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Prediction of Joint Moments Using a Neural Network
Model of Muscle Activations From EMG Signals
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Abstract—Because the relationship between electromyographic
(EMG) signals and muscle activations remains unpredictable, a
new way to determine muscle activations from EMG signals by
using a neural network is proposed and realized. Using a neural
network to predict the muscle activations from EMG signals
avoids establishing a complex mathematical model to express the
muscle activation dynamics. The feed-forward neural network
model of muscle activations applied here is composed of four
layers and uses an adjusted back-propagation training algorithm.
In this study, the basic back-propagation algorithm was not
applicable, because muscle activation could not be measured,
and hence the error between predicted activation and the real
activation was not available. Thus, anadjustedback-propagation
algorithm was developed. Joint torque at the elbow was calculated
from the EMG signals of ten flexor and extensor muscles, using
the neural network result of estimated activation of the muscles.
Once muscle activations were obtained, Hill-type models were
used to estimate muscle force. A musculoskeletal geometry model
was then used to obtain moment arms, from which joint moments
were determined and compared with measured values. The results
show that this neural network model can be used to represent the
relationship between EMG signals and joint moments well.

Index Terms—Artificial neural network, back-propagation,
muscle models.

I. INTRODUCTION

OVER the years, the neurophysiology and biomechanics of
muscle systems have been investigated quite extensively

in order to characterize the relations between muscle activity
(EMG) and various dynamic and/or kinematic aspects of the
movement behavior. The EMG signal is a direct reflection of
muscle activity. Raw EMG activity increases both as the firing
rates of individual motor units rise and as previously inactive
units become recruited. Nevertheless, the relationship between
EMG and muscle activation remains unclear. A new method to
predict muscle activation from EMG signals is proposed in this
paper. This method involves the novel combination of artificial
neural networks with a Hill-type muscle–tendon model that will
transform the muscle activations to muscle forces.

The major advantages of neural networks are that they ex-
hibit adaptation and learning, they are fault tolerant, and they
avoid establishing a complex mathematical model. Another im-
portant advantage is that the neural network could lump muscles
together and reduce the number of variables. It has been argued
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that for multijoint movements, each muscle is not always treated
by the nervous system as a separate variable [1]. That is, mus-
cles could be coupled together such that one muscle’s activation
is relevant to another’s.

As Fig. 1 shows, the transformation from EMG to muscle
force can be divided into activation dynamics and contraction
dynamics [2]. The excitation of muscle tissue (neural excita-
tion) acts through activation dynamics to generate an internal
muscle tissue state, which is called muscle activation. Through
muscle contraction dynamics, muscle activation energizes
the cross bridges and muscle force is developed. Both the
force–length and force–velocity relationships are dependent
on muscle activation [2]. To estimate accurately the muscle
forces, the first step is to estimate muscle activation correctly.
Once muscle forces are found, they can be multiplied by the
respective muscle moment arms and summed to yield the joint
moment.

The existing applications of artificial neural networks in
biomechanics have dealt primarily with the estimation of joint
angles and moments in gait stimulation. Sepulvedaet al.made
use of artificial neural network with the back-propagation
algorithm to map two different transformations: 1) EMG
joint angles and 2) EMG joint moments. Both networks were
successfully trained to map the input vector onto the output
vector [3]. This type of model does not account for known
relationships involving muscle moment arms, contraction
velocity, joint angles, etc. Luhet al. constructed a three-layer
feed-forward network with an adaptive learning rate to deter-
mine the relations between the EMG activity and isokinetic
elbow joint torque [4]. The input signals of the neural network
included not only novel EMG but also joint position and joint
angular velocity. The output was the prediction of isokinetic
joint torque. Based on Fig. 1, their work used a neural network
to replace blocks 1, 2, 3.

Savelberget al. did similar work [5], [6]. They used an ar-
tificial neural network to predict dynamic tendon forces from
EMG signals in an animal model. Liuet al.also used an artifi-
cial neural network approach to predict dynamic muscle force
prediction from EMG [6]. The neural networks created in these
studies were used to nonlinearly map the relationship between
EMG activity and muscle–tendon force. Their neural network
replaced muscle model blocks #1 and #2.

