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ABSTRACT
This paper presents the derivations of the exact relations between skin friction and other important dynamical and kinematical quantities on
a stationary curved surface in a viscous flow by applying the standard methods of differential geometry to the governing partial differential
equations in fluid mechanics. In particular, the mathematical structures of the effects of the surface curvature are explicitly expressed, which
extend the previous results on a flat surface. These relations reveal that skin friction is intrinsically coupled with surface pressure, temperature,
and scalar concentration through the boundary enstrophy flux, heat flux, and mass flux, respectively. As an example, the relation between skin
friction and surface pressure is examined in the Oseen flow over a sphere to elucidate the significant effect of the surface curvature at a very
small Reynolds number. Two other validation examples are a gravity-driven creeping liquid film flow over a wavy surface and the Falkner-
Skan flow over a wedge. Furthermore, the relation is applied to a simulated turbulent channel flow to explore the local near-wall coherent
structure and understand its dynamical roles in turbulence production.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120454., s

I. INTRODUCTION

Skin friction (conventionally denoted by τ) is the wall shear
stress defined as the derivative of the velocity multiplying the
dynamic viscosity in the wall-normal direction at a solid surface,
which is a major contributor to the fluid-mechanic drag. Skin fric-
tion vector fields reveal the complex flow topology particularly in
three-dimensional (3D) separated flows and turbulent boundary lay-
ers.1–8 In particular, near-wall flow structures in separated flows and
turbulent flows are determined by the skin friction field and the sur-
face pressure field.9–12 Conventionally, skin friction is treated as an
independent quantity, and therefore, the direct connections between
skin friction and other surface quantities are not sufficiently studied.
In fact, there are the explicit coupling relations between skin friction
and other important surface quantities, particularly surface pres-
sure, surface temperature, and surface scalar concentration. These
relations are useful in the following aspects. From a theoretical per-
spective, the coupling structures of skin friction and other surface

quantities provide a useful tool to identify and understand coher-
ent near-wall structures in complex flows. On the other hand, from
a standpoint of measurement, the coupling relations between skin
friction and other more measurable surface quantities can be used
to extract high-resolution skin friction fields as an inverse problem
from surface flow visualizations. This work focuses on the exact rela-
tions between skin friction and other surface quantities and their
applications. The previous developments on this topic are briefly
reviewed below.

To study the feasibility of extracting a skin friction field from
global surface pressure measurement, the Navier-Stokes (NS) equa-
tions on a surface was recast by Liu et al.13 into a form of the
optical flow equation. They gave a relation between skin friction
(τ) and surface pressure (p∂B) on a surface in an incompressible
flow, which is given by τ ⋅ ∇∂Bp∂B = μfΩ, where fΩ is interpreted
as the boundary enstrophy flux (BEF) plus the curvature-induced
contribution (see Appendix A), ∇∂B is the gradient operator on
the surface, μ is the dynamic viscosity of fluid, and the subscript

Phys. Fluids 31, 107101 (2019); doi: 10.1063/1.5120454 31, 107101-1

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5120454
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5120454
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5120454&domain=pdf&date_stamp=2019-October-1
https://doi.org/10.1063/1.5120454
https://orcid.org/0000-0001-6838-204X
https://orcid.org/0000-0001-6297-1660
https://orcid.org/0000-0003-4276-0051
mailto:tianshu.liu@wmich.edu
https://doi.org/10.1063/1.5120454


Physics of Fluids ARTICLE scitation.org/journal/phf

∂B denotes the property on the surface. The derivation of this
relation is based on the Taylor-series expansion of a velocity field
in the wall-normal coordinate in the NS equations near a sur-
face and the use of the geometric properties of a vorticity line on
the surface. The relation represents an intrinsic coupling between
skin friction and surface pressure through the BEF. This relation
has been used for extraction of skin friction fields from pressure-
sensitive-paint (PSP) measurements, elucidation of the role of the
fluid viscosity in lift generation, and reconstruction of near-wall flow
structures.14,15

Similarly, to establish the relation between skin friction, sur-
face temperature, and heat flux, the energy equation was recast,16

which leads to a relation τ ⋅ ∇∂BT∂B = μfQ, where T∂B is the sur-
face temperature and fQ is related to the heat flux and the third-
order normal derivative of the temperature at the surface, the cur-
vature term, and the viscous dissipation term (see Appendix B).
In certain sense, this relation is a general differential form of the
Reynolds analogy between the skin friction and boundary heat flux,
which has been used for extraction of skin friction fields from
temperature-sensitive-paint (TSP) measurements in air flows16 and
water flows.17 Since the mass transfer process is similar to the heat
transfer process, a relation between skin friction and surface scalar
concentration (ϕ∂B) was derived from the mass transport equation,
which is τ ⋅ ∇∂Bϕ∂B = μfM , where fM is related to the mass flux
and the third-order normal derivative of the surface scalar con-
centration at the surface, the curvature term, and the source term.
This relation has been used for extraction of skin friction fields
from mass transfer visualizations using PSP and sublimation and
dye coatings.18,19

These relations have a generic form of τ ⋅ ∇∂Bg = f, where g is
a measurable quantity, f can be measured or modeled, and ∇∂B is
the gradient operator on a surface (or the image plane after pro-
jection). From mathematical perspective, the determination of the
vector field τ from the given fields of g and f is an inverse problem
similar to the optical flow problem in computer vision. The classi-
cal optical flow equation in the image plane is written as u ⋅ ∇g = f,
where g is the image intensity, f =−∂g/∂t is the negative time deriva-
tive of g, and u is the optical flow that is the velocity of a moving
object in the physical space projected onto the image plane. There-
fore, the variational method is adopted to solve this problem in the
image plane for extraction of a skin friction field from surface flow
visualizations.14–19

However, the previous studies do not sufficiently discuss the
effects of the surface curvature in the coupling relations. From a
theoretical standpoint, it is necessary to express the full mathe-
matical structures of the effects of the surface curvature to deter-
mine whether these effects can be neglected in applications. In
this work, we extend the previous results by providing more
rigorous derivations of these relations on a general curved sur-
face in the framework of differential geometry. The differential-
geometric approach is applicable to a general curved surface, which
is different from the previous Taylor-series-expansion approach
for a flat surface. First, the coupling relation between skin fric-
tion and surface pressure is discussed, where a scalar quan-
tity linking them contains the BEF (usually the dominant term),
the curvature term, and the dilation rate term. This relation is
derived from the NS equations for a viscous flow in Appendix A.
The Oseen flow over a sphere is considered as an example for

elucidation in Appendix A, and the Oseen solution at small Reynolds
number indeed satisfies this relation, where the effects of the sur-
face curvature are significant. Next, the relation between skin fric-
tion and surface temperature is discussed, where a scalar quantity
linking them contains the source term, the curvature term, and
the dissipation rate term. This relation is derived from the energy
equation in Appendix B, which is examined in the Falkner-Skan
flow on an adiabatic wedge. Furthermore, the relation between skin
friction and surface scalar concentration is similarly given, which
is derived from the mass transport equation. Since these relations
enjoy the same mathematical form of the optical flow equation, an
inverse problem can be solved by using the variational method for
extraction of a skin friction field from the measurable quantities.
Furthermore, in an example of applying the relation between skin
friction and surface pressure, the local structure called the hill-valley
pocket (HVP) in a simulated turbulent channel flow is identified.
From the snapshot surface pressure and BEF fields, the skin fric-
tion topology of the HVP is reconstructed. It is found that the HVP
induces the high snapshot turbulent kinetic energy and Reynolds
stress, which could play a significant role in generating stream-
wise vortices and long streaks with high local skin friction magni-
tudes. The mathematical results used in the derivations are given in
Appendix C.

II. RELATION BETWEEN SKIN FRICTION
AND SURFACE PRESSURE

The intrinsic relation between the skin friction vector τ and the
surface pressure gradient∇∂Bp∂B is derived from the Navier-Stokes
(NS) equations with the no-slip boundary condition in a general sur-
face coordinate system (see Appendix A). This relation is written in
a vector form, i.e.,

τ ⋅ ∇∂Bp∂B = μfΩ, (1)

where fΩ acts as a virtual source term, which is expressed as

fΩ = μ[
∂Ω
∂n
]
∂B
− μω∂B ⋅K ⋅ ω∂B + μθ(ω∂B × n) ⋅ ∇∂Bθ∂B, (2)

where Ω = |ω|2/2 is the enstrophy, ∂/∂n is the derivative along
the normal direction, ω = ∇ × u is the vorticity, K = bαβgα ⊗ gβ

is the surface curvature tensor, θ = ∇ ⋅ u is the dilation rate, μ is
the dynamic viscosity, μθ is the longitudinal viscosity, and n is the
unit normal vector of the surface. The subscript ∂B in the vari-
ables and operators in Eqs. (1) and (2) denotes the quantities on the
surface.

