Fy with four sizes of 36, 40, 44, 48. Here, the level of force fluc-
tuations are independent of the fine-domain size. The minimum
fine-domain size in this case is

Smin =D+ 6’ (45)
which is 31.

5.2.3. Accuracy

Here, we use the 2D Poiseuille flow driven by a constant pres-
sure gradient to examine if the numerical accuracy of the LBM
scheme is affected by the local grid refinement. As shown in
Fig. 14, the refinement domain size is fixed at 48 x 48, the channel
length is also fixed as Ly = 200. The maximum velocity in the mid-
plane along the flow direction is fixed at uy = 0.1. Four different
channel widths (Ly =100, 200, 300, 400) are considered. The pres-
sure gradient is set to 8vuy/(Ly)?, which is 8.9 x 1076, 2.22 x 105,
9.87 x 10~7 and 5.57 x 10~7, respectively. We calculated the rela-
tive error of the shear stress, defined as e = (v — 1,) /7, Where T
is computed by the third equation of Eq. (18), the theoretical shear
stress Ty, 1S,

T = 4%;”[2(%) - 1]. (46)

The relative error data are shown in both Table 8 and Fig. 23.
Clearly, the relative errors in Fig. 23 confirm that the local grid
refinement treatment maintains the second-order accuracy of the
lattice Boltzmann method.

5.2.4. Simplified treatment for the ghost moments

From the Chapman-Enskog analysis, energy square ¢ and en-
ergy fluxes gx and g, are ghost moments. They do not affect the
hydrodynamic variables including the stress components. We use
Eqs. (23)-(25) to relate the non-equilibrium parts of these mo-
ments. If these relations are ignored and we simply make each the

same in the coarse domain and fine domain, namely, by setting the
diagonal conversion matrix defined by Eq. (32) as follows

. s/ nst  nst
T/ =diagl1 ™ 1 1 1 1 1 v v (47
g[ s; s s @

In order to reproduce the simulation results reported in Peng
et al. [19], we also did an additional simulation with the second
term in T set to one (denoted as the Peng et al. treatment). The
results with these two simple alternative treatments are shown
in Fig. 24 and are compared with results based on the formula-
tion presented in Section 3. The results in Fig. 24 demonstrate that
the relationships for the non-equilibrium parts of these ghost mo-
ments between the coarse and fine grids do not affect the result-
ing hydrodynamic forces and their fluctuations. This is anticipated
as the non-equilibrium parts of these moments do not enter the
Navier-Stokes equations. Here, the treatment in Eq. (47) for the
ghost moments is the same as Peng et al.[19]. When compared to
our treatment and the alternative one shown in Eq. (47), Peng et al.
results show a slight difference of 0.03%. We also compared results
for pressure and velocity divergence distributions along the chan-
nel centerline, it is found that the pressure distributions computed
by three different treatments agree well with each other (not plot-
ted here), but the velocity divergence from Peng’s treatment ap-
pears to have larger oscillations near the domain interfaces than
the results based on the treatments of Eqs. (32) and (47).

Therefore, although the energy moment is not relevant to the
incompressible Navier-Stokes equations, it is better to treat this
moment consistently, as suggested in this paper, in the lattice
Boltzmann approach since the energy moment can have an im-
pact on the local bulk viscosity. Fig. 25 shows that an inconsistent
treatment of the energy moment can cause larger oscillations in
velocity divergence.

6. Summary and conclusions

This paper was motivated by the desire to improve LBM simula-
tion of the interaction of a moving particle with the carrier viscous
flow. The use of uniform grid in LBM is not the ideal choice for re-
solving the viscous boundary layer near the surface of a moving
solid particle. As one option, local grid refinement near the surface
of the solid particle can be used to improve the simulation results.

We first re-examined the necessary relationships, within the
MRT LBM approach, between the relaxation parameters and the
distribution functions on the coarse and fine grids, in order to
meet the physical requirements of the fluid hydrodynamics (con-
tinuity in pressure, velocity, and stress). We also proposed addi-
tional relations to relate the non-equilibrium components of the
non-conservative moments, based on the Chapman-Enskog multi-
scaling analysis. The details of grid arrangement, specifically the
information transfer on interface (or buffer) layers have been pre-
sented. As known previously [6,9], the conversion between the two
domains can be performed either before or after the collision sub-
step,but it is stressed that the conversion relations are different
for the two implementations. Both forms of the conversion rela-
tions have been developed in detail within the MRT LBM model.
Although not shown explicitly in the paper, we found that the
physical results from these two alternatives of information transfer
between the two domains are identical provided that the hydro-
dynamic variables including the stress components are computed
after the streaming sub-step. Our approach is general in that multi-
ple levels of grid refinement could be implemented. The boundary
between the coarse domain and fine domain can be arbitrary and
move with the solid particle. We should note here that adaptive
grids have already been developed for LBM simulations of various
flows [14,23].
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Fig. 25. The computed normalized velocity divergence using different treatments of the conversion matrix, left: whole view; right: zoom-in. The thin vertical lines denote

the solid boundary of the particle.

Our approach was then applied to two numerical test cases to
demonstrate that the local grid refinement can significantly im-
prove the physical results with a high computational efficiency.
Simulations from three grid configurations were compared: a uni-
formly coarse grid, a uniformly coarse grid with local refinement,
and a uniformly fine grid. In addition to velocity profiles, stress
profiles were carefully examined in these tests, which were rarely
performed in previous studies. For the lid-driven cavity flow, the
local refinement essentially yields a local flow field that is com-
parable to those based on the uniformly fine grid, but with much
less computational cost. In the Couette flow with a moving cylin-
der, the local refinement suppresses the level of force fluctuations.
Results from the moving particle test case show that even grid re-
finement in a small region surrounding the solid particle can sig-
nificantly improve the simulation results, implying a great poten-
tial for the local grid refinement strategy in the lattice Boltzmann
method for moving particle problems. Numerical tests showed that
the local grid refinement treatment has very little influence on the
numerical stability. We also confirm that the coarse-fine grid rela-
tionships between the non-equilibrium moments of energy square
and energy fluxes do not affect the simulation results, as previ-

ously noted in Geller et al.[20]. Therefore, there is some flexibility
at the domain interface which may be used to further optimize the
numerical stability. We are in the process of applying our approach
to a freely moving particle suspended in a turbulent flow. Local
grid refinement could help resolve turbulent flow near the surface
of solid particles while increasing accuracy and numerical stabil-
ity [31]. There are, however, other difficulties in implementing the
present algorithm due to multiple solid-particle interactions and
related scalable implementation.
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