Despite the success of such models, there are several known
factors about the generation of muscle forces and joint moments
that are generally neglected in this approach. For example, it is
known that muscle forces change with length and velocity and
that muscle moment arms change with joint angles. Since the
neural network approach is essentially a black box, one could
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Fig. 1. A block diagram of the transformation from EMG to joint movement. Muscle activation dynamics transforms EMG to muscle activation. Muscle
contraction dynamics transforms activation to muscle forces by using Hill-type muscle models that account for the length–tension and force–velocity
relationships, etc. Finally, the muscle geometry model accounts for muscle moment arms and transforms muscle forces to muscle joint moment contributions.
These are summed to obtain joint moment.

argue that such things are absorbed in the neural network model.
However, since such relationships are established, we thought
it might be best to take advantage of them by using the neural
network to only model that which is not well established: the
muscle activation dynamics (block #1). This offers the advan-
tage of allowing us to use established Hill-type models when
computing muscle forces that account for physiologically estab-
lished relationships such as the force–length and force–velocity
curves. This way, we can also use established musculoskeletal
models that characterize changes in muscle lengths and moment
arms as functions of joint angles. In this way, we are modeling
only the muscle activation dynamics as a black box, which is
reasonable since these relationships are not well established.

The goal of this paper is to establish a neural network model
for muscle activation dynamics. An adjusted back-propagation
algorithm was created in order to solve the problem due to the
unavailability of accurate muscle activations. The joint moment
was then calculated using the muscle activations, which the
neural network model predicted.

II. M ETHODS

A. Neural Network Model

The basic structure of the neural network proposed in this
paper (Fig. 2) consists of four arrays of several neurons and
interconnections between all elements from consecutive rows.
The first layer, also called the input layer, has ten neurons. The
second and third layers are hidden layers, which have 15 neu-
rons each. The fourth layer, also called the output layer, has
ten neurons. Inputs to the network are the normalized EMG
magnitudes of the ten muscles under study (biceps long head,
biceps short head, triceps long head, triceps lateral head, tri-
ceps medial head, brachialis, brachioradialis, pronator teres, ex-
tensor carpi radialis longus, and anconeus). Outputs are the cor-
responding ten muscles’ activations. A node’s input is deter-
mined by multiplying each input signal by the corresponding
connection weight. The net input is transformed to an output
signal by a sigmoid activation function. The sigmoid function is
used because of its nonlinearity. By using this sigmoid function,

Fig. 2. The four-layer neural network model representing the
EMG-to-activation relationship.

the output layer unit is constrained to generate signals between
zero and one.

The artificial neural network has a specific procedure to
“catch” the information contained in the given data. This
procedure is called the “learning” process, and the given data
provided for the artificial neural network to begin learning are
called the “training set.” The error back-propagation learning
algorithm is one of the most popular training algorithms. It is
composed of two stages: a feed-forward step, where the neural
nodes’ output is specified; and a learning stage, where the
connection weights and bias terms are updated. The two steps
are repeated until the difference between the network predicted
output signal (predicted muscle activation) and desired output
signal (measured muscle activation) is below a specified
tolerance value.

B. Neural Network Algorithm

The objective of this research is to predict muscle activa-
tion from muscle EMG signals. To do this, we need a set of
training data, which includes the ten muscles’ measured EMG
signals and the corresponding muscles’ activations. Unfortu-
nately, muscle activation is not a measurable quantity. However,
we can measure elbow joint moment. Hence, we will use this
in our adjusted algorithm.
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Error in the predicted joint moment can be described as fol-
lows:

(1)

where stands for theth muscle activation and is the mea-
sured elbow joint moment. is the difference between pre-
dicted joint moment with measured joint moment.

For a Hill-type muscle model, joint moment is a function of
muscle activation, muscle length, and contraction velocity. This
can be expressed by (2)

(2)

The partial derivative of elbow joint moment referent to
muscle activation in (1) can be solved by (3)

(3)

where is a small change at and is the corresponding
change in joint moment while other parameters kept unchanged
except adding to . Although and are avail-
able, we cannot solve from (1).

To solve this problem, we need to see the details in a basic
back-propagation algorithm [7]. In mathematical terms, we may
describe a neuron by writing the following pair of equations:

(4)

(5)

where are the input signals;
are the synaptic weights of neuron; is the linear combiner
output; is the threshold; is the sigmoid activation func-
tion; and is the output signal of the neuron. The threshold
is an external parameter of artificial neuron. We may formu-
late the combination of (4) and (5) as follows:

(6)

(7)

Each hidden or output neuron of a multilayer neural network
is designed to perform two computations. The first is the compu-
tation of the function signal appearing at the output of a neuron,
which is expressed as a continuous nonlinear function of the
input signals and synaptic weights associated with that neuron.
The second computation is an instantaneous estimate of the gra-
dient vector (i.e., the gradient of the error surface with respect

to the weights connected to the inputs of a neuron), which is
needed for the backward pass through the network.