Equation (1) represents a formal balance between∇∂Bp∂B pro-
jected on the skin friction vector τ and the scalar quantity fΩ that is
originated from the diffusion term in the NS equations. In Eq. (2),
the first term μ[∂Ω/∂n]∂B is the boundary enstrophy flux (BEF) and
the second term is interpreted as the curvature-induced contribu-
tion. The term ω∂B ⋅K ⋅ω∂B in Eq. (2) is formally interpreted as the
interaction between the surface curvature and the vorticity on the
surface. The quadratic form ω∂B ⋅K ⋅ω∂B can be transformed into
the standard form ω∂B ⋅ K ⋅ ω∂B = κ1ω1

2 + κ2ω2
2 with the two prin-

cipal curvatures κ1 and κ2, where ω1 = ω∂B ⋅ e1 and ω2 = ω∂B ⋅ e2
are the vorticity components on the principal directions e1 and e2.
For a concave surface with κ1 ≤ 0 and κ2 < 0 (such as concave
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ellipsoid and cylinder), ω∂B ⋅K ⋅ω∂B < 0. For a convex surface
with κ1 ≥ 0 and κ2 > 0 (such as convex ellipsoid and cylin-
der), ω∂B ⋅K ⋅ω∂B > 0. For a hyperboloid surface with κ1 > 0 and
κ2 < 0, the sign of ω∂B ⋅K ⋅ω∂B is undetermined. The ratio between
the magnitudes of the second and first terms (the curvature and BEF
terms) in Eq. (2) is proportional to δc/Rs, where δc is the viscous dif-
fusion length scale and Rs is defined as the mean curvature radius
of the surface. When the Reynolds number is sufficiently large such
that δc/Rs ≪ 1, the second term in Eq. (2) could be neglected. In
this case, fΩ is dominated by the BEF. The third term is interpreted
as the contribution induced by the temporal-spatial change in the
fluid density on the surface. According to the continuity equation
∂ρ/∂t + u ⋅ ∇ρ + ρ∇ ⋅ u = 0, the term ∇∂Bθ∂B = ∇∂B[−∂ ln ρ/∂t]∂B
represents the spatial and temporal change in the logarithm of the
density on ∂B. For an unsteady compressible flow on a moving sur-
face, the dilation rate θ∂B ≠ 0 since the fluid density on ∂B may
change temporally and spatially. However, for an unsteady incom-
pressible flow or a steady compressible flow, θ∂B = 0. Note that when
the body force is not zero, the pressure p in Eq. (1) should be replaced
by p + φ, where φ is the potential of the conservative body force (see
an example in Appendix A 3).

Originally, considering the geometry of a vorticity line on the
surface (referred to as a boundary vorticity line that is a tangent
line to the vorticity ω∂B on the surface), Liu et al.13 gave Eq. (1)
with fΩ = μ[∂Ω/∂n]∂B − 2μκωΩ∂B(n ⋅ nω), where κω is the cur-
vature of the boundary vorticity line and nω is the principal unit
normal vector of the boundary vorticity line on ∂B. A question is

whether ω∂B ⋅K ⋅ω∂B in Eq. (2) is equivalent to |ω∂B|2κωnω ⋅ n,
where ω∂B is the boundary vorticity. Since the curve is constrained
by the surface, its geometric quantities must be related to the
surface. In differential geometry, there is a relation κcurvencurve ⋅ n
= bij(dxi/ds)(dxj/ds) = T ⋅K ⋅T, where κcurve is the curvature of
the curve on the surface, ncurve is the unit normal vector of the
curve, n is the normal vector of the surface at the same loca-
tion, (ds)2 = gijdxidxj is the differential arc length squared, T is
the tangent vector of the curve, and K is the curvature tensor.20

In this paper, following the notations in differential geometry, we
use xi (i = 1, 2, 3) as the coordinates on a surface, where (x1, x2)
are the surface coordinates and x3 is the coordinate normal to
the surface. Obviously, the tangent vector of the curve is in the
tangent plane of the surface. Applying this relation to the vortic-
ity line on the stationary surface with T = ω∂B/|ω∂B|, we know
κωnω ⋅ n = ω∂B ⋅K ⋅ω∂B/|ω∂B|2. According to this relation, the term
ω∂B ⋅K ⋅ω∂B can be interpreted as the projection of the boundary-
vorticity-line curvature vector |ω∂B|2κωnω onto the surface normal
vector. The factor nω ⋅ n = ω∂B ⋅K ⋅ω∂B/(κω|ω∂B|2) is the cosine of
the angle between the unit normal vector nω of the boundary vor-
ticity line and the normal vector n of the surface. It is noted that
a constraint nω ⋅ n = 1 was used for an upper bound estimation of
the curvature term.13 In general, the principal unit normal vector
nω of a curve on a surface is not aligned with the normal unit vec-
tor n of the surface (nω ⋅ n ≤ 1) since the curve could be bent on
the surface. Thus, an inequality |ω∂B ⋅K ⋅ω∂B| ≤ κω|ω∂B|2 holds.
The present analysis based on the surface itself is consistent with

FIG. 1. Distributions of the normalized surface quantities
on a sphere in the Oseen flow at a low Reynolds number
(Re = 1.5): (a) pressure gradient∇∂Bp∂B/(μu0/R2), (b) skin
friction τ/(μu0/R), (c) BEF [∂Ω/∂r]r=R/(u0

2/R3), and
(d) curvature term −ω∂B ⋅ K ⋅ ω∂B/(u2

0/R3). Flow is from
top to bottom.
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the previous analysis based on the geometrical properties of a curve
on a surface.13

It is worth noting that Eq. (1) can be derived in a special ref-
erence frame called the τ-frame by utilizing the fact that the skin
friction lines and vorticity lines on a surface are orthogonal.5,21 The
τ-frame is a natural orthonormal surface frame, in which the unit
coordinate vectors are given by e1 = τ/∥τ∥, e2 = ω∂B/∥ω∂B∥, and
e3 = e1 × e2 = n. In this case, the curvature term in fΩ can be
written as

−μω∂B ⋅K ⋅ ω∂B = −μ∣ω∂B∣e2 ⋅ bαβeα ⊗ eβ ⋅ ∣ω∂B∣e2

= −μ∣ω∂B∣2b22 = −2b22μΩ∂B, (3)

where bαβ (α, β = 1, 2) are the coefficients of the surface curvature
tensor K (see Appendix A).

To elucidate the above theoretical result particularly the effect
of the surface curvature, the steady flow over a sphere at low
Reynolds numbers (the Oseen flow) is given as an example in
Appendix A. It is found that Eq. (1) holds up to the order of O(Re)
in the Oseen solution. Figure 1 shows the distributions of the rel-
evant normalized surface quantities on a sphere at low Reynolds
numbers. In the Oseen flow over a sphere, the pressure gradient
∇∂Bp∂B/(μu0/R2) has the opposite direction of the skin friction
τ/(μu0/R). The BEF term [∂Ω/∂r]r=R/(u0

2/R3) is negative, while
the curvature term −ω∂B ⋅ K ⋅ ω∂B/(u2

0/R3) is positive due to the
concavity of the surface. The magnitudes of the BEF and curvature
terms are comparable since the viscous diffusion length scale is of
the same order as the curvature radius. Therefore, the effect of the
surface curvature could be significant when the Reynolds number is
very small.

III. RELATION BETWEEN SKIN FRICTION
AND SURFACE TEMPERATURE

The relation between the skin friction vector τ and the sur-
face temperature T∂B is derived from the energy equation (see
Appendix B). This relation is written as

τ ⋅ ∇∂BT∂B = μfQ, (4)

where the virtual source term is given by

fQ =
1
k
( ∂
∂t
− a∇∂B

2)q∂B +
μ
ρc
[ ∂Φ
∂x3 ]

∂B
− 2aHmean[

∂2T
∂(x3)2 ]

∂B

+ a[ ∂3T
∂(x3)3 ]

∂B

+ a[K : Kq∂B/k + 2 Tr(∇∂B∇∂BT∂B ⋅K)

+ (∇∂B ⋅K) ⋅ (∇∂BT∂B)]. (5)

In Eq. (5), ρ is the density of the fluid, c is the specific heat, T is
the temperature, u is the velocity of the fluid, p is the pressure, μ
is the dynamic viscosity, Φ is the dissipation function, a = k/ρc is
the thermal diffusivity, Hmean is the mean curvature of the surface,
Tr denotes the trace, and q∂B = −k[∂T/∂x3]∂B is the heat flux on
the surface which is positive when the heat enters into fluid from
the surface. The term (∂/∂t − a∇∂B

2)q∂B in Eq. (5) is interpreted
as a source term in the formal diffusion process of the heat flux
on the surface. Equation (4) with suitable modeling of fQ can be

used to study the skin friction topology in complex flows.16,17 Here,
T∂B is a quantity to be determined experimentally or computation-
ally, which is not given as a boundary condition. The meaning of
the term ∇∂B∇∂BT∂B in Eq. (5) is discussed in Appendix B. Also,
in Appendix B, Eq. (4) is validated in the Falkner-Skan flow as an
example.

