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a b s t r a c t 

The discrete unified gas-kinetic scheme (DUGKS) is a relatively new, finite-volume formulation of the 

Boltzmann equation. It has several advantages over the lattice Boltzmann method (LBM) in that it can 

naturally incorporate multiscale physical processes and non-uniform lattice mesh. With the goal of simu- 

lating a variety of turbulent flows, we investigate two aspects of DUGKS. First, we explore a parallel im- 

plementation strategy of DUGKS using domain decomposition and MPI (Message Passing Interface), and 

demonstrate the scalability of the parallel DUGKS code. We validate the resulting parallel code using the 

3D Taylor-green vortex flow where small eddies are generated over time from large eddies. The DUGKS 

results are compared to short-time analytical solution as well as to those from LBM and pseudo-spectral 

method. The second-order accuracy of DUGKS is confirmed by using the highest-resulotion DUGKS flow 

as the benchmark. Second, we consider how to incorporate solid walls and non-uniform mesh in DUGKS 

for three-dimensional flows, by simulating a turbulent channel flow. The statistics of the simulated turbu- 

lent channel flow are compared to those based on LBM and spectral methods. It is found that the DUGKS 

results, even with a coarse non-uniform mesh, are overall better than the LBM results when compared to 

the spectral benchmark data. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the major advances in computational fluid dynamics

CFD) in the last three decades is the emergence, development, and

pplications of mesoscopic numerical methods based on solving

he kinetic Boltzmann equation with a linearized collision model.

s the most popular mesoscopic method for simulating nearly

ncompressible flows, the lattice Boltzmann method (LBM) has

eceived a great deal of attention due to its simplicity, high compu-

ational efficiency, and capability of treating a variety of complex

ows such as flows through porous media, multiphase flows

ith moving fluid-fluid or fluid-solid interfaces, and turbulent

ows [1–7] . Although its spatial accuracy is of only the second-

rder, the low numerical dissipation of LBM [8,9] makes LBM

 competitive CFD tool for simulating turbulent flows, and its

hysical accuracy has been demonstrated by comparing with

he N-S based pesudo-spectral methods [7,10,11] . The reason for

ow numerical dissipation in LBM is the accurate treatment (by
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agrangian streaming) of the advection term. Unlike the con-

entional CFD methods which solve the strongly nonlinear

avier–Stokes equations, the LBM solves essentially a linear equa-

ion with local nonlinearity residing in its collision term. In LBM,

he space and time discretizations are fully coupled to each other

nd to a highly symmetric set of discrete kinetic particle velocities.

his highly efficient treatment, however, constrains the method

o nearly incompressible flow under the continuum limit ( i.e. ,

nudsen number less than 10 −3 ) or, through extensions, to weak

onequilibrium flows [12–15] . 

More general kinetic schemes that can handle flows at all

nudsen numbers have also been developed in parallel. A great

xample is the unified gas kinetic scheme (UGKS) [16,17] which is

esigned as a multiscale simulation tool that can treat, within a

ame framework, both the continuum limit (i.e., the N-S equations)

nd the free-molecular limit [18] . In this framework, the physical

odeling is directly performed at the scales of the spatial mesh

ize and time step size, with the use of a sufficient number of

iscrete kinetic velocities. The collisions of kinetic particles within

he grid volume and the particle transport through the surfaces

f the grid volume together determine the time evolution of the

article distribution functions. 

http://dx.doi.org/10.1016/j.compfluid.2017.03.007
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Recently, a discrete unified gas kinetic scheme (DUGKS)

[19,20] has been developed, combining the advantages of both LBM

and UGK S methods. DUGK S is designed as a finite-volume scheme

with flexible mesh adaptation. The key is the improved imple-

mentation of the calculations of surface transport fluxes through a

transformation of the distribution function coupled with the effect

of particle collisions. By using extended equilibrium distributions,

DUGKS has been shown to be capable of simulating flows at all

Knudsen numbers including thermal compressible flows [20] and

Boussinesq flows [21] . This greatly extends the potential applica-

tions of discrete-velocity based mesoscopic schemes. 

A potential application of DUGKS is direct numerical simula-

tion of complex turbulent flows. Due to its finite-volume formu-

lation and its feasibility of incorporating unstructured mesh [22] ,

DUGKS could be potentially more efficient in treating inhomoge-

neous and wall-bounded turbulent flows. For laminar flow sim-

ulations, DUGKS has been shown to have a similar accuracy as

LBM [23] , but DUGKS is numerically much more stable when the

flow is under-resolved. For three-dimensional time-dependent tur-

bulent flows, a first comparative study of DUGKS and LBM was re-

ported by Wang et al. [24] , who concluded that DUGKS is capable

of simulating decaying homogeneous isotropic turbulence, but is

slightly more dissipative when compared to LBM. We must note

that DUGKS does not employ the usual finite-volume formulation

for the advection term. The novelty of DUGKS is that the flux at

the cell interface is computed using the distribution functions that

couple the advection and collision, namely, the flux is evaluated

by solving the Boltzmann evolution equation rather than by inter-

polation. This coupling strategy in DUGKS ensures low numerical

dissipation, as demonstrated in [25,26] . More specifically, in our

recent paper [24] , we show that DUGKS is capable of simulating

a decaying turbulent flow (without walls) and the resolution re-

quirement ( k max η > 3 ) for DUGKS is only slightly higher than that

for LBM ( k max η > 2 ), where k max and η are the largest wavenum-

ber resolved and the flow Kolmogorov length, respectively. 

A critical step in extending the DUGKS applications to three-

dimensional turbulent flows is the scalable implementation. In this

paper, we report a first parallel implementation of DUGKS using

domain decompositions. The resulting parallel code is then vali-

dated using the three-dimensional energy-cascading Taylor–Green

vortex flow for which a short-time analytical solution exists. Com-

parisons with pseudo-spectral simulation results and LBM results

are also provided. Furthermore, we will demonstrate, for the first

time, a successful DUGKS simulation of a turbulent channel flow

using a relative coarse non-uniform mesh. It should be noted that

the efficient parallel implementations of LBM have been widely

studied, taking advantage of the strict local data communication

in LBM. The key is to explore the best use of data structure and

cache memory, and several implementation methods are available

[27–32] . The nature of data communication in DUGKS depends on

the exact algorithm used to compute the surface transport fluxes. 

The remainder of the paper is organized as follows. In Section 2 ,

the basic algorithm of DUGKS is described, along with parallel im-

plementation details. The treatment of no-slip boundary and the

formulation of mesoscopic forcing are also developed. The numer-

ical results and scalability data are presented in Section 3 . Conclu-

sions and future outlook are given in Section 4 . 

2. The DUGKS algorithm and parallel implementation 

In this section, we describe the basic DUGKS algorithm, the

method to parallelize the code, and implementation of the non-

uniform, time-dependent forcing. 
.1. The DUGKS algorithm 

DUGKS begins with the Boltzmann equation with the BGK col-

ision model. In this paper, we only consider the incompressible

ow limit or flows with a small Mach number [19,23] . In this case,

he same discrete kinetic velocities used in the D3Q19 LBM model

an be adopted in DUGKS, namely, 

α = 

⎧ ⎨ 

⎩ 

( 0 , 0 , 0 ) c, α = 0 

( ±1 , 0 , 0 ) c, ( 0 , ±1 , 0 ) c , ( 0 , 0 , ±1 ) c , α = 1 − 6 

( ±1 , ±1 , 0 ) c, ( ±1 , 0 , ±1 ) c , ( 0 , ±1 , ±1 ) c , α = 7 − 18 

(1)

here the speed of the sound is c = 

√ 

3 RT , R is the gas constant, T

s the temperature. The discrete distribution function f α( x , t ) satis-

es the following equation, 

∂ f α

∂t 
+ ξα · ∇ f α = �α ≡ f (eq ) 

α − f α

τ
+ �α, (2)

here τ is the relaxation time and �α denotes the mesoscopic

orcing used to represent the local nonuniform force F ( x , t ) per

nit volume in the Navier–Stokes equation. 