The error signal at the output of neuronat iteration (i.e.,
presentation of th training pattern) is defined by

(8)

where neuron is an output node and refers to the error
signal at the output of neuron; refers to the desired re-
sponse for neuron; and refers to the function signal ap-
pearing at the output of neuron.

We define the instantaneous value of the squared error for
neuron as 1/2 . Correspondingly, the instantaneous value

of the sum of squared errors is obtained by summing 1/2
over all neurons in the output layer

(9)

The average squared error is obtained by

(10)

where is the total number of patterns contained in the training
set. The objective of the learning process is to adjust the weights
of the network so as to minimize .

Case I—Neuron Is in the Output Layer:The correction
applied to is defined by

(11)

(12)

where is a constant that determines the rate of learning; it
is called thelearning-rate parameterof the back-propagation
algorithm. The use of a minus sign accounts for gradient descent
in weight space. The net internal activity level produced
at the input of the nonlinearity associated with neuronis

(13)

Case II—Neuron Is Located in a Hidden Layer:When
neuron is located in a hidden layer of the network, there is
no specified desired response for that neuron. Accordingly, the
error signal for a hidden neuron would have to be determined re-
cursively in terms of the error signals of all the neurons to which
that hidden neuron is directly connected

(14)

(15)

We may now summarize the relations that we have derived for
the back-propagation algorithm. First the correction
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applied to the synaptic weights connecting neuronto is de-
fined by the delta rule

(16)

where is the learning-rate parameter, is the local gra-
dient, and is the input signal of neuron. Second, the local
gradient depends on whether neuronis an output node
or a hidden node.

1) If neuron is an output node, equals the product of
the derivative and the error signal , both
of which are associated with neuron.

2) If neuron is a hidden node, equals the product of
the associated derivative and the weighted sum
of the s computed for the neurons in the next hidden or
output layer that are connected to neuron.

From the introduction of the back-propagation algorithm, we
notice that there is no specified desired response for hidden neu-
rons, which is very similar to the problem we meet with the
neural network model for EMG to muscle activation. To be more
specific, what we need to train our neural network is the correc-
tion . So we can treat the output layer of our neural
network model as a hidden layer

(17)

(18)

What we need to know is .
For our EMG-to-muscle-activation neural network model, the

instantaneous sum of squared error is

(19)

where is measured elbow joint moment, is
the calculated joint moment using the muscle activation output
of neural network model, is the th muscle activation, i.e.,
the output of the neural network model. Thus we can obtain

(20)

(21)

(22)

For the previous layers, we continue to use the back-propagation
algorithm to adjust the synaptic weights.

C. Supplemental Algorithms

There is an eletromechanical delay between EMG signals
and muscle activation. To treat this factor, we add a time-delay
parameter in our model. During the training process, the
training set data were composed of the EMG signals at time
and the joint moment at . During the predicting process,

we used EMG signals at time to predict the muscle ac-
tivation at the current time.

Because the muscle itself functions as a low-pass filter, we
added a low-pass filter (3 Hz, second-order Butterworth) be-
tween the neural network model and Hill-type muscle model.
There is no such low-pass filter used in the training process.

The muscle contraction dynamics employed here have been
previously described [8], [9] and were based on the models de-
scribed by Zajac [2]. The musculoskeletal geometry model that
was used to compute the moment arms and muscle lengths has
been described by Murrayet al. [10], [11].

III. EXPERIMENTS

The subject was seated with his shoulder at 90abduction, 0
extension, and no external rotation, and the elbow at 90flexion
with neutral pronation–supination. The shoulder was secured
with straps, and the flexion axis of the elbow was in line with
the vertical axis of the rotation table. The subject’s torso was sta-
bilized using automobile seat belts that passed over the shoul-
ders, crossed at the chest, and were secured at the back. This
fixed the subject in the heavy, rigid chair in order to minimize
shoulder movement during the study. A Fiberglass cast approx-
imately 5 cm wide was made on the subject’s distal forearm just
proximal to the ulnar styloid. The cast was bolted to a six-de-
gree-of-freedom load cell with a resolution of 0.56 N (Assur-
ance Technologies, Inc., Model 150-600).