IV. RELATION BETWEEN SKIN FRICTION
AND SURFACE SCALAR CONCENTRATION

Similar to Eq. (4), the relation between skin friction and sur-
face scalar concentration is derived from the binary mass diffusion
equation with a source term, i.e.,23

∂ϕ/∂t + u ⋅ ∇ϕ = D12∇2ϕ + Qs, (6)

where ϕ = ρ1/ρ is the relative concentration (density) of species 1, ρ
= ρ1 + ρ2 is the total density of the binary gas, D12 is the diffusivity
of a binary system, and Qs is the source term. Since Eq. (6) has the
same mathematical structure as the energy equation, following the
same procedure in Appendix B, we have

τ ⋅ ∇∂Bϕ∂B = μfM , (7)

where the virtual source term is written as

fM =
1

D12ρ∂B
( ∂
∂t
−D12∇∂B

2)ṁ1∂B + [∂Qs

∂x3 ]
∂B

− 2D12Hmean[
∂2ϕ

∂(x3)2 ]
∂B

+ D12[
∂3ϕ

∂(x3)3 ]
∂B

+ [K : Kṁ1∂B/ρ∂B + 2D12 Tr(∇∂B∇∂Bϕ∂B ⋅K)

+D12(∇∂B ⋅K) ⋅ (∇∂Bϕ∂B)], (8)

and ṁ1∂B = −D12ρ∂B[∂ϕ/∂x3]
∂B

is the diffusive flux of species 1 on
the surface. The term (∂/∂t −D12∇∂B

2)ṁ∂B in Eq. (8) is interpreted
as a source term in the formal diffusion process of the mass flux on
the surface. Equation (7) with suitable modeling of fM was used to
study the skin friction topology on delta wings in a water flow based
on surface luminescent dye visualizations.19 Equation (7) is validated
in the Falkner-Skan flow in Appendix B.

V. VARIATIONAL METHOD
Based on the basic relations given in Secs. II–IV, an inverse

problem is to determine the skin friction field from the mea-
sured surface pressure, temperature, and scalar concentration fields
in global surface flow diagnostics. Since global flow diagnostics
are essentially image-based measurements, this problem is con-
veniently solved from a perspective of image processing such as
the well-known optical flow problem.24,25 For image processing,
the basic equations should be projected onto the image plane
through one-to-one mapping between the surface coordinates and
the image coordinates. For simplicity, the orthographical projec-
tion mapping is considered here. The main equations, Eqs. (1), (4),
and (7), can be projected onto the image plane and recast to a
generic form, i.e.,

τ ⋅ ∇g = μf , (9)
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where τ = (τ1, τ2) is the skin friction vector projected on the image
plane, g is a measurable quantity (e.g., surface pressure, temperature,
and scalar concentration), the source term f is measured or modeled,
∇ = ∂/∂xi (i = 1, 2) is the gradient operator in the image plane (pro-
jection of∇∂B), and xi are the image coordinates. To solve Eq. (9) as
an inverse problem, the variational method is applied by minimizing
the residue functional

J(τ) = ∥τ ⋅ ∇g − μf ∥2 + α∥∣∇τ1∣2 + ∣∇τ2∣2∥2
, (10)

where ∥⋅∥2 denotes the L2 norm on a domain D and α is a Lagrange
multiplier (a regularization parameter). The first term in J(τ) is the
equation term, and the second term is a regularization functional as
a smoothness constraint assuming that a skin friction field is suffi-
ciently continuous and smooth. The minimization of J(τ) leads to
the Euler-Lagrange equations, i.e.,

(τ ⋅ ∇g − μf )∇g − α∇2τ = 0, (11)

where ∇2 = ∂2/∂xi∂xi (i = 1, 2) is the Laplace operator in the image
plane. Given the surface pressure and BEF fields, the Euler-Lagrange
equations can be solved numerically for a skin friction field with
the Neumann condition ∂τ/∂n = 0 on the domain boundary ∂D.
The mathematical analysis of the optical flow is applicable to this
problem.26–28 The standard finite difference method is used to solve
Eq. (11), and the numerical algorithms for the optical flow problem
can be adapted.28

In an error analysis, the decompositions g = g0 + δg, f = f0 + δf,
and τ = τ0 + δτ are introduced, where δg, δf, and δτ are errors, and
g0, f0, and τ0 are the nonperturbed fields that exactly satisfy Eq. (11).
Substituting the above decompositions into Eq. (11) and neglecting
the higher-order small terms, we have an error propagation equation

(δτ ⋅ ∇g0)∇g0 − α∇2δτ = −(δf + τ0 ⋅ ∇δg)∇g0, (12)

where δf directly contributes to δτ and δg contributes to δτ through
a gradient operator projected on the skin friction vector.

In a local linear approximation, we consider a local region
where∇g0 is a constant vector with the magnitude ∥∇g0∥ and intro-
duce the unit normal vector to an isovalue line g0 = const. i.e., NT
= ∇g0/∥∇g0∥. The skin friction error projected on NT is defined as
(δτ)N = δτ ⋅NT . From Eq. (12), a formal estimate of the relative error
is obtained, i.e.,

(δτ)N
∥τ0∥

= − δf
∥∇g0∥∥τ0∥

− ( τ0

∥τ0∥
) ⋅ δNT +

α
∥∇g0∥2∇

2[
(δτ)N
∥τ0∥

],

(13)

where ∥τ0∥ is a characteristic value of skin friction (e.g., the mean
value). The first term in the right-hand side (RHS) of Eq. (13)
is the contribution from δf, and the second term is the contri-
bution from the elemental error in measurement of the surface
gradient of the relative intensity. The third term represents the
artificial diffusion of the error (δτ)N associated with the Lagrange
multiplier.

Since the first and third terms in the RHS of Eq. (13) are pro-
portional to ∥∇g0∥−1 and ∥∇g0∥−2, respectively, the relative error
(δτ)N/∥τ0∥ increases as ∥∇g0∥ decreases. The proportional factor

α∥∇g0∥−2 in the third term is interesting. It is indicated that when
∥∇g0∥ is small, the Lagrange multiplier α should be sufficiently small
to reduce the error. On the other hand, for an ill-posed problem, the
variational solution with the Lagrange multiplier α is affected by the
data error bounded by a positive number δ. The selected value of α
depends on δ, i.e., α = α(δ). The error of the solution is proportional
to δ/α as δ → 0.29,30 The condition for the solution convergence is
δ2/α(δ)→ 0, indicating that the data error must be reduced when α is
small. Therefore, two conflicting requirements exit in the case. In the
regions where ∥∇g0∥ is small, α should be small based on Eq. (13),
and accordingly, the data error bound δ must be tightly controlled to
insure the accuracy of the solution. From this perspective, there may
be the optimum value of the Lagrange multiplier. No rigorous theory
is available to determine a priori the optimum value of the Lagrange
multiplier. The selection of the Lagrange multiplier is a trial-and-
error procedure based on simulations for a specific application. In
Sec. VI, the optimum value of the Lagrange multiplier is determined
in simulations.

VI. LOCAL NEAR-WALL STRUCTURES IN TURBULENT
CHANNEL FLOW

In this section, the application of Eq. (1) is demonstrated for
identification and characterization of near-wall coherent structures
in a turbulent channel flow. A different perspective is given by
examining the intrinsically coupling structures of skin friction, sur-
face pressure, BEF, and derived quantities in a simulated turbu-
lent channel flow. The fully developed turbulent flow in a channel
has been used as a canonical flow (along with turbulent boundary
layer) to study the coherent structures in experiments and compu-
tational simulations.31–37 Evidences of hairpin vortices are provided
by measurements35,36 and direct numerical simulations (DNSs).37–40

There are some open questions on the coherent structures, including
how they are objectively extracted (identified), how they are gen-
erated/regenerated, and how they are quantitatively related to the
dynamical quantities in turbulence.

Direct numerical simulation (DNS) of a fully developed incom-
pressible turbulent channel flow was conducted with the lattice
Boltzmann method (LBM) at a frictional Reynolds number of
Reτ = 180 based on the channel half width H and the friction
velocity.41 Correspondingly, the bulk flow Reynolds number is
ReB = 2UH/ν ≈ 5663, where U is the mean flow velocity over
the whole channel. The data set has been validated by compar-
ing with benchmark data of the statistical properties of the flow
in the literature.41,42 In our LBM code, the viscous stress tensor
σij is directly obtained from the nonequilibrium part of the par-
ticle distribution function. The Chapman-Enskog expansion gives
σij = 2μ(Sij − ∇ ⋅ uδij/3) + μV∇ ⋅ uδij, where μ is the shear vis-
cosity and μV is the bulk viscosity. Then, two-point (or three-
point) Lagrange extrapolation is used to calculate skin-friction at
a surface. For the surface pressure gradient, we first use two-
point (or three point) Lagrange extrapolation to calculate surface
pressure at a surface and then use a central difference scheme
with the second-order accuracy to calculate the surface pressure
gradient.

By examining the snapshot fields of the pressure variation and
BEF on the bottom surface, it is found that notable features in
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FIG. 2. Snapshot distributions normalized by the maximum value in the region of
the HVP: (a) surface pressure and (b) BEF. Flow is from left to right.

the surface variation are elongated pressure hills and valleys closely
packed in those regions. For convenience, we call them hill-valley
pockets (HVPs) (a topographical term). Figures 2(a) and 2(b) show
the typical snapshot surface pressure and BEF images normalized
by the maximum values in the region of a typical HVP, respec-
tively. The large surface pressure variations in the turbulent channel
flow are characterized by the HVPs that are highly intermittently
distributed on the surface.