At this point, we recall that the discrete-velocity Boltzmann

quation with the BGK collision model is designed to reproduce

he Navier–Stokes equations, by expanding the distribution func-

ion in terms of a set of Hermite ortho-normal polynomials in ve-

ocity space. This expansion allows the distribution function to be

pproximated in terms of conservative hydrodynamic variables and

heir derivatives [15] . With the BGK collision model, the Chapman–

nskog procedure implies that the continuity and Navier–Stokes

 i.e. , macroscopic) equations depend only on a few leading mo-

ents of the distribution function instead of the full form of

he distribution function. Therefore, truncation of the higher-order

erms in the Hermite expansion of the distribution function has no

xplicit effect on the macroscopic equations [15] . Specifically, the

xplicit Hermite expansion of the Maxwelliam equilibrium distri-

ution at low Mach number (or isothermal limit), up to the second

rder in the Hermite expansion, is [15] 

f (eq ) 
α = ρW α

[ 

1 + 

ξα · u 

RT 
+ 

(
ξα · u 

)2 

2(RT ) 2 
− u · u 

2 RT 

] 

, (3)

here the weighting coefficients W α are W 0 = 1 / 3 , W 1 , ··· , 6 = 1 / 18 ,

nd W 7 , ··· , 18 = 1 / 36 ; ρ is the fluid density; and u is the hydrody-

amic fluid velocity. 

The body force term should be formulated in the spirit of the

ermite approximation. According to the original Boltzmann equa-

ion, the forcing term � in the continuous-velocity form of the

oltzmann equation is [15,33] 

(x , ξ, t) = −F j 

ρ

∂ f (x , ξ, t) 

∂ ξ j 

, (4)

here f ( x, ξ, t ) is the continuous distribution function. The term

 f ( x, ξ, t )/ ∂ ξj should be projected onto the truncated Hermite ba-

is. Shan et al. [15] showed explicitly, using our notations and up

o the second order in the Hermite expansion, that 

α = 

F j W α

RT 

[(
ξα, j − u j 

)
+ ξα, j 

ξα · u 

RT 

]
. (5)

n view of the leading-order terms in f 
(eq ) 
α , the above formulation

an be written alternatively as 

α = 

F j 

ρ

[ (
ξα, j − u j 

)
RT 

f (eq ) 
α + O 

(
u 

2 
)] 

≈
F ·

(
ξα, j − u j 

)
ρRT 

f (eq ) 
α . (6)



Y. Bo et al. / Computers and Fluids 155 (2017) 9–21 11 

T  

t  

s  

E  

m

�  

T∑

w  

f  

s

 

m

ρ  

 

o  

o  

m  

s  

t  

s  

t

 

w  

d  

o  

f

 

w

 

T  

f

a

Q

w  

o  

x

0  

e

 

t  

w  

c

 

w

 

I  

a  

b  

p  

t  

p  

p  

 

w  

f  

t

w

I  

t  

a  

c

 

a

ρ

ρ

T  

 

n  

c

w  

E  

t

 

d  
he O 

(
u 

2 
)

error term in Eq. (6) leads to an error of order O 

(
u 

3 
)

in

he Navier–Stokes equation, which is usually ignored under the as-

umption of low Mach number. It is noted that the approximation,

q. (6) , can also be derived if we start with Eq. (4) and approxi-

ate ∂ f / ∂ ξ j by ∂ f ( eq ) / ∂ ξ j [15,33] . We now write 

α(x , t) ≈ φα f (eq ) 
α (x , t) , with φα ≡ F j ( ξα, j − u j ) 

ρRT 
. (7)

he consistency with the Navier–Stokes equations requires 
 

α

�α = 0 , 
∑ 

α

ξα, j �α = F j , 

∑ 

α

ξα, j ξα,k �α = u j F k + u k F j + O 

(
u 

3 
)
, (8) 

hich can be easily shown to be satisfied by the two alternative

orms, Eq. (5) and Eq. (7) . This consistency has also been demon-

trated in the LBM framework in [6] . 

The hydrodynamic variables, namely, density ρ , the fluid

acrosopic velocity u , and pressure p are obtained as 

= 

∑ 

i 

f α, ρu = 

∑ 

α

ξα f α, p = ρRT . (9)

The DUGKS algorithm makes use of a finite-volume formulation

f Eq. (2) [19,20] . The advection term in Eq. (2) is treated as sum

f surface fluxes after applying the divergence theorem. This treat-

ent allows the lattice velocities to be decoupled from the grid

tructure. For the time integration, the collision term is treated by

he trapezoidal rule, similar to the lattice Boltzmann method. The

urface flux terms by the midpoint rule (other alternative formula-

ions may be used). The details are now explained below. 

Consider here a cuboid grid cell centered at x i, j, k ≡ ( x i , y j , z k ),

ith cell sizes �x i , �y j , and �z k , respectively, in the x, y , and z

irections. The time evolution of the discrete distribution averaged

ver the cell volume V i, j,k = �x i �y j �z k , f α( x i, j, k , t ), is advanced

rom t = t n to t = t n +1 as, 

˜ f α(x i, j,k , t n +1 ) = 

˜ f + α (x i, j,k , t n ) −
�t 

V j 

Q α(x i, j,k , t n +0 . 5 ) , (10)

here, for convenience, the transformed variables are defined as 

˜ f α = f α − �t 

2 

�α, ˜ f + α = f α + 

�t 

2 

�α. (11)

he code computes mainly the transformed variable ˜ f α, all other

orms of the distribution function can be expressed in terms of ˜ f α
nd f 

(eq ) 
α , as shown below. 

The net flux Q α(x i, j,k , t n +0 . 5 ) is defined as 

 α(x i, j,k , t n +0 . 5 ) dS = 

∫ 
∂V j 

(
ξα · n 

)
f α(x b , t n +0 . 5 ) 

= 

[
f α(x i + , j,k , t n +0 . 5 ) − f α(x i −, j,k , t n +0 . 5 ) 

]
ξα,x �y j �z k 

+ 

[
f α(x i, j+ ,k , t n +0 . 5 ) − f α(x i, j−,k , t n +0 . 5 ) 

]
ξα,y �x i �z k 

+ 

[
f α(x i, j,k + , t n +0 . 5 ) − f α(x i, j,k −, t n +0 . 5 ) 

]
ξα,z �x i �y j , (12) 

here f α(x b , t n +0 . 5 ) is the distribution at the cell boundary

r interface x b at the half time step, x i + , j,k = x i, j,k + 0 . 5�x i e x ,

 i −, j,k = x i, j,k − 0 . 5�x i e x , x i, j+ ,k = x i, j,k + 0 . 5�y j e y , x i, j−,k = x i, j,k −
 . 5�y j e y , x i, j,k + = x i, j,k + 0 . 5�z k e z , x i, j,k − = x i, j,k − 0 . 5�z k e z , and

 x , e y , e z are unit vectors in x, y , and z directions, respectively. 