EMG data were collected from ten muscles simultaneously
during isometric flexion–extension time-varying loads. Intra-
muscular electrodes were placed into all muscles under study.
These electrodes were used to avoid signal contamination
from nearby muscles and were made from 75-mm-diameter
Teflon-coated stainless-steel wire. The Teflon coating was
removed from 0.5 cm of either end of the wire, and the wire was
placed using a 27-gauge hypodermic needle. Two electrodes
were placed in each muscle, approximately 2 cm apart, in lo-
cations as described by Perotto [12], and tests were performed
to verify proper placement. All electrodes were connected to
a custom-made preamplifier: a two-pole, high-pass filter with
30-Hz cutoff and a gain of 1000. The signal was then sent to a
filter/amplifier, an eight-pole low-pass Butterworth filter with
300-Hz cutoff, and a variable gain between 2.5 and 40. Elbow
torque was recorded from the load cell rigidly. Myoelectric and
load cell signals were sampled at 1000 Hz via analog-to-digital
converter and stored in the memory of an Intel-based PC.
EMGs and joint moments were recorded during maximal
voluntary contractions, and these maximal values were used to
normalize the EMG data.

Three experimental protocols were employed. In Experiment
1, the subject was asked to perform one cycle of 75% maximum
isometric extension and flexion. In Experiment 2, the subject
was asked to perform a ramp up to 50% maximum isometric
flexion followed by a ramp down to relaxation. In Experiment
3, the subject was asked to perform three cycles of 100% max-
imum isometric extension and flexion. The EMG measured in
the 100% maximum isometric contraction was used as reference
of normalization. EMG data were processed (filtered, full-wave
rectified, and normalized) and passed to neural network model.
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Fig. 3. Training results from the neural network model. Predicted elbow flexion moment is compared with measured joint moment after (A) 1000 cycles, (B)
3000 cycles, and (C) 10 000 cycles. Panel (D) shows how the error diminished with the number of cycles.

The outputs of the neural network model, the estimated muscle
activation, were used as input to a Hill-type muscle model to
calculate the elbow joint torque. We then compared the calcu-
lated value with the measured torque, used the torque error to
calculate the error of estimated activation, and updated the con-
nection weights and bias terms (as described in Section II-B)
until the torque error was below a specified tolerance value or
until the preset number of training cycles has been reached.

The data from Experiment 1 were used for training the neural
network, and the data from Experiments 2 and 3 were used to
test the neural network prediction performance.

IV. RESULTS

The data from a trial of Experiment 1 were used to train the
neural network model. All synaptic weights were randomized at
the beginning of the training process. An adjusted back-propa-
gation algorithm was applied.

After an appropriate number of training cycles, the model ac-
curately estimated the joint moment of the training set (Fig. 3).
After the neural network had been trained for 1000 cycles, the
average relative error was 3% [Fig. 3(A)]. The training of 1000
cycles took approximately 30 min running on a PC with an Intel
PII 400-MHz CPU. After 3000 training cycles, the average rel-
ative error was 1.5% [Fig. 3(B)]. The time cost was about 1.5
h. After 10 000 training cycles, there was no discernible differ-
ence between predicted and measured values [Fig. 3(C)]. The

average relative error was 0.8%. The time required for the neural
network to be trained was around 5 h. It can be seen that the av-
erage relative error got smaller as the number of training cycles
increased [Fig. 3(D)]. The error decreased very quickly at first
with the increase in the number of the training cycles, and then
the subsequent addition of training cycles yielded diminished
benefits.

All the information about the relationship between EMG sig-
nals and muscle activation was saved in the adjusted synaptic
weights. Keeping these weights unchanged and being fed with
new EMG signals, the neural network model could predict the
corresponding muscle activation.