From the images in Fig. 2, the snapshot skin friction field is
reconstructed by solving the Euler-Lagrange equations [Eq. (11)], in
the image plane, and then mapped on the physical surface, where
g = p∂B and f = fΩ. Figure 3(a) shows the reconstructed skin fric-
tion topology for the Lagrange multiplier of 0.1, which is consistent
with that obtained in DNS in Fig. 3(b). The total root-mean-square
(RMS) error in the whole region is evaluated by integrating the error
distributions, i.e.,

Error = 1
mn

m

∑
i=1

n

∑
j=1
[(τ1(i, j) − τ1,DNS(i, j))2

+ (τ2(i, j) − τ2,DNS(i, j))2]1/2, (14)

where τ1 and τ2 are the skin friction components in the main stream-
wise and spanwise directions, respectively, n and m are the num-
bers of the data points (pixels in the image plane) in the main
streamwise and spanwise directions, respectively, and the subscript
“DNS” denotes the DNS data. Figure 4 shows the relative errors
in the extracted skin friction magnitude and angle as a function of
the Lagrange multiplier (α), where the errors are normalized by
the maximum magnitude and absolute directional angle. The rela-
tive error in the skin friction magnitude is at minimum of 0.23%
for the Lagrange multiplier of 0.1, as indicated in the error analysis
in Sec. V. In contrast, the relative error in the absolute directional

FIG. 3. Snapshot skin friction lines in the region of the HVP: (a) reconstructed field
from the surface and BEF fields in Fig. 2 and (b) DNS. Flow is from left to right.

angle is about 23% when the Lagrange multiplier is less than 1.
As shown in Fig. 3, there are several separation and attachment
lines associated with the HVP. Here, a separation line is defined
as a skin friction line to which all neighboring skin friction lines

FIG. 4. The relative errors in the extracted skin friction magnitude and direc-
tional angle as a function of the Lagrange multiplier in the region shown in Fig. 3,
where the errors are normalized by the maximum magnitude and absolute angle,
respectively.
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FIG. 5. Normalized snapshot fields of skin friction and other surface quantities in
the region of the HVP: (a) skin friction and pressure (τ+, δp+), (b) skin friction and
pressure gradient magnitude (τ+, ∥∇∂B

+p∂B
+∥), (c) skin friction and skin friction

divergence (τ+,∇∂B
+ ⋅ τ∂B

+), (d) skin friction and its magnitude (τ+, ∥τ∂B
+∥), (e)

skin friction and BEF (τ+, ∂Ω+/∂n+), and (f) skin friction and enstrophy (τ+, Ω+).
Flow is from left to right.

converge, while an attachment line is a skin friction line from which
all neighboring skin friction lines diverge. The surface pressure and
skin friction features determine the near-wall flow structures of
the HVP according to the Taylor-series-expansion solution of the
NS equations.11,15

To examine the near-wall flow structures of the HVP, the fields
of the relevant surface quantities are overlaid on the skin friction
lines in Fig. 5. Figure 5(a) shows the snapshot surface pressure varia-
tion field of the HVP, indicating that the separation and attachment
lines approximately correspond to the low and high surface pres-
sure regions, respectively. The primary separation line is located in
the valley of the surface pressure variation, while the two attach-
ment lines are located on the two hills. The similar correspondence

FIG. 6. Normalized snapshot fields of the turbulent activities of the HVP, (a) kinetic
energy k+ = (u′+2 + v′+2 + w′+2)/2, (b) Reynolds stress component −u′+v′+,
(c) Reynolds stress component −v′+w′+, and (d) Reynolds stress component
−u′+w′+. Flow is from left to right.
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between the separation/attachment lines and the topography of the
surface pressure gradient magnitude is shown in Fig. 5(b). The skin
friction divergence in Fig. 5(c) shows the correspondence between
the negative divergence (the valley) and the separation line, infer-
ring that there is the upward wall-normal velocity (upwelling) there.
In contrast, the positive divergence (the hill) corresponds to the
attachment line where there is the downward wall-normal velocity.
The corresponding skin friction magnitude patterns are shown in
Fig. 5(d). As indicated in Fig. 5(e), the HVP of the BEF field clearly
corresponds to the skin friction topology. Relatively, the enstrophy
pattern and the skin friction topology are less correlated in Fig. 5(f).

Figure 6 shows the snapshot fields of the turbulent kinetic
energy and the three Reynolds stress components in the HVP at

FIG. 7. Near-wall streamlines superposed on the enstrophy map on cross sections
in the region of the HVP above (a) surface pressure map, (b) BEF map, and (c)
skin friction lines. Here, the quantities are normalized by the wall units.

y+ = 0.6. As shown in Fig. 6(a), the strong peak in the turbulent
kinetic energy is located at the separation line where the strong
upward wall-normal velocity is generated. In contrast, the peaks
at the attachment lines are much weaker. As shown in Figs. 6(b)
and 5(c), there are the positive hills and negative valleys in −u′+v′+
and −v′+w′+, which are associated with the HVP. The positive
hill of −u′+w′+ is located at the separation line, which is simi-
lar to that in Fig. 6(a). It is further confirmed that the HVP in
the surface pressure and BEF strongly contribute to the turbu-
lence generation. Figure 7 shows the near-wall streamlines super-
posed on the enstrophy maps on cross sections, which are associ-
ated with the HVP, where the surface pressure map, BEF map, and
skin friction lines are shown on the floor. A pair of the counter-
rotating streamwise vortices is found at the height of about 20 wall
units from the wall in the viscous sublayer. Such streamwise vor-
tices in wall-bounded turbulent flows have been found in experi-
ments and DNS.40–45 The centers of the vortices in sections move
upward slightly along the streamwise direction, and thus, the vor-
tices are inclined slightly. The strong upward wall-normal velocity
is induced by the pair of the vortices between them, which corre-
sponds to the separation line between the surface pressure hills. The
downward wall-normal velocity is induced by the vortices near the
attachment lines. This pair of the streamwise vortices is consistent
with the skin friction topology and the topographical features of
the surface pressure, BEF, and other relevant surface quantities of
the HVP.

Loosely speaking, coherent structures are highly correlated
structures in the fields of the dynamical quantities (pressure and
shear stresses) and kinematical quantities (velocity and its derived
quantities such as vorticity, enstrophy, strain rate, and acceleration)
in a 3D space and on a surface. Equation (1) imposes a determin-
istic (quasideterministic) on-wall constraint on near-wall coherent
structures. The structures in the skin friction, surface pressure, and
BEF fields are indeed correlated, and the turbulent activities rele-
vant to these quantities are revealed. Furthermore, near-wall struc-
tures in the velocity and vorticity fields can be inferred by using
the Taylor-series-expansion solution of the NS equations based on
the skin friction and surface pressure structures. Therefore, Eq. (1)
can potentially serve as a useful tool to study near-wall coherent
structures.

VII. CONCLUSIONS
The exact coupling relations between the skin friction and other

surface quantities (pressure, temperature, and scalar concentration)
are derived from the NS equations, energy equations, and mass
transport equations in a general curvilinear coordinate system on
a surface. These relations can be used to infer the skin friction topol-
ogy in complex flows based on computations and measurements
of pressure, temperature, and scalar concentration on a surface.
The contribution of this work is that the mathematical structures
of the effects of the surface curvature are explicitly expressed. As
an analytical example, the relation between skin friction, surface
pressure, and boundary enstrophy flux (BEF) is evaluated in the
Oseen flow over a sphere, indicating the significant effects of the
surface curvature in this low-Reynolds-number flow. Another exam-
ple for validation is a gravity-driven creeping liquid film flow over a
wavy surface. Furthermore, since skin friction, surface pressure, and
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BEF constitute a group of the intrinsically coupled physical quan-
tities, they can be used to understand the near-wall structures of
complex flows. From this perspective, the DNS data of a turbulent
channel flow are analyzed as a preliminary exploration. The local
structure called the hill-valley pocket (HVP) in the surface pressure
and BEF fields are found to be connected with the separation and
attachment lines in the skin friction topology. The HVP induces
the high local turbulent kinetic energy and Reynolds stress, which
are also associated with the streamwise vortices and long streaks
with high skin friction magnitudes. In addition, the Falkner-Skan
flow over an adiabatic wedge is considered to elucidate the relation
between skin friction and surface temperature. From a mathemat-
ical standpoint, the derivations in this work are direct applications
of the well-established results of differential geometry. Neverthe-
less, the general forms of these relations particularly including the
effects of the surface curvature are new, providing a necessary and
rational foundation for further studies of near-wall structures in
complex flows.
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APPENDIX A: DERIVATION OF EQ. (1)
1. Basic equation

The NS equations for a compressible unsteady viscous flow can
be written as21

ρa = −∇II − μ∇× ω, (A1)

where a = Du/Dt is the acceleration, u is the fluid velocity, ω = ∇
× u is the vorticity, II = p − μθθ, p is the pressure, ρ is the density
of the fluid, μθ = ζ + 4μ/3 is the longitudinal viscosity, ζ is the bulk
viscosity, μ is the dynamic viscosity, and θ =∇ ⋅ u is the dilation rate.
It is assumed that the coefficients ζ and μ are constants and the body
force is zero. The stationary body surface denoted by ∂B is consid-
ered, where the boundary condition is [u]∂B = 0. The subscript ∂B
in the variables and operators denotes those at the surface hereafter.
Therefore, on ∂B, Eq. (A1) is reduced to an on-wall condition

[∇II]∂B = −μ[∇× ω]∂B, (A2)

where []∂B denotes the quantity on the surface. Taking a dot product
of the skin-friction vector τ = μω∂B × n on ∂B with Eq. (A2) and
using Eq. (C1) in which the operator ○ is taken specifically as the
cross product ×, we have

τ ⋅ [∇II]∂B = μ
2n ⋅ {ω∂B × (∇∂B × ω∂B) + ω∂B × [n ×

∂ω
∂n
]
∂B
}.