The key step is then to properly evaluate F α . In DUGKS, after in-

egrating Eq. (2) along a particle path from t n to t n + h ( h ≡ 0.5 �t )

ith the collision term included, the distribution function at the

ell boundary at t n + h can be written as 

f α(x b , t n + h ) = f 
+ 
α (x b − h ξα, t n ) , (13)
here a second set of transformed variables are defined as 

f α = f α − h 

2 

�α, f 
+ 
α = f α + 

h 

2 

�α. (14)

t is important to note that the evolution equation, Eq. (13) , is ex-

ct, namely, no numerical dissipation is introduced at this stage

etween two different times, t n and t n + h . Next, we need an ap-

roximation of f 
+ 
α (x b − h ξα, t n ) at a single time t n using spatial in-

erpolation. There are many possibilities, such as the spectral inter-

olation or high-order compact finite-difference schemes. For sim-

licity, here we choose to utilize a local Taylor expansion, namely,

f α(x b , t n + h ) = f 
+ 
α (x b − h ξα, t n ) ≈ f 

+ 
α (x b , t n ) −h ξα · ∇ f 

+ 
α (x b , t n ) ,

(15) 

here f 
+ 
α (x b , t n ) and its gradients ∇ f 

+ 
α (x b , t n ) at the cell inter-

aces can be approximated by the second-order linear interpola-

ions from values at the cell centers. For example, 

∂ f 
+ 
α (x i + , j,k , t n ) 

∂x 
≈ f 

+ 
α (x i +1 , j,k , t n ) − f 

+ 
α (x i, j,k , t n ) 

x j+1 − x j 

= 

f 
+ 
α (x i +1 , j,k , t n ) − f 

+ 
α (x i, j,k , t n ) 

(�x i + �x i +1 ) / 2 

, (16a) 

f 
+ 
α (x i + , j,k , t n ) ≈ f 

+ 
α (x i, j,k , t n ) + 

∂ f 
+ 
α (x i + , j,k , t n ) 

∂x 

�x i 
2 

, (16b) 

here 

f 
+ 
α

(
x i, j,k , t n 

)
= 

2 τ − h 

2 τ + �t 
˜ f α

(
x i, j,k , t n 

)
+ 

(
3 h 

2 τ + �t 
+ 

3 hτ

2 τ + �t 
φα

)
f (eq ) 
α

(
x i, j,k , t n 

)
. (17) 

n Eq. (13) , the half time step values at the cell interface included

he particle collision effect. This coupled treatment of advection

nd collision makes DUGKS a self-adaptive scheme for both the

ontinuum regime and the free-molecular regime [19] . 

Clearly, the hydrodynamic variables can also be evaluated using

ny of the transformed distributions, namely, 

= 

∑ 

α

˜ f α = 

∑ 

α

˜ f + α = 

∑ 

α

f α = 

∑ 

α

f 
+ 
α , (18a) 

u = 

∑ 

α

ξα
˜ f α + 

dt 

2 

F = 

∑ 

α

ξα
˜ f + α − dt 

2 

F = 

∑ 

α

ξα f α + 

h 

2 

F 

= 

∑ 

α

ξα f 
+ 
α − h 

2 

F . (18b) 

herefore, ρ(x b , t n + h ) and u (x , t n + h ) can be obtained from

f α(x b , t n + h ) , which can be used to compute f 
(eq ) 
α (x b , t n + h ) . Fi-

ally, the desired distributions at half time step at the cell interface

an be readily obtained by 

f α( x b , t n + h ) = 

2 τ

2 τ + h 

f α(x b , t n + h ) 

+ 

(
h 

2 τ + h 

+ 

τh 

2 τ + h 

φα

)
f (eq ) 
α (x b , t n + h ) . (19) 

hich can be used to compute the net flux F α(x i, j,k , t n + h ) using

q. (12) . This then allows the distribution function to be advanced

hrough Eq. (10) . 

In the above formulation, we have defined five sets of discrete

istributions: f α, ˜ f α, ˜ f + α , f α, f 
+ 
α . Any one of the five can be used to
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u  
determine the equilibrium distribution f 
(eq ) 
α and then the remain-

ing four. The most convenient choice is to follow the evolution of
˜ f α, which can be used to determine others as follows [19] 

f α = 

2 τ

2 τ + �t 
˜ f α + 

(
�t 

2 τ + �t 
+ 

τ�t 

2 τ + �t 
φα

)
f (eq ) 
α , (20a)

f α = 

2 τ + h 

2 τ + �t 
˜ f α + 

(
h 

2 τ + �t 
+ 

τh 

2 τ + �t 
φα

)
f (eq ) 
α , (20b)

˜ f + α = 

2 τ − �t 

2 τ + �t 
˜ f α + 

(
2�t 

2 τ + �t 
+ 

2�tτ

2 τ + �t 
φα

)
f (eq ) 
α

= 

4 

3 

f 
+ 
α − 1 

3 

˜ f α, (20c)

in addition to the relation Eq. (17) . 

It must be noted that the mid-point treatment (in time) of

the advection term is only one of the many possibilities. Likewise,

there are other possibilities of treating the off-grid distributions

at t = t n in Eq. (15) [19,20] . When compared to the treatment of

the nonlinear advection term in the conventional Navier–Stokes

solvers, we observe two important differences: (1) the advection or

related flux term in DUGKS is linear and as such the time evolution

from t n for t n + h, Eq. (13) , is formally precise, (2) the interpolation

in our treatment is over space only at a single time t n while the

interpolation in the Navier-Stokes solvers involves both space and

time. The coupled collision and streaming treatment in Eq. (13) is

exact, and the space-only interpolation in Eq. (15) maintains a low

numerical dissipation of the overall scheme [25,26] . Should a spec-

tral interpolation be used in Eq. (15) , then the numerical dissipa-

tion could be further reduced. A mathematical analysis of the nu-

merical dissipation in DUGKS [34] shows that the numerical dissi-

pation depends on both the mesh size and the time step size (or

equivalently the CFL number), but is smaller than that uses a direct

interpolation without considering the collision term. 

2.2. Parallel implementation 

The parallel code makes use of two-dimensional domain de-

composition. Assume the physical domain is divided into nx × ny

× nz cells as shown in Fig. 1 . We divide the y direction into N py 

parts and the z direction into N pz parts. A total of N p = N py N pz pro-

cessors are used, each handles a sub-domian of nx × ly × lz cells,

where ly = ny/N py and lz = nz/N pz . The main variable for each pro-

cessor is a four-dimensional ( i.e. , particle index and x, y, z loca-

tions) array ˜ f [f(0:np - 1,1:nx,1:ly,1:lz)], which is defined at the cell

centers, as shown in Fig. 1 , where np = 19 is the number of kinetic

particles. 

The algorithm is summarized using a block flow diagram in

Fig. 2 , where the large red box marks the main loop. There are 4

main subroutines: interface, flux, evolve, and macrovar. The inter-

face subroutine performs the following functions. First f 
+ 

[fb(0:np

- 1,0:nx+1,0:ly+1,0:lz+1)] is computed at the cell centers using Eq.

(17) . Here the hydrodynamic variables at ( x i, j, k , t n ) need to be

computed to obtain f ( eq ) ( x i, j, k , t n ) in Eq. (17) . Then it is extended to

include ghost cell centers as shown in Fig. 1 , by using the periodic

boundary condition, or for no-slip wall by extrapolation. For inte-

rior sub-domains, this extension requires data communication with

neighboring sub-domains. This extension is the only data com-

munication of the algorithm, which is handled by the MPI (Mes-

sage Passing Interface) library. Now the values of f 
+ 
(x b , t n ) at the

cell interface nodes can be computed by interpolation from the

values at the cell centers and ghost cell centers. There are three

types of interface nodes: x −interface nodes, y −interface nodes, and

z−interface nodes; the values of f 
+ 
(x , t n ) at these three types of
b 
nterface nodes are saved as fix(0:np - 1,0:lx,0:ly+1,0:lz+1), fiy(0:np

 1,0:lx+1,0:ly,0:lz+1), and fiz(0:np - 1,0:lx+1,0:ly+1,0:lz). 