In the first prediction test, the same Experiment 1 task was
chosen (Fig. 4). A new trial from Experiment 1 from the same
subject was used as input, and the neural network model pro-
duced the predicted muscle activation. With these muscle acti-
vations and Hill-type muscle models, the predicted elbow joint
moment was calculated. The predicting period takes no more
than a minute since all this required was a single forward pass
through the (already trained) neural network. The predicted av-
erage relative error was 8.3%. The covariance was 7.4%. This
error is substantially lower than that obtained when this muscle
activation step is ignored and rectified and filtered EMG is used
as input to the model of muscle contraction dynamics (rela-
tive error: 15.3%). The results show the neural network model
works well for a different trial of the same experiment as the
training data.
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Fig. 4. Comparison of the predicted elbow flexion moments with the measured
joint moments. This figure shows the predictions of joint moments based on use
of the neural network estimations of muscle activations from Experiment 1. The
model was trained on a data set obtained from a single trial during Experiment
1: a similar cyclic movement of about 0.3 Hz (but a different trial than used for
prediction).

In Prediction Test 2, we tried to apply the trained neural net-
work to predict muscle activation in Experiment 2 (Fig. 5). The
subject was asked to perform a 50% maximum isometric flexion
in this experiment. The average relative error was 4.9%, and the
covariance was 10.3% The prediction result for Experiment 2
matches the experimental data nearly as well as in Experiment
1, except there are larger errors at the beginning and the end of
the trial.

In Prediction Test 3, we tried to apply the trained neural
network to predict muscle activation in Experiment 3 (Fig. 6).
Here the subject was asked to perform three cycles of 100%
maximum isometric flexion and extension. The average relative
error was 34.2%, and the covariance was 32.3% Although the
error is larger than that for different trials of Experiment 1 and
Experiment 2, the neural network model predicted the joint
moment rather closely. The larger error is not unexpected be-
cause Experiment 3 is substantially different from Experiment
1, which is used to train the neural network.

The relationship between the EMG signals and muscle acti-
vations was examined for the biceps and triceps (Fig. 7). The
muscle activation is the predicted result of the neural network
model. Other muscles have similar results. The activations pre-
dicted from the neural network model have a positive relation-
ship with the EMG signals measured in the experiment. The re-
sults match our knowledge that the EMG signal is correlated
with muscle activity, i.e., the larger the EMG signal, the more
activated the muscle is. The results also match our knowledge
that the activation has a nonlinear relationship with EMG sig-
nals. It is difficult to express the relation accurately in a simple
equation.

Although these results show great success in predicting
overall joint moment, they also reveal some inappropriate
predictions of specific muscle activations profiles. Specifically,
the predicted muscle activations all have a baseline offset. This
is about 0.4 for the biceps and 0.3 for the triceps. This is an

Fig. 5. Comparison of the predicted elbow flexion moments with the
measured joint moments. This figure shows the predictions of joint moments
based on use of the neural network estimations of muscle activations from
Experiment 2. The model was trained on a data set obtained from a single trial
during Experiment 1.

Fig. 6. Comparison of the predicted elbow flexion moments with the
measured joint moments. This figure shows the predictions of joint moments
based on use of the neural network estimations of muscle activations from
Experiment 3. The model was trained on a data set obtained from a single trial
during Experiment 1.

artifact of the neural network because when the EMG is near
zero, the activations should be near zero as well.

V. DISCUSSION

The termactivation dynamicsdescribes the nonlinear re-
lationship between EMG activity and muscle activation. The
neural network model used a particular training algorithm
to optimize the connection weights between neurons to map
this relationship. The nonlinearity of the relationship was
represented by all the connection weights and neuron activation
functions. From the training results and prediction results, we
can see that the model works well in predicting joint moment
from EMG signals.
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Fig. 7. Comparison of the EMG and predicted activations for (A) the biceps brachii long head and (B) the triceps brachii medial head. The EMG signal is filtered
and normalized for comparison.

There have been some very successful studies on the ap-
plication of neural networks to muscle models, but they typi-
cally use the neural network to model the whole process from
EMG to muscle force [5], [6], EMG to joint moment [13], or
EMG to joint angles [3]. The neural network models are es-
sentially black-box models. Although we can get good predic-
tions of muscle forces or joint moments, we cannot use neural
network models to learn about intermediate steps such as how
much each muscle has been activated or how much force the
muscles have produced when estimating joint moments from
EMGs. By including the Hill-type muscle models in the con-
traction dynamics, the neural network does not have to account
for established length–tension or force–velocity affects. On the
other hand, we know that the relationship of EMG to muscle
force is often nonlinear in somewhat unpredictable ways [14],
and this would not be accounted for by simply using normalized
EMG as the input to the Hill models. Since this relationship is
not well established, a black-box approach for this part of the
model is reasonable.

Although it is reasonable to model just the muscle activation
dynamics