(A3)

The right-hand side (RHS) of Eq. (A3) can be further decomposed
into more terms to be evaluated next.

In the surface coordinate system, the first term in the RHS of
Eq. (A3) is expressed as

ω∂B×(∇∂B × ω∂B) = ω∂B×(gα ×
∂ω∂B

∂xα
) = gα ∂Ω∂B

∂xα
−ω∂B

α ∂ω∂B

∂xα
,

(A4)

where {gα} (α = 1, 2) are the local contravariant base vectors of the
surface,Ω∂B = ω∂B

2/2 = ω∂B ⋅ω∂B/2 is the boundary enstrophy, and
ω∂B

α = ω∂B ⋅ gα is the projection of the boundary vorticity in the sur-
face coordinates. Furthermore, the second term in the last equality
in Eq. (A4) can be written as

ω∂B
α ∂ω∂B

∂xα
= ω∂B

α
∂(ω∂B

βgβ)
∂xα

= ω∂B
α[∂ω∂B

β

∂xα
gβ + ω∂B

β ∂gβ
∂xα
]

= ω∂B
α[∂ω∂B

β

∂xα
gβ + ω∂B

βΓγαβgγ + ω∂B
βbαβn], (A5)

where Γγαβ is the surface Christoffel symbol and bαβ (α, β = 1, 2) are

the coefficients of the surface curvature tensor K = bαβgα ⊗ gβ, where
⊗ denotes the tensor product.44–46 Since K is a symmetric tensor, the
symmetric relation is bαβ = bβα = gα ⋅K ⋅ gβ, where {gα} are the local
covariant base vectors. The dual relation is gα ⋅ g

β = δβα, where δβα
is the Kronecker delta symbol (δβα = 1 if α = β and δβα = 0 α ≠ β).
Furthermore, since n ⋅ gα = 0 and n ⋅ gα = 0 on ∂B, using Eqs. (A4)
and (A5), we have

n ⋅ [ω∂B × (∇∂B × ω∂B)] = −bαβω∂B
αω∂B

β = −ω∂B ⋅K ⋅ ω∂B

= −[ω ⋅K ⋅ ω]∂B. (A6)

The second term on the RHS of Eq. (A3) is

ω∂B × [n ×
∂ω
∂n
]
∂B
= [ ∂

∂n
(1

2
ω2)]

∂B
n − (ω∂B ⋅ n)[

∂ω
∂n
]
∂B

= [∂Ω
∂n
]
∂B
n, (A7)

where the condition ω∂B ⋅ n = 0 is applied and Ω = |ω|2/2 denotes the
enstrophy. Substitution of Eqs. (A6) and (A7) into Eq. (A3) yields

τ ⋅ [∇II]∂B = μ(μ[
∂Ω
∂n
]
∂B
− μω∂B ⋅K ⋅ ω∂B). (A8)

Furthermore, by using Eq. (C1), the left-hand side (LHS) of
Eq. (A8) is

τ ⋅ [∇II]∂B = μ(ω∂B × n) ⋅ (∇∂Bp∂B + n[∂p
∂n
]
∂B
− μθ∇∂Bθ∂B

−μθn[
∂θ
∂n
]
∂B
)

= τ ⋅ ∇∂Bp∂B − μμθ(ω∂B × n) ⋅ ∇∂Bθ∂B. (A9)

Therefore, combination of Eqs. (A8) and (A9) yields Eq. (1). When
the body force is conservative, p in Eq. (1) should be replaced by
p + φ, where φ is the potential of the body force.

Phys. Fluids 31, 107101 (2019); doi: 10.1063/1.5120454 31, 107101-9

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

2. Oseen flow over a sphere
The steady flow over a sphere at low Reynolds numbers (the

Oseen flow) is considered as an example.22 This problem is consid-
ered in the spherical coordinate system (r, θ, ϕ), where θ and ϕ are
the polar and azimuthal angles, respectively, and r is the radial coor-
dinate. Therefore, the velocity components are the functions of r,
θ, and ϕ. The axial geometry symmetry gives ∂/∂ϕ = 0 and uϕ = 0.
For very small Reynolds number (Re≪ 1), the asymptotic expansion
solution of the NS equations to the order O(Re2) is given as

ur
u0
= −(1 − 3

2r̃
+

1
2r̃3 )cos θ + ReFr(r̃, θ) + O(Re2), (A10a)

uθ
u0
= (1 − 3

4
1
r̃
− 1

4
1
r̃3 )sin θ + ReFθ(r̃, θ) + O(Re2), (A10b)

where

Fr = −
3

16
(2 − 3

r̃
+

1
r̃3 )cos θ +

3
32
(2 − 3

r̃
+

1
r̃2 −

1
r̃3 +

1
r̃4 )

× (2 − 3 sin2 θ), (A11a)

Fθ = [
3

32
(4 − 3

r̃
− 1
r̃3 )sin θ − 3

32
(4 − 3

r̃
+

1
r̃3 −

2
r̃4 )sin θ cos θ],

(A11b)

r̃ = r/R, Re = u0R/ν, R is the radius of the sphere, and u0 is the
freestream velocity along the opposite direction of the z axis. The
vorticity components are ωr = 0, ωθ = 0, and

ωϕ =
u0

R
[3sin θ

2r̃2 + ReGϕ(r̃, θ)] + O(Re2), (A12)

where

Gϕ =
9r̃ sin(2θ)− 6 sin(2θ)+ 18r̃2 sin(θ)− 27r̃2 sin(2θ)+ 12r̃3 sin(2θ)

32r̃4 .
(A13)

The boundary vorticity is

[ωϕ]∂B =
u0

R
(3

2
sin θ − Re(3

8
sin(2θ) − 9

16
sin θ)) + O(Re2).

(A14)
The normal derivative of the enstrophy Ω = |ω|2/2 is

∂Ω
∂n
= u0

2

R3 [−
9 sin2 θ

2r̃5 + ReHΩ(r̃, θ) + O(Re2)], (A15)

where

HΩ = −
27 sin2 θ(4r̃3 cos θ − 12r̃2 cos θ − 4 cos θ + 5r̃ cos θ + 4r̃2)

32r̃7 .

(A16)

From Eq. (A15), we have the BEF

[∂Ω
∂n
]
∂B
= −9

2
u0

2

R3 sin2 θ + Re
u0

2

R3
27 sin2 θ(7 cos θ − 4)

32
+ O(Re2).

(A17)

The metric tensor can be expressed as I = gijg i⊗g j = g⟨ij⟩e⟨i⟩⊗
e⟨ j⟩, and the coefficients are given by

[gij] =
⎡⎢⎢⎢⎣
R2 0

0 R2 sin2 θ

⎤⎥⎥⎥⎦
, and [g⟨ij⟩] = [

1 0
0 1
], (A18)

where {g i} (i = 1, 2, 3) are the local contravariant base vectors, and
{e⟨i⟩} (i = 1, 2, 3) are the local unit orthogonal base vectors. Further-
more, we can calculate the curvature tensor K = bijg i ⊗ g j = b⟨ij⟩e⟨i⟩
⊗ e⟨ j⟩ on the surface of the sphere, where the coefficients are

[bij] = [
−R 0

0 −R sin2 θ
], and [b⟨ij⟩] = [

−1/R 0
0 −1/R

]. (A19)

Therefore, the contribution induced by the surface curvature is

ω∂B ⋅K ⋅ ω∂B = −
1
R
[ωϕ]∂B

2

= −9
4
u0

2

R3 sin2 θ − Re
u0

2

R3
3 sin(θ)(9 sin(θ) − 6 sin(2θ))

16
+ O(Re2). (A20)

Thus, combination of Eqs. (A17) and (A20) yields

μfΩ = μ2 u0
2

R3 [−
9
4

sin2 θ + Re
9(13 cos θ − 6)sin2 θ

32
] + O(Re2). (A21)

On the other hand, the skin friction vector τ = μω∂B × n is

τ = μu0

R
[3

2
sin θ − (3

8
sin(2θ) − 9

16
sin θ)Re]eθ + O(Re2), (A22)

and the surface pressure gradient∇∂Bp∂B = R−1∂p∂B/∂θeθ is

∇∂Bp∂B =
μu0

R2 [−
3 sin θ

2
+ (27

32
sin(2θ) − 9

16
sin θ)Re]eθ + O(Re2).