The flux subroutine performs the computation of f α(x b , t n + h )

sing Eqs. (15) and (19) . Additional consideration for the no-slip

oundary condition will be explained in Section 2.3 . The val-

es of f α(x b , t n + h ) are saved in a temporary array fi(0:np -

,0:lx+1,0:ly+1,0:lz+1). Here the hydrodynamic variables at (x b , t n +
 ) need to be computed to obtain f (eq ) (x b , t n + h ) in Eq. (19) . This

rocess is repeated for the x, y , and z interface nodes. The same ar-

ays, fix, fiy, and fiz, can be used to store f α(x b , t n + h ) at the three

ypes of interface nodes. 

The evolve subroutine performs the net flux calculation ac-

ording to Eq. (12) . At this point, ˜ f α(x i, j,k , t n + �t) can be read-

ly obtained by Eq. (10) . Finally, the hydrodynamic variables at

(x i, j,k , t n + �t) are obtained from 

˜ f α(x i, j,k , t n + �t) in the macrovar

ubroutine. 

The above description shows that only the interface subrou-

ine requires local sub-domain data communication. A total of five

arge arrays are used in the program, which consumes more mem-

ry than the LBM approach. The main advantage over LBM is that

UGKS allows the use of any non-uniform and anisotropic grid

tructure, as the grid structure is not coupled with the particle ve-

ocities. Two examples of using non-uniform grids will be provided

n Section 3.2 and Section 3.3 . 

.3. Implementation of the no-slip boundary condition on the 

hannel walls 

Here we explain several other necessary details. First, for a solid

all boundary such as the channel walls inSecs. 3.2 and 3.3, the f 
+ 

alues at the ghost cell centers are determined by extrapolation,

imilar to the extrapolation method used in LBM in [35] . The no-

lip boundary condition is done using the concept of bounce-back.

owever, it is performed on the cell interfaces rather than along

attice links in LBM. This interface surface-based treatment has the

otential benefit of eliminating corner singularity, for example, for

he case of cavity flow simulations [23] . Consider a cell interface

hose outward normal is m , since in the examples we considered

n Section 3 , the walls are fixed. The general no-slip bounce-back

iscussed in [19] reduces simply to 

f α(x b , t + h ) = f α(x b , t + h ) , for all ξα · m < 0 , (21)

hich should be executed after the reconstruction of f α( x , t n + h )
n Eq. (13) , but before the transformation back to the original vari-

ble f α( x , t n + h ) , Eq. (19) . This order ensures a consistent compu-

ation of wall velocity needed for the transformation. 

While we assumed a structured grid in the above discussions,

he finite-volume DUGKS formulation can be extended relatively

asily to unstructured grids, as has already been done in [22] . 

. Results 

In this section, we will perform three-dimensional flow simu-

ations using the parallel DUGKS code. We will compare the re-

ults from the pseudo-spectral method and the LBM method. For

eriodic flows, the pseudo-spectral method has been described in

42,43] , and for turbulent channel flow it is presented in [36,37] .

he LBM method follows the details provided in [38,39] . 

.1. 3D Taylor-Green vortex flow with energy cascade 

The 3D Taylor-Green vortex flow [40] is one of the very few

nalytical solutions of three-dimensional time-dependent Navier–

tokes equations. Starting from a simple incompressible 3D initial

ondition of the form 

 (x , t = 0) = cos (x ) sin (y ) sin (z) , (22a)



Y. Bo et al. / Computers and Fluids 155 (2017) 9–21 13 

Fig. 1. A sketch showing the locations of cell-center nodes (filled circles) and related boundary nodes (diamonds for boundary nodes along the x direction, and squares for 

boundary nodes along the y direction) and the ghost nodes (open circles). The grid spacing can be non-uniform in general. The distributions to be solved are defined only 

at the cell-center nodes. The distributions at the ghost nodes are extended from the center-center nodes either by periodic boundary conditions or by extrapolation (for a 

no-slip wall) from the cell-center nodes. 

Fig. 2. Flow diagram of the parallel DUGKS code. 
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 (x , t = 0) = − sin (x ) cos (y ) sin (z) , (22b) 

 (x , t = 0) = 0 , (22c) 

nd assuming periodic conditions in a cubic domain: 0 ≤ x ≤ 2 π ,

 ≤ y ≤ 2 π , 0 ≤ z ≤ 2 π , the three-dimensional time-dependent
avier–Stokes equation 

∂u 

∂t 
+ u · ∇u = − 1 

ρ0 

∇p + 

1 

R 

∇ 

2 u (23)

an be solved analytically, at small times, using the short-time per-

urbation expansion. Here all quantities have been properly nor-

alized by the initial maximum velocity magnitude U 0 in the x

r y direction, and L B /2 π , where L B is the physical domain size,

 = L U / (2 πν) is the flow Reynolds number divided by (2 π ), ν
B 0 
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Fig. 3. The resolution parameter k max η as a function of time, for different grid res- 

olutions in the spectral simulation. The spectral truncation radius k max is set to 

k max = N/ 3 by the 2/3 rule. 
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is the kinematic viscosity. The pressure p has been normalized by

ρU 

2 
0 . 

Taylor and Green (TG37 hereafter) [40] obtained a perturbation

expansion of the velocity field, up to O(t 5 ) . Their solution for the

velocity field contains 8 distinct modes and is given as 

u (x , t) = δ1 cos (x ) sin (y ) sin (z) + α1 sin (2 x ) cos (2 z) 

+ 

2 

3 

γ2 cos (3 x ) sin (y ) sin (z) 

+ γ2 cos (x ) sin (3 y ) sin (z) 

−γ3 cos (x ) sin (y ) sin (3 z) 

−β1 cos (3 x ) sin (y ) sin (3 z) , (24a)

v (x , t) = −δ1 sin (x ) cos (y ) sin (z) + α1 sin (2 y ) cos (2 z) 

−γ2 sin (3 x ) cos (y ) sin (z) 

−2 

3 

γ2 sin (x ) cos (3 y ) sin (z) 

+ γ3 sin (x ) cos (y ) sin (3 z) 

+ β1 sin (x ) cos (3 y ) sin (3 z) , (24b)

w (x , t) = −α1 [ cos (2 x ) + cos (2 y ) ] sin (2 z) 

−γ2 sin (3 x ) sin (y ) cos (z) 

+ γ2 sin (x ) sin (3 y ) cos (z) 

+ β1 sin (3 x ) sin (y ) cos (3 z) 

−β1 sin (x ) sin (3 y ) cos (3 z) , (24c)

where 

δ1 = 

[
1 − 3 t 

R 

+ 

(
9 

R 

2 
− 1 

16 

)
t 2 

2 

−
(

27 

2 R 

2 
− 23 

32 

)
t 3 

3 R 

+ 

(
31 

132 · 64 

− 185 

48 R 

2 
+ 

27 

2 R 

4 

)
t 4 

4 

−
(

555 

44 · 32 · 8 

− 2575 

192 R 

2 
+ 

81 

8 R 

4 

)
t 5 

5 R 

]
, (25a)

α1 = −1 

8 

[
t − 7 t 2 

R 

+ 

(
74 

3 R 

2 
− 43 

44 · 12 

)
t 3 −

(
175 

3 R 

3 
− 43 

44 

)
t 4 

4 

]
, 

(25b)

β1 (x , t = 0) = − 1 

16 

t 2 
(

1 

2 

− 13 

2 

t 

R 

)
, (25c)

γ2 (x , t = 0) = − 15 

176 

t 2 
(

1 

2 

− 31 

6 

t 

R 

)
, (25d)

γ3 (x , t = 0) = − 1 

16 

t 2 
(

1 

2 

− 31 

6 

t 

R 

)
. (25e)

Clearly, as smaller scale fluid motion is generated over time,

and the process of energy transfer from large to small scales was

the original motivation for TG37. Based on this perturbation solu-

tion, TG37 provided prediction of the flow kinetic energy and dis-

sipation rate at short times. Note that this energy transfer across

scales is not present in the 2D Taylor-Green vortex flow often used

to benchmark numerical methods in two spatial dimensions [41] . 