(A23)
From Eqs. (A21)–(A23), it can be confirmed that the relation
τ ⋅ ∇∂Bp∂B = μfΩ holds up to the order of O(Re). It is expected that
this relation should hold in higher orders.

3. Creeping liquid film flow
Another example is a two-dimensional (2D) gravity-driven

creeping liquid film flow over a wavy surface. The expansion solu-
tion of the Stokes equation using the complex variable was given
by Scholle et al.,43 which reveals closed separations (vortices) in a
deep wavy wall. We examine whether this 2D solution is consistent
with the general theory presented in this paper. For convenience,
we adopt the same coordinate system and notations introduced by
Scholle et al.43

In 2D, skin friction can be expressed by the vorticity on a
boundary, i.e.,

τ̃w = μω̃∂B × n = μω̃y,∂Bey × n = μω̃y,∂Bt, (A24)

where ey is the third direction perpendicular to the 2D plane, t and
n are the unit tangent and normal vectors of the boundary curve,
respectively, and the overhead “∼” denotes a dimensional quantity.
The source term in Eq. (1) is
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f̃Ω = μ2([∂Ω̃
∂n
]
∂B
− ω̃∂B ⋅K ⋅ ω̃∂B) = μ2ω̃y,∂B[

∂ω̃y

∂n
]
∂B

, (A25)

where the quadratic term ω̃∂B ⋅ K ⋅ ω̃∂B vanishes. Therefore, on the
boundary curve, Eq. (1) is reduced to

∂p̃∂B
∂ s̃
= t ⋅ ∇̃∂Bp̃∂B = μ[

∂ω̃y

∂n
]
∂B

. (A26)

In fact, Eq. (A26) is one of a pair of coupling equations given by
Lighthill.1 The nondimensional coordinates and velocity compo-
nents are defined as (x, z) = (x̃, z̃)2π/λ and (u,w) = (ũ, w̃)/U,
respectively, where λ is the wavelength of a wavy surface, U
= ρgλ2 sin α/(8π2μ) is the characteristic velocity, and α is the mean
inclination angle of the surface. The nondimensional pressure is
defined as p∂B = p̃∂B(λ/2πμU), where 2πμU/λ is the characteristic
pressure. Therefore, the nondimensional form of Eq. (A26) is

∂p∂B
∂s
= [∂ωy

∂n
]
∂B

. (A27)

The remaining task is to prove that the solution for the creeping film
flow satisfies Eq. (A27).

According to Scholle et al.,43 the stream function is
expressed as

ψ = h(ξ + ξ)
2
−1

3
(ξ + ξ)

3
+R(ξ)+(ξ + ξ)Q(ξ) + R(ξ)+(ξ + ξ)Q(ξ),

(A28)

where ξ = (z + ix)/2 is a complex variable, ξ = (z − ix)/2 is the con-
jugate variable, and R(ξ) and Q(ξ) are complex functions expressed
as a Fourier series. The vorticity ω =∇ × u is given by

ωy = Δψ =
∂2ψ

∂ξ∂ξ
= 2h − 2(ξ + ξ) +

dQ
dξ
(ξ) +

dQ

dξ
(ξ). (A29)

Therefore, the vorticity gradient components are

∂ωy

∂x
= ∂ωy

∂ξ
∂ξ
∂x

+
∂ωy

∂ξ

∂ξ
∂x
= i

2
⎛
⎝
d2Q
dξ2 (ξ) −

d2Q

dξ
2 (ξ)

⎞
⎠

,

∂ωy

∂z
= ∂ωy

∂ξ
∂ξ
∂z

+
∂ωy

∂ξ

∂ξ
∂z
= −1

2
⎛
⎝

4 − d2Q
dξ2 (ξ) −

d2Q

dξ
2 (ξ)

⎞
⎠

.

(A30)

The hydrodynamic pressure (ph) defined by Scholle et al.43 is

ph = ps + 2h cotα − 2z cotα − i
⎡⎢⎢⎢⎣
dQ
dξ
(ξ) − dQ

dξ
(ξ)
⎤⎥⎥⎥⎦

, (A31)

where ps is the hydrodynamic pressure at the free surface of the liq-
uid film. The gravitational force is −ρg ⋅ r̃ = −ρgx̃ sinα + ρgz̃ cosα,
where r̃ = x̃ex + z̃ez is the positional vector. Thus, the nondimen-
sional gravitational force is −ρg ⋅ r = −2x + 2z cot α. Since the gravi-
tational force can be absorbed into the pressure term, the equivalent
nondimensional pressure is written as

p = ph − ρg ⋅ r

= ps + 2h cotα + i(2ξ − 2ξ) − i
⎡⎢⎢⎢⎣
dQ
dξ
(ξ) − dQ

dξ
(ξ)
⎤⎥⎥⎥⎦

. (A32)

Therefore, the pressure gradient components are

∂p
∂x
= ∂p
∂ξ

∂ξ
∂x

+
∂p

∂ξ

∂ξ
∂x
= −1

2
⎛
⎝

4 − d2Q
dξ2 (ξ) −

d2Q

dξ
2 (ξ)

⎞
⎠

,

∂p
∂z
= ∂p
∂ξ

∂ξ
∂z

+
∂p

∂ξ

∂ξ
∂z
= i

2
⎛
⎝
d2Q

dξ
2 (ξ) −

d2Q
dξ2 (ξ)

⎞
⎠

.

(A33)

For the configuration considered by Scholle et al.,43 the tangent
vector and the normal vector of the bottom surface curve z = b(x)
are given as, respectively,

t = [ex + b′(x)ez]/
√

1 + [b′(x)]2,

n = [−b′(x)ex + ez]
√

1 + [b′(x)]2,
(A34)

where b′(x) = db/dx is the slope of the bottom surface. Using
Eqs. (A30), (A33), and (A34), we have the pressure and vorticity
gradients projected on the surface

∂p∂B
∂s
= [∂p

∂x
]
∂B
(t ⋅ ex) + [∂p

∂z
]
∂B
(t ⋅ ez)

= − 1

2
√

1 + [b′(x)]2
⎛
⎝

4 − d2Q
dξ2 −

d2Q

dξ
2

⎞
⎠
− ib′(x)

2
√

1 + [b′(x)]2

×
⎛
⎝
d2Q
dξ2 −

d2Q

dξ
2

⎞
⎠

(A35)

and

[∂ωy

∂n
]
∂B
= [∂ωy

∂x
]
∂B
(n ⋅ ex) + [∂ωy

∂z
]
∂B
(n ⋅ ez)

= −ib′(x)

2
√

1 + [b′(x)]2
⎛
⎝
d2Q
dξ2 −

d2Q

dξ
2

⎞
⎠
− 1

2
√

1 + [b′(x)]2

×
⎛
⎝

4 − d2Q
dξ2 −

d2Q

dξ
2

⎞
⎠

. (A36)

Since Eq. (A35) equals Eqs. (A36) and (A27) is proven for the
gravity-driven creeping liquid flow.

APPENDIX B: DERIVATION OF EQ. (4)
1. Basic equation

The energy equation for a compressible unsteady viscous flow
is written as22

ρc(∂T
∂t

+ u ⋅ ∇T) = −pθ + μΦ + k∇2T, (B1)

where ρ is the density of the fluid, c is the specific heat at constant
pressure, T is the temperature, u is the velocity of the fluid, p is the
pressure, θ ≡ ∇ ⋅ u is the dilation rate, μ is the dynamic viscosity,
and Φ is the dissipation function. On a stationary surface ∂B, the
no-slip boundary condition u∂B = 0 is imposed. The surface tem-
perature T∂B = T∂B(x, t) is a physical quantity to be determined
experimentally or computationally, and it is not given (or imposed)
as a Dirichlet boundary condition in this problem. Here, the
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incompressible flow with the dilation rate θ = 0 is considered. Fol-
lowing the conventional notation in differential geometry, we denote
x3 as the normal coordinate from the wall (see Appendix C 2). Dif-
ferentiating Eq. (B1) with respect to x3 and using the relation ∂u/∂x3

= n ⋅ (∇ ⊗ u), we have the following equation on ∂B:

ρc( ∂
∂t
[ ∂T
∂x3 ]

∂B
+ [(n ⋅ (∇⊗ u)) ⋅ (∇T)]∂B)

= μ[ ∂Φ
∂x3 ]

∂B
+ k[ ∂

∂x3∇
2T]

∂B
. (B2)

For generality, the tensor product notation⊗ is used in the following
derivations in which u ⋅ (∇ ⊗ T) ≡ u ⋅ ∇T, u ⋅ (∇ ⊗ u) ≡ u ⋅ ∇u, and
u ⊗ u ≡ uu in this case.

The second term on the RHS of Eq. (28) is evaluated. Using the
relations

∂

∂x3∇T =
∂

∂x3 (g
i ∂T
∂xi
) = ∂gα

∂x3
∂T
∂xα

+∇( ∂T
∂x3 ), (B3a)

∇ ⋅ ( ∂

∂x3∇T) = ∇ ⋅ (
∂gα

∂x3
∂T
∂xα
) +∇2( ∂T

∂x3 ), (B3b)

we obtain

∂

∂x3 (∇
2T) = ∂

∂x3 (g
i ⋅ ∂∇T

∂xi
) = ∂gα

∂x3 ⋅
∂∇T
∂xα

+∇ ⋅ (∂g
α

∂x3
∂T
∂xα
)

+∇2( ∂T
∂x3 ), (B4)

where i = 1, 2, 3 and α = 1, 2. Equation (B4) on ∂B is

[ ∂

∂x3 (∇
2T)]

∂B
= [∂g

α

∂x3 ⋅
∂∇T
∂xα
]
∂B

+ [∇ ⋅ (∂g
α

∂x3
∂T
∂xα
)]

∂B

+ [∇2( ∂T
∂x3 )]

∂B
. (B5)

Furthermore, we calculate the three terms of the RHS of
Eq. (B5). The first term is

[∂g
α

∂x3 ⋅
∂∇T
∂xα
]
∂B
= bαβgβ ⋅

∂[∇T]∂B
∂xα

= bαβgβ ⋅
∂

∂xα
(∇∂BT∂B + n[ ∂T

∂x3 ]
∂B
)

= bαβgβ ⋅
∂∇∂BT∂B

∂xα
−K : K[ ∂T

∂x3 ]
∂B

= Tr(∇∂B∇∂BT∂B ⋅K) −K : K[ ∂T
∂x3 ]

∂B
, (B6)

where Tr(S) = gα ⋅ S ⋅ gα, K : K = bαβbαβ, and bαβ = gαγbγβ. To evaluate
the second term of the RHS of Eq. (B5), using the relations

[∂g
α

∂x3
∂T
∂xα
]
∂B
= bαβgβ

∂T∂B

∂xα
= K ⋅ ∇∂BT∂B, (B7a)

∇∂B ⋅ [
∂gα

∂x3
∂T
∂xα
]
∂B
= (∇∂B ⋅K) ⋅ (∇∂BT∂B)+ Tr(∇∂B∇∂BT∂B ⋅K),

(B7b)

n ⋅ [ ∂

∂x3 (
∂gα

∂x3
∂T
∂xα
)]

∂B
= n ⋅ [ ∂2gα

∂(x3)2 ]
∂B

∂T∂B

∂xα

+n ⋅ bαβgβ
∂

∂xα
[ ∂T
∂x3 ]

∂B
= 0, (B7c)

we obtain

[∇ ⋅ (∂g
α

∂x3
∂T
∂xα
)]

∂B
= ∇∂B ⋅ [

∂gα

∂x3
∂T
∂xα
]
∂B

+ n ⋅ [ ∂

∂x3 (
∂gα

∂x3
∂T
∂xα
)]

∂B

= (∇∂B ⋅K) ⋅ (∇∂BT∂B) + Tr(∇∂B∇∂BT∂B ⋅K).
(B8)

The third term of the RHS of Eq. (B5) is evaluated below.
Applying Eq. (C1), we have

[∇2 ∂T
∂x3 ]

∂B
= ∇∂B ⋅ [∇

∂T
∂x3 ]

∂B
+ n ⋅ [ ∂

∂x3 (∇
∂T
∂x3 )]

∂B
. (B9)

By applying Eq. (C1) again, the first term in the RHS of Eq. (B9)
becomes

∇∂B ⋅ [∇
∂T
∂x3 ]

∂B
= ∇∂B

2[ ∂T
∂x3 ]

∂B
+ (∇∂B ⋅ n)[

∂2T
∂(x3)2 ]

∂B

+n ⋅ ∇∂B[
∂2T

∂(x3)2 ]
∂B

= ∇∂B
2[ ∂T
∂x3 ]

∂B
− 2Hmean[

∂2T
∂(x3)2 ]

∂B

, (B10)

where Hmean = (κ1 + κ2)/2 = −∇∂B ⋅ n/2 = tr(K)/2 is the mean cur-
vature with the principal curvatures κ1 and κ2 and K = bαβgα ⊗ gβ

is the curvature tensor. Similarly, the second term on the RHS of
Eq. (B9) is

n ⋅ [ ∂

∂x3 (∇
∂T
∂x3 )]

∂B
= n ⋅ [K ⋅ ∇∂B[

∂T
∂x3 ]

∂B
+∇∂B[

∂2T
∂(x3)2 ]

∂B

+n[ ∂3T
∂(x3)3 ]

∂B

] = [ ∂3T
∂(x3)3 ]

∂B

. (B11)

Substitution of Eqs. (B10) and (B11) into Eq. (B9) yields

[∇2 ∂T
∂x3 ]

∂B
= ∇∂B

2[ ∂T
∂x3 ]

∂B
− 2Hmean[

∂2T
∂(x3)2 ]

∂B

+ [ ∂3T
∂(x3)3 ]

∂B

.

(B12)

The use of Eqs. (B6), (B8), and (B12) yields

[ ∂

∂x3 (∇
2T)]

∂B
= −K : K[ ∂T

∂x3 ]
∂B

+ 2Tr(∇∂B∇∂BT∂B ⋅K)

+ (∇∂B ⋅K) ⋅ (∇∂BT∂B) +∇∂B
2[ ∂T
∂x3 ]

∂B

− 2Hmean[
∂2T

∂(x3)2 ]
∂B

+ [ ∂3T
∂(x3)3 ]

∂B

. (B13)
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Equation (B13) indicates that the normal derivative of the 3D diffu-
sion term on ∂B is decomposed into the quasi-2D diffusion on ∂B,
the curvature terms of the thermal diffusion, and the higher-order
term.

The second term of the LHS of Eq. (B2) is evaluated next. We
notice the relation

[ ∂u
∂x3 ]

∂B
= n ⋅ [∇⊗ u]∂B = [u⊗∇]∂B ⋅ n

= [u⊗∇−∇⊗ u]∂B ⋅ n + [∇⊗ u]∂B ⋅ n
= ω∂B × n + [∇⊗ u]∂B ⋅ n. (B14)

The final equality of Eq. (B14) has the two terms. The first term
is evaluated based on the property of the rotation tensor. By using
Eq. (C1), the second term is

(∇⊗ u)∂B ⋅ n = (∇∂B ⊗ u∂B + n⊗ [ ∂u
∂x3 ]

∂B
) ⋅ n

=
⎛
⎝
n⊗
⎡⎢⎢⎢⎣

∂(uαgα + u3n)
∂x3

⎤⎥⎥⎥⎦∂B

⎞
⎠
⋅ n = [∂u

3

∂x3 ]
∂B
n. (B15)

For an incompressible flow with θ = 0, we observe

θ∂B = [∇ ⋅ u]∂B = ∇∂B ⋅ u∂B + n ⋅ [ ∂u
∂x3 ]

∂B

= n ⋅ (ω∂B × n + [∂u
3

∂x3 ]
∂B
n) = [∂u

3

∂x3 ]
∂B
= 0. (B16)

The use of Eqs. (B14)–(B16) yields

(n ⋅ (∇⊗ u)∂B) ⋅ (∇T)∂B = (ω∂B × n) ⋅ (∇∂BT∂B + n[ ∂T
∂x3 ]

∂B
)

= τ
μ
⋅ ∇∂BT∂B. (B17)

Re-arrangement of Eq. (B2) by using Eqs. (B13) and (B17) leads to
Eq. (4).

It is noted that the term ∇∂B∇∂BT∂B in Eq. (B13) is expressed
as

∇∂B∇∂BT∂B = gβ
∂

∂xβ
(gα ∂T∂B

∂xα
) = gβ(∂g

α

∂xβ
∂T∂B

∂xα
+ gα

∂2T∂B

∂xα∂xβ
)

= ∂2T∂B

∂xα∂xβ
gα ⊗ gβ − Γαβγ

∂T∂B

∂xα
gβ ⊗ gγ +

∂T∂B

∂xα
bαβg

β ⊗ n.

(B18)

For a flat surface where gα = e⟨α⟩ and gβ = e⟨β⟩ in the Cartesian coor-
dinate system, both the Christoffel symbols Γαβγ and the curvature
tensor bαβ are zero. In this case, it is reduced to the Hessian matrix,
i.e.,

∇∂B∇∂BT∂B =
∂2T∂B

∂xα∂xβ
gα ⊗ gβ =

∂2T∂B

∂xα∂xβ
e⟨α⟩⊗ e⟨β⟩. (B19)

For a curved surface, the curvature effect and the derivative of the
temperature along the coordinate curve are coupled in the two
additional terms.