The parameter settings for our simulation are shown in Table 1 .

All the simulations are set with the physical Reynolds number

Re = U 0 L B /ν = 600 π . The velocity scale in LBM is chosen such that,

at the same grid resolution N , one LBM time step is equivalent

to one spectral time step. The LBM MRT parameters are [39] :
 9 = d t/ (3 ν + 0 . 5 d t) , s 1 = 1 . 19 , s 2 = 1 . 4 , s 4 = 1 . 2 , s 10 = 1 . 4 , s 13 =
 9 , s 16 = 1 . 98 , ω ε = 0 . 0 , ω ε j = −475 / 63 , and ω xx = 0 . 0 . 

For the spectral simulation, as shown in Fig. 3 , the resolution

arameter k max η changes from 0.662, 0.965, 1.935, 3.871 at ˜ t = 0

o 0.494, 1.32, 2.65, 5.29 at ˜ t = 10 , for the different grid resolutions

 = 32 , 64 , 128 , 256 , respectively, where k max = N/ 3 is the spectral

runcation radius in the spectral code and η is the Kolmogorov

ength. The minimum k max η occurs around 

˜ t = 6 . 2 and is 0.437,

.897, 1.79, 3.59, for N = 32 , 64 , 128 , 256 , respectively ( Fig. 3 ). Here

he dimensionless time is defined as ˜ t = 2 πU 0 t/L B . This indicates

he flow is not resolved at N = 32 , barely resolved at N = 64 ,

nd well resolved at N = 128 , 256 in the spectral simulation [42] .

s confirmed below, the results from N = 64 and N = 128 spec-

ral simulations are almost identical. Note that the requirement of

 max η > 1 for a well-resolved spectral simulation [42] was devel-

ped based on fully-developed forced homogeneous isotropic tur-

ulence, and should only be taken as a reference. For example,

he initial flow here is not a turbulent flow and contains only the

arge-scale, so the k max η parameter is not meaningful. 

The time evolutions of the kinetic energy and dissipation rate

re shown in Fig. 4 . Four groups of results are shown: the Taylor–

reen short-time theoretical results [40] , and numerical results

rom three different codes: spectral, LBM, and DUGKS. The spec-

ral results at N = 128 can be viewed as the benchmark for others.

ote that the spectral results at N = 256 (not shown) are essen-

ially identical to the spectral results at N = 128 . A number of ob-

ervations can be made. First, all results are identical for ˜ t < 2 . 0 ,

howing that the theoretical short-time expansion is accurate for
˜ 
 < 2 . 0 as long as the kinetic energy and dissipation rate are con-

erned. Also all codes at the two resolutions ( N = 64 , 128 ) shown

dequately resolve the flow for ˜ t < 2 . 0 , since at the early times

he flow is dominated by large-scale initial flow, and the energy-

ascading process has not yet generated the motion at the smallest

cales. Second, the flow appears to be adequately resolved by the

pectral code even at N = 64 as the results from the spectral code

t N = 64 are essentially identical to those at N = 128 , for both

he kinetic energy and the dissipation rate, at all times shown in

he plots. This confirms that the results from the spectral code at

 = 128 and above can be used as the benchmark. The kinetic en-

rgy decays monotonically. However, the dissipation rate first in-

reases due to production of small-scale flow structures, reaches a

aximum at ˜ t ≈ 6 , and then decreases again due to reduction of

he overall flow Reynolds number. Third, LBM and DUGKS results
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Table 1 

Parameter settings for the 3D Taylor–Green vortex flow. 

Label N U 0 L B ν R ≡ U 0 L B 
2 πν dt U 0 dt / dx K (0) D (0) 

Spectral 32/64/128/256 1 .0 2 π 1 
300 

300 0 . 64 
N 

0 .1018591 0 .125 0 .0025 

LBM 32/64/128 0 .1018591 N U 0 N 
600 π 300 1 .0 0 .1018591 0.125 U 2 0 0 . 0025 · 2 πU 3 0 

L B 

DUGKS 32/64/128 0 .1018591 N U 0 N 
600 π 300 0 .5 0 . 1018591 

2 
0.125 U 2 0 0 . 0025 · 2 πU 3 0 

L B 

a b

Fig. 4. (a) Kinetic energy and (b) dissipation rate as a function of time, for the 3D Taylor–Green vortex flow at Re = 300 . All quantities are normalized as indicated. 

Table 2 

Relative errors in percentages in the predicted kinetic energy and dissipation rate using the 256 3 as the 

benchmark. 

K(t = 1 . 0) K(t = 5 . 0) K(t = 10 . 0) D (t = 1 . 0) D (t = 5 . 0) D (t = 10 . 0) 

Spectral (32 3 ) 0 .0023 0 .69 −1 . 13 0 .0042 −7 . 64 −7 . 68 

Spectral (64 3 ) 0 .0 0 06 0 .03 −0 . 123 0 .0 0 09 −0 . 0143 1. 

Spectral (128 3 ) 0 .0 0 01 0 .0 0 01 0 .00742 0 .0 0 02 0 .0055 0 .0190 

LBM (32 3 ) 0 .0143 0 .435 2 .79 −0 . 345 −. 3 −33 . 2 

LBM (64 3 ) 0 .0163 0 .299 2 .08 −0 . 0921 −6 . 18 −9 . 14 

LBM (128 3 ) 0 .0261 0 .215 0 .894 −0 . 0183 −2 . 16 −1 . 16 

DUGKS (32 3 ) −0 . 394 −8 . 42 −10 . 1 −1 . 14 −44 . 6 −59 . 7 

DUGKS (64 3 ) −0 . 024 −1 . 83 −2 . 16 −0 . 229 −19 . 0 −31 . 6 

DUGKS (128 3 ) 0 .024 −0 . 186 0 .632 −0 . 0528 −6 . 28 −9 . 46 
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o  
how some departures from the spectral results, but they converge

o the spectral results at N = 128 . Forth, compared to LBM results,

UGKS clearly exhibits a larger numerical dissipation, which is

onsistent to the observation in [23] based on the simulations of

ecaying homogeneous isotropic turbulence. Finally, it is interest-

ng to note that the errors in the kinetic energy for the LBM and

UGKS are much smaller than the errors in the predicted dissi-

ation rate. The reason is that the numerical dissipation in LBM

nd DUGKS causes a slower growth of small scales and as such a

maller physical dissipation, as shown in Fig. 4 (b). This error com-

ined with the numerical dissipation itself tends to provide a rea-

onable net total dissipation, and consequently, a reasonable pre-

iction of the kinetic energy. 

Using the 256 3 spectral data as the benchmark, we show in

able 2 the relative errors in percentage of the predicted kinetic

nergy and dissipation rate at three different times. First, the rela-

ive errors in the spectral method at lower resolutions are small if

he resolution is sufficient. Second, once again, the results of LBM

nd DUGKS converge to the spectral data as the mesh resolution is

ncreased. Third, as a given mesh resolution, the relative errors in

UGKS are larger than those in LBM. Fourth, the relative errors in-

rease with time for a given resolution. Finally, there is a system-

tic error in DUGKS and LBM due to flow initialization, although

s  
he iterative approach in [44] was used to initialize the mesoscopic

istribution functions. 

As a measure of the accuracy of the simulated small-scale flow

tructures, in Fig. 5 we show the time evolutions of the velocity-

erivative skewness and flatness. Here the skewness and flatness

re defined as 

S = 

〈 
1 
3 

[ (
∂u 
∂x 

)3 + 

(
∂v 
∂y 

)3 + 

(
∂w 

∂z 

)3 
] 〉 

{ 〈 
1 
3 

[ (
∂u 
∂x 

)2 + 

(
∂v 
∂y 

)2 + 

(
∂w 

∂z 

)2 
] 〉 } 3 / 2 

, 

 = 

〈 
1 
3 

[ (
∂u 
∂x 

)4 + 

(
∂v 
∂y 

)4 + 

(
∂w 

∂z 

)4 
] 〉 

{ 〈 
1 
3 

[ (
∂u 
∂x 

)2 + 

(
∂v 
∂y 

)2 + 

(
∂w 

∂z 

)2 
] 〉 } 2 

. (26) 

e developed the short-time theory ourselves based on the ana-

ytical solution for the velocity field in Eq. (24) . First, we observe

hat the short-time theory provides a good prediction of skewness

nly for ˜ t < 1 . 5 , and a good prediction of flatness only for ˜ t < 1 . 0 .

here are two reasons for the degraded prediction performance:

a) the flatness and skewness depend more sensitively on the res-

lution of the small scales so the numerical dissipation will have a

evere impact; (b) the energy cascading system is highly nonlinear,
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a b

Fig. 5. (a) Velocity-derivative skewness and (b) velocity-derivative flatness as a function of time, for the 3D Taylor–Green vortex flow at Re = 300 . The horizontal line on (a) 

indicates a level of −0 . 5 , a value typically observed for forced homogeneous isotropic turbulence. 

Table 3 

The DUGKS order of accuracy based on the L1 norm, measured from the 3D Taylor–Green vortex flow simulations using DUGKS 256 3 

simulation as the benchmark. At the same grid resolution and same time, the corresponding error norm for v velocity is identical to that 

of the error norm for u velocity. 

32 3 64 3 128 3 

2 πU 0 t / L B u ( L 1)/ w ( L 1) Order of accuracy u ( L 1)/ w ( L 1) Order of accuracy u ( L 1)/ w ( L 1) 

1 .0 6 . 98 × 10 −3 / 3 . 93 × 10 −2 2 .09 / 2.16 1 . 64 × 10 −3 / 8 . 80 × 10 −3 1 .34 / 2.23 6 . 47 × 10 −4 / 1 . 87 × 10 −3 

5 .0 0 .154/0.211 1 .75 / 1.47 4 . 57 × 10 −2 / 7 . 62 × 10 −2 2 .23 / 2.24 9 . 77 × 10 −3 / 1 . 63 × 10 −2 

Table 4 

The DUGKS order of accuracy based on the L2 norm, measured from the 3D Taylor-Green vortex flow simulations using DUGKS 256 3 

simulation as the benchmark. At the same grid resolution and same time, the corresponding error norm for v velocity is identical to that 

of the error norm for u velocity. 

32 3 64 3 128 3 

2 πU 0 t / L B u ( L 2)/ w ( L 2) Order of accuracy u ( L 2)/ w ( L 2) Order of accuracy u ( L 2)/ w ( L 2) 

1 .0 6 . 44 × 10 −3 / 3 . 90 × 10 −2 2 .07 / 2.16 1 . 53 × 10 −3 / 8 . 71 × 10 −3 1 .35 / 2.24 6 . 01 × 10 −4 / 1 . 85 × 10 −3 

5 .0 0 .182/0.286 1 .49 / 1.18 6 . 49 × 10 −2 / 0 . 126 2 .02 / 2.12 1 . 60 × 10 −2 / 2 . 90 × 10 −2 
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and over time, even a small round-off error may lead to produc-

tion of different local structures. In fact, the results of two spec-

tral simulations agree only for ˜ t < 3 . 5 , and are different at later

times, possibly due to emergence of different local small-scale flow

structures with different grid resolutions. We note that the flatness

is slightly larger for the N = 128 spectral run when compared to

the N = 64 spectral run. The amplitude of the skewness reaches

a maximum at ˜ t = 2 , corresponding to the strongest nonlinear en-

ergy transfer. When the small-scale motions are developed, say, for

6 < ̃

 t < 8 , the skewness reaches a value of about −0 . 5 , typical for

a fully-developed homogeneous isotropic turbulence [43] . The flat-

ness increases rapidly during the period ( i.e. , 3 < ̃

 t < 5 ) of rapid

development of small-scale flow, then decreases afterwards due

to the reduction of flow Reynolds number. Both LBM and DUGKS

yield reasonable results, with LBM data being closer to the spectral

data, at early times and overall. The trends are all in good quanti-

tative agreement with the spectral results, and the three numerical

methods tend to converge as N is increased. 

Next, we shall investigate the order of accuracy of the DUGKS

using this 3D Taylor-Green vortex flow. For this purpose, the L1

and L2 error norms of the instantaneous flow field must be com-

puted. Initially, we thought to use the 256 3 spectral flow field, but

quickly we realized that the systematic errors due to the flow ini-

tialization in DUGKS tend to contaminate the error norms. Instead,

we use the 256 3 DUGKS flow field as the benchmark for the sim-

ulated flows at lower resolutions. The L1 and L2 error norms at
wo different times are shown in Table 3 and 4 , respectively. Then

he order of accuracy can be estimated based on the ratio of error

orms between two consecutive mesh resolutions, the results are

hown in columns 3 and 5 in Table 3 and 4 . Since this is a time-

ependent nonlinear flow, the error norms increase with time. The

veraged order of accuracy from the L1 norm is 1.94 ( Table 3 ), and

his is 1.83 ( Table 4 ) if the L2 norm is used. Considering the strong

onlinear nature of the 3D Taylor-Green flow, This clearly demon-

trates that the DUGKS scheme has a second-order accuracy. 

Finally, we examine the scalability of our MPI code by plot-

ing the measured wall clock time against the number of proces-

ors used in Fig. 6 . The code was run on the IBM cluster Yellow-

tone at the NCAR-Wyoming Supercomputing Center. On this log-

og plot, an ideal scalability would follow a −1 slope. Indeed, this

s approximately the case, showing that our MPI code scales prop-

rly with the number of processors used. The wall clock times

or the simulation of 3D Taylor-Green vortex flow on the 128 3 

rid, using the three approaches, are compared in Table 5 . In all

ases, two-dimensional domain decompositions are used. Overall,

he CPU time per time step for DUGKS and LBM are comparable,

ith DUGKS taking 19% longer time. Since DUGKS takes twice time

teps, the overall wall clock time for DUGKS is equal to 2.43 times

he wall clock of the LBM code. We should note that the spectral

ode has been highly optimized [45] , LBM is relatively well opti-

ized, and DUGKS has not been optimized. 
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Table 5 

Comparison of wall clock times with 16 processors, for simulations of 3D Taylor–Green vortex flow on the 128 3 grid for a time period of 

2 πU 0 t/L B = 10 . 0 . 

2 πU 0 dt / L B total time steps Total CPU time (s) Wall clock time per step (s) Ratio / time step Overall Ratio 

Spectral 0 .005 10 0 0 2969 0 .185 1 1 

LBM 0 .005 10 0 0 12,519 0 .782 4 .2 4 .2 

DUGKS 0 .0025 20 0 0 30,052 0 .939 5 .1 10 .2 

Table 6 

Parameter settings for the laminar channel flow simulations. 

Label N 1 × N 2 × N 3 u max r G d x min /d x max 2 H ν Re ≡ 2 u max H 
ν dt 

√ 

6 · c s d t/d x min 

Case 1 40 × 4 × 4 0 .1 0 .0 1 .0 30 .4891 0 .2186 18 .3 0 .35355 0 .5 

Case 2 40 × 4 × 4 0 .1 3 .0 0 .1938 24 .1825 0 .1322 18 .3 0 .077182 0 .5632 

Fig. 6. Measured wall clock time as a function of the number of processors used. 

The line shows a power law of −1 slope. 
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.2. The laminar channel flow 

Before reporting the results for a turbulent channel flow in

ection 3.3 , we demonstrate briefly the simulation of transient

aminar channel flow, as in this case the flow can be solved an-

lytically. 

A non-uniform mesh in the wall-normal direction is defined the

y locations of the cell faces as 

 f (i )= 

tanh (0 . 5 r G ) + tanh 

[
r G 

( i −N 1 / 2−1 ) 
N 1 

]
tanh 

(
r G 
N 1 

) , for i = 1 , 2 , . . . , N 1 + 1 ,

(27) 

here r G is a parameter used to adjust the degree of non-

niformity. This defines a symmetric mesh with respect to i =
 1 / 2 + 1 . The mesh is defined such that the maximum mesh

ize is one unit, namely, dx max = x f (N 1 / 2 + 1) − x f (N 1 / 2) = 1 .

he minimum mesh size is dx min = x f (2) − x f (1) = [ tanh (0 . 5 r G ) +
anh (r G /N 1 − 0 . 5 r G )] / tanh (r G /N 1 ) . The above mesh specifies the

hannel half-width as 

 = 

tanh (0 . 5 r G ) 

tanh 

(
r G 
N 1 

) . (28) 

he limiting case of r G → 0 represents the uniform mesh. Two

eshes with r G = 0 and r G = 3 are considered ( Table 6 ). N 1 is set

o 40. Since there is no dependence on y and z, N 2 and N 3 can be

et to any value. 
The analytical solution of the laminar transient flow is 

v (x, t) 

v max 
= F ( x n , t n ) = 

(
1 − x 2 n 

)
−

∞ ∑ 

k =0 

(−1) k · 4 

[(k + 0 . 5) π ] 3 

× cos [ (k + 0 . 5) πx n ] exp 

[
−(k + 0 . 5) 2 π2 t n 

]
, (29) 

here x n = x/H and t n ≡ νt / H 

2 . 

Fig. 7 shows the simulated velocity profiles at five different

imes with both the uniform grid and non-uniform grid. The the-

retical solutions are also shown. The theoretical solutions are ob-

ained using 300 terms in the summation in Eq. (29) . Clearly, in all

ases, the DUGKS results are in excellent agreement with the the-

retical solutions. The difference between the simulated velocity

nd the theoretical value is plotted in Fig. 8 . In both cases, there

ppears to be a positive fixed error at the wall for the specific

o-slip boundary treatment we used. The errors inside are mostly

ositive, except at early times that they may be negative near the

hannel center. The shape and magnitude of the error profiles are

ffected by the mesh structure, but overall the errors for the non-

niform mesh case (Case 2) are comparable to those for the uni-

orm mesh case (Case 1). 

.3. The turbulent channel flow 

The parameter settings for the turbulent channel flow simu-

ation are shown in Table 7 . Specifically, the same nonuniform

esh defined by Eq. (27) is used in the wall normal (x) direc-

ion, with N 1 = 128 and r G = 4 . 0 . This setting yields dx min = 0 . 0728

nd a channel half width of H = 30 . 8589 . A 128 3 mesh resolu-

ion is used. The DUGKS domain size matches the spectral do-

ain size, therefore, dy = 3 . 03 , and dz = 1 . 01 . The CFL number is

 t 
√ 

2 /d x min = 0 . 90 . In terms of the wall unit, dx + 
min 

= 0 . 425 , which

s sufficient to resolve the wall layer [46] . With the parameters

hown in Table 7 , roughly 6 DUGKS time steps correspond to one

BM time step. 

In Fig. 9 (a), we show the mean flow speed (averaged over the

hole flow domain) as a function of non-dimensional time t ∗ ≡
u ∗/ H . A nonuniform force field described in [39] was added to the

onstant physical driving force, to excite the development of tur-

ulent flow during 0 < t ∗ < 0.526. The same perturbation forc-

ng with identical parameters was applied in the LBM simulation.

he difference in the mean flow speed at t ∗ = 0 between DUGKS

nd LBM was due to the use of slightly different initial mean flow

rofiles in the two simulations. Initially, the mean flow speed de-

reases as the kinetic energy is transferred from the mean flow to

he turbulent fluctuations. After t ∗ = 0 . 526 , the nonuniform force

eld is removed, and the mean flow speed continues to evolve,

rst reaches a minimum mean flow speed at around t ∗ = 4 . 5 , then

ebounds and gradually reaches a stationary value. For both the

UGKS and LBM runs, the flow appears to be stationary at around
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a b

Fig. 7. Velocity profiles for the transient laminar flow: (a) uniform grid with 2 H = 40 . 0 , and (b) nonuniform grid with 2 H = 24 . 1825 . The symbols are the simulated DUGKS 

data and the lines are the theoretical solutions. Re = 18 . 3 . 

a b

Fig. 8. The relative errors for the DUGKS transient laminar flow: (a) uniform grid with 2 H = 40 . 0 , and (b) nonuniform grid with 2 H = 24 . 1825 . 

Table 7 

Parameter settings for the turbulent channel flow simulations. 

Run N 1 × N 2 × N 3 Domain size H ν u ∗ Re τ δx min / ( ν/u ∗) ( < 2.25 [46] ) u ∗2 dt / ν

Spectral [36] 129 × 192 × 160 2 H × 4 πH × 4 πH /3 - - - 180 0 .054 - 

LBM [39] 200 × 400 × 200 2 H × 4 H × 2 H 100 0 .0036 0 .00648 180 1 .806 0 .01166 

DUGKS 128 × 128 × 128 2 H × 4 πH × 4 πH /3 30 .86 0 .0012 0 .007 180 0 .425 0 .001893 
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u ∗t/H = 25 . The average mean speed averaged for u ∗t / H > 25 is

15.71 from the DUGKS simulation and 15.80 for the LBM simu-

lation, and relative difference is about 0.6%. Due to the use of a

much large computational domain size in DUGKS, the variations of

the mean flow speed with time in DUGKS are much smaller than

those in LBM. As a comparison, the mean flow speed in the spec-

tral simulation reported in [36] at the same flow Reynolds number

was 15.63. Therefore, the DUGKS mean flow speed is 0.5% larger

than the spectral benchmark, while the LBM mean flow speed is

1.1% larger than the spectral benchmark, implying that the DUGKS

yields a better result in terms of the mean flow speed. The rela-

tive error in DUGKS is due only to the numerical truncation error,

while the relative error in LBM is due to both the domain size ef-

fect and numerical truncation error. 

Next, we show profiles averaged over time after t ∗ = 25 .

Fig. 9 (b) displays the mean velocity profiles on a log-linear plot.

Here, the legend “Spectral” refers to the data from the Chebychev-

spectral simulation done by the Stanford group [36,37] using a do-
ain size 4 πH × 2 H × 4 πH /3. In wall units, the channel center

s at x + = 180 . The DUGKS result is very close to the LBM result,

nd both are in reasonable agreement with the spectral results.

he profile fits well the standard linear viscous sublayer scaling for

 

+ < 5 , and the inertial sublayer scaling starting at y + > 30 . In the

nertial sublayer, the mean velocity from the DUGKS and LBM is

lightly larger than the spectral benchmark data. 

The averaged Reynolds stress profiles are shown in Fig. 10 , in

oth linear-linear and log-linear plots. The center of the channel

s at x/ (2 H) = 0 . 5 . The sum of Reynolds stress and viscous stress

aries linearly from the channel center to the channel wall. All data

re in good agreement. When compared to the spectral result, the

UGKS result is clearly better than the LBM result in the near wall

nd buffer regions ( x /(2 H ) < 0.15). 

Finally, the rms velocity profiles are shown in Fig. 11 . Overall,

he profiles from the DUGKS and LBM are in reasonable agreement.

n the near-wall regions, the streamwise rms velocity is the largest

nd the transverse rms velocity is the smallest. The DUGKS results



Y. Bo et al. / Computers and Fluids 155 (2017) 9–21 19 

a b

Fig. 9. (a) Time evolution of the mean flow velocity for the simulated single-phase turbulent channel flow. (b) The mean flow velocity profiles, averaged over t ∗ > 25.. 

The thin dash blue line in (a) marks the long-time average of 〈 U〉 /u ∗ = 15 . 71 for the GUGKS simulation, the thin dash black line in (a) marks the long-time average of 

〈 U〉 /u ∗ = 15 . 80 for the LBM simulation, and the thin red dash line in (a) marks the average mean speed from the spectral simulation reported in [36] . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

a b

Fig. 10. Turbulent Reynolds stress profiles in half the channel: (a) linear-linear plot, (b) log-linear plot. The data are averaged over t ∗ > 25. All quantities are normalized by 

u ∗2 . The thin red line in (a) denotes the total shear stress, so the difference between this straight line and the data represents the viscous shear stress due to the mean flow. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

a b

Fig. 11. The r.m.s. fluctuation velocity profiles: (a) linear-linear plot; (b) log-linear plot. The data are averaged over t ∗ > 25. All quantities are normalized by u ∗2 . 
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for the streamwise and spanwise rms velocities in the near-wall

region ( x /(2 H ) < 0.15) are better than the LBM results when com-

pared to the spectral benchmark. In the center region of the chan-

nel, the DUGKS result in the streamwise direction appears to devi-

ate more from the spectral data for two reasons. First, the DUGKS

resolution is perhaps too coarse in the channel center region in

both transverse and streamwise directions and the numerical dis-

sipation is significant. Second, the LBM result at the peak location

overshoots due to the domain size effect [39] ; this combined with

the numerical dissipation in LBM makes the results appear better

in the center region. Overall, we may still claim that the DUGKS

results are better given the coarser resolution used in DUGKS (see

Table 7 ) to cover a larger domain. Different distribution of grid

points in the transverse direction and different grid resolutions

should be tested, which could be a topic for future work. 

We note that the numerical dissipation in DUGKS depends on

the time step size (or the CFL number), as shown in Zhu et al. [34] .

A smaller time step implies a smaller numerical dissipation and

more accurate solution. Since in our turbulent channel flow simu-

lation, the time step size is derived from the CFL number based on

the smallest lattice spacing near the channel wall, the time step is

indeed very small, which could be the reason for accurate turbu-

lence statistics from DUGKS. 

In summary, the first simulation of turbulent channel flow us-

ing DUGKS shows that the results are reasonably accurate. Of sig-

nificance is that these preliminary DUGKS results are obtained

with a coarse grid resolution covering a large domain size, thus

the grid cell aspect ratios near the wall are large. The maximum

aspect ratio measured in terms of streamwise lattice spacing to

transverse lattice spacing near the wall is 41.62. Since the standard

LBM uses a cubic lattice, it is costly to cover the same domain size,

so a smaller domain size was used here. Recently, we have shown

that it is possible to extend the D3Q19 LBM to a cuboid grid [47] ,

but the cuboid model could have numerical stability issues at large

aspect ratios. The DUGKS code is numerically stable for grid cells

with large aspect ratios. 

4. Summary and outlook 

In this paper, we report on parallel implementation of the re-

cently developed mesoscopic DUGKS scheme [19,20] for simulat-

ing three-dimensional flows. When dealing with incompressible

flows, the same D3Q19 lattice velocity model used in LBM can

be adopted. However, the transport term is treated as the sum of

fluxes across the interfaces of a grid cell volume. This removes

the restriction on the grid structure of the standard LBM, mak-

ing it feasible to incorporate non-uniform and irregular grids. The

treatment of the transport term is more involved compared to

the streaming operation in LBM, but the transformation from the

linkwise streaming in LBM to surface fluxes in DUGKS has po-

tential benefits of removing corner singularity and generating a

much more stable scheme. In this paper, we consider only non-

uniform structured grids, and the parallel implementation is rela-

tively straightforward. Besides the details of DUGKS algorithm im-

plementation, we have also documented the implementations of

a non-uniform grid, no-slip wall and non-uniform time-dependent

forcing. The MPI code based on two-dimensional domain decom-

position shows a good scalability. 

The resulting parallel code was first tested for the 3D scale-

evolving Taylor–Green vortex flow, and DUGKS results are com-

pared to the Taylor-Green short-time analytical solution [40] and

numerical results from pseudo-spectral method and LBM. The ac-

curacy of the Taylor–Green short-time analytical solution can be

accessed by the high-resolution spectral solution. It was found that

DUGKS can provide accurate results with adequate grid resolu-

tion. The numerical errors in DUGKS are larger than those in LBM,
howing that DUGKS is more dissipative when compared to LBM.

his is consistent with the conclusion in [24] . Using the DUGKS

56 3 flow as the benchmark, we have demonstrated the second-

rder accuracy of the DUGKS scheme. 

DUGKS results for a transient laminar channel flow agree well

ith the theoretical solution, with both uniform and non-uniform

rids in the wall-normal direction. Here we only considered the

xtrapolated bounced back for the no-slip wall. The numerical er-

or on the wall is related to how the distribution on the boundary

s constructed, which needs further investigation. 

A first DUGKS simulation of the turbulent channel flow was

uccessfully performed, and results were compared to LBM and

pectral results. We find that even with the use of a cuboid grid

f very large aspect ratio (in our case the largest aspect ratio is

1.62 near the wall), the DUGKS code is numerically stable. The

UGKS results are better than the LBM results, in terms of the

imulated mean flow speed and turbulence statistics in the near

all and buffer regions. This is very encouraging given that a rel-

tively coarse grid was used for a large computational domain.

BM with a uniform cubic grid could not handle the same domain

ize with limited computational resources [39] . Furthermore, a 3D

uboid LBM model has recently been developed, but even at grid

spect ratio of 2.0, the cuboid LBM code was found to be numeri-

ally unstable [47] . Although the time step size in DUGKS has to be

mall due to the use of non-uniform grid, but the reduced grid size

akes the overall computational cost of DUGKS to be comparable

o LBM. This combined with our recent work on using DUGKS to

imulate decaying homogeneous isotropic turbulence [24] clearly

hows that DUGKS can be used as a DNS tool for turbulent flows,

articularly compressible and thermal turbulent flows. Neverthe-

ess the work here is considered preliminary, further examples of

urbulent flow simulations using DUGKS at higher flow Reynolds

umbers and different flow configurations are needed to further

ocument the capabilities and accuracy of DUGKS relative to LBM

nd other methods. While in this paper, DUGKS was used as a

NS tool since the local grid spacings in all spatial directions were

ade sufficiently small, to adequately resolve all scales of the flow.

ue to its nature as a finite-volume formulation, DUGKS has the

otential to be used as an implicit large-eddy simulation (LES) tool

or high-Reynolds number flows at a given grid resolution. 
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