2. Falkner-Skan flow over an adiabatic wedge
The Falkner-Skan flow is considered as an example of heat

transfer. A wedge with an adiabatic wall is placed in a 2D uni-
form steady-state incompressible flow with a constant temperature
at large Reynolds numbers. The external velocity over the wedge
is U(x) = a0xm, x is the coordinate on the wedge surface from the
wedge leading edge, m is a power-law component, and a0 is a posi-
tive constant.22 The half angle is given by πβ/2, where β = 2m/(m +
1). The velocity can be represented as

u = U(x)f ′(η) = a0xmf ′(η), (B20a)

v = −
√

m + 1
2

νa0xm−1(f +
m − 1
m + 1

ηf ′), (B20b)

where the similarity variable η = y
√
(m + 1)a0xm−1/2ν, y is the

wall-normal coordinate, f is a function of η, and ν is the kinematic
viscosity. The similarity equation and boundary conditions for f are

f ′′′ + ff ′′ + β(1 − f ′2) = 0, (B21a)

f (0) = 0, f ′(0) = 0, f ′(∞) = 1. (B21b)

Then, the skin friction vector can be evaluated as

τ = μω × n = μ
⎛
⎝

√
m + 1

2
a0

ν
a0x

3m−1
2 f ′′(0)

⎞
⎠
ex. (B22)

The temperature can be written as T = T∞ + U(x)2Θ/2c,
whereΘ satisfies the following similarity equation with the boundary
conditions on the adiabatic surface and infinity

Pr−1Θ′′ + fΘ′ − 2βf ′Θ = −2f ′′2, (B23a)

Θ′(0) = 0, Θ(∞) = 0, (B23b)

where Pr = ν/a is the Prandtl number and a = k/ρc is the thermal
diffusivity. Using Eqs. (B21)–(B23), we have

[∂
3T
∂y3 ]

y=0
=
a2

0x
2m

2c
Pr(Θ(0) + 2)2βf ′′(0)(m + 1

2
a0

ν
xm−1)

3/2
,

(B24a)

[∂Φ
∂y
]
y=0
= −2βU2f ′′(0)(m + 1

2
a0

ν
xm−1)

3/2
, (B24b)

τ ⋅ ∇∂BT∂B =
μ
c
Θ(0)f ′′(0)ma3

0

√
m + 1

2
a0

ν
x

7m−3
2 . (B24c)

Therefore, combining Eqs. (B24a)–(B24b), we validate Eq. (4) that
has the following special form:

τ ⋅ ∇∂BT∂B = μ
k
ρc
(∂

3T
∂y3 )

y=0
+
μ2

ρc
( ∂Φ
∂x3 )

y=0
, (B25)

where the surface curvature terms vanish in the Falkner-Skan flow.
The corresponding mass-transfer problem in the Falkner-Skan

flow is considered. In a 2D uniform steady-state incompressible
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flow, the binary mass diffusion equation (6) without a source term
has the same form as the energy equation (B1), when temperature
T and the thermal diffusivity a = k/ρc are replaced by the relative
concentration ϕ = ρ1/ρ and the diffusivity of a binary system D12,
respectively. The distribution of the relative concentration of the
species 1 can be written as ϕ = ϕ∞ + U(x)2Θm/2Uref 2, where Uref
is a reference velocity. The similarity equation for Θm are the same
as Eq. (B23a) when the Prandtl number Pr = ν/a is replaced by the
Schmidt number Sc = ν/D12. The boundary conditions at the surface
and infinity remain the same, i.e., Θm

′(0) = 0, Θm(∞) = 0. Since the
solution structure is the same for the mass-transfer and heat-transfer
problems, Eq. (7) can be validated in the Falkner-Skan flow.

APPENDIX C: USEFUL RESULTS IN DIFFERENTIAL
GEOMETRY
1. Decomposition of gradient operator on a surface

We introduce a useful lemma stated as follows. For a tensor
field Ψ that is defined in a neighborhood of the surface ∂B, the
following relation holds, i.e.,

[∇ ○Ψ]∂B = ∇∂B ○Ψ∂B + [n ○ ∂Ψ
∂n
]
∂B

, (C1)

where n is the normal unit vector of the surface, ∂Ψ/∂n is the normal
derivative of Ψ on the surface, and the notation ○ represents any
reasonable product operator such as the dot product ⋅, the cross
product ×, and the tensor product ⊗. In particular, if Ψ is a
scalar field, ∇Ψ means the gradient of the scalar field in a three-
dimensional (3D) Euclidean space and∇∂BΨ∂B means the gradient
of the scalar field tangent to the surface. This lemma is proved below.

For any surface coordinate system, a point on the surface is
represented by x = (x1, x2). We can construct a 3D spatial curvi-
linear coordinate system (x, x3) = (x1, x2, x3) based on the surface
coordinate system. According to the mathematical properties of the
coordinate system described in Appendix A 2, the gradient operator
∇ in the coordinate system is expressed as

∇ = g i(x, x3) ∂

∂xi
= g1(x, x3) ∂

∂x1 + g2(x, x3) ∂

∂x2 + n(x) ∂

∂x3 , (C2)

where {g i} (i = 1, 2, 3) are the local contravariant base vectors under

the 3D spatial curvilinear coordinate system (x, x3). Also, the surface
gradient operator ∇∂B in the surface coordinate system x = (x1, x2)
can be expressed as ∇∂B = gα(x)∂/∂xα (α = 1, 2). Using Eq. (C2),
when the operators ○ and ∂/∂xi are exchangeable, we have

[∇ ○Ψ]∂B = [(g
i(x, x3) ∂

∂xi
) ○Ψ]

∂B

= [gα(x, x3) ○ ∂Ψ
∂xα

+ n(x) ○ ∂Ψ
∂x3 ]

∂B

= ∇∂B ○Ψ∂B + [n ○ ∂Ψ
∂n
]
∂B

. (C3)

2. Geometric properties of a surface
As illustrated in Fig. 8(a), the positional vector of a point on

the surface is given by rs = rs(x) = rs(x1, x2), where x ∈ Ds ⊂ R2

FIG. 8. The surface coordinate system: (a) the positional vector of a point on the
surface and (b) any point in the neighborhood of the surface.

are the curvilinear coordinates of the surface. For any fixed point
on the surface, there exist two parameterized curves called the x1-
curve and x2-curve passing through it, respectively. Along the x1-
curve, the coordinate x2 is fixed, while the coordinate x1 varies. Sim-
ilarly, the coordinate x1 is fixed, while the coordinate x2 varies along
the x1-curve. The local covariant base vectors are defined as gα(x)
= ∂rs(x)/∂xα (α = 1, 2), where g1 and g2 are tangent to the x1 curve
and x2-curve, respectively. Then, the normal unit vector of the sur-
face at the point x can be defined as n = g1 × g2/∥g1 × g2∥. Also, the
local contravariant base vectors {gα} are defined, which satisfy the
condition gα ⋅ gβ = δβα (α, β = 1, 2), where δβα is the Kronecker delta
symbol (δβα = 1 if α = β and δβα = 0 α ≠ β). Then, the metric tensor
can be defined as I = gαβgα ⊗ gβ, where gαβ = gα ⋅ gβ and gαβ = gα ⋅ gβ.
It can be proved that I is symmetric, i.e., gαβ = gβα.

In order to measure the curvature of the surface, the curvature
tensor K = bαβgα ⊗ gβ, where bαβ = n ⋅ ∂gβ/∂xα (α, β = 1, 2). K is also
a symmetric tensor with bβα = bαβ. The equations of motion of the
base vectors in differential geometry are

∂gα
∂xβ
= Γγαβgγ + bαβn,

∂n
∂xα
= −bαγgγ,

∂gα

∂xβ
= −Γαβγgγ + bαβn,

(C4)
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where bαβ = gαγbγβ and Γγαβ = ∂gα/∂x
β ⋅ gγ (α, β, γ = 1, 2) is called the

Christoffel symbol.
In differential geometry, a 3D curvilinear coordinate system

can be reconstructed based on the surface coordinate system. As
shown in Fig. 8(b), any point in the neighborhood of the surface can
be described as r = rs(x) + x3n(x),45 where (x, x3) ∈Ds × (−δ, δ) ⊂R3,
and δ is a positive constant number. This 3D coordinate system also
has its own local covariant base vectors and local contravariant base
vectors, which are defined as g i(x) = ∂r(x)/∂xi and g i ⋅ g j = δij
(i, j = 1, 2, 3). Then, we have the following expression:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g i(x, x3) = (δji − x
3b j

i )g j(x)

g3(x, x3) = n(x)
(i, j = 1, 2), (C5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g i(x, x3) =
(1 − 2x3Hmean)δik + x3bik

1 − 2x3Hmean + (x3)2KGauss
gk(x)

g3(x, x3) = n
(i, k = 1, 2), (C6)

where Hmean = (κ1 + κ2)/2 is the mean curvature and KGauss = κ1κ2
is the Gaussian curvature. When these base vectors are restricted on
the surface, they are the same as local surface base vectors, i.e.,

⎧⎪⎪⎨⎪⎪⎩

gα(x, x3 = 0) = gα(x)
g3(x, x3 = 0) = n(x)

(α = 1, 2), (C7)

⎧⎪⎪⎨⎪⎪⎩

gα(x, x3 = 0) = gα(x)
g3(x, x3 = 0) = n(x)

(α = 1, 2). (C8)

Therefore, we have

∇ = g i(x, x3) ∂

∂xi
= gα(x, x3) ∂

∂xα
+ n(x) ∂

∂x3 (α = 1, 2), (C9)

∇∂B = gα(x)
∂

∂xα
= g1(x) ∂

∂x1 + g2(x) ∂

∂x2 (α = 1, 2). (C10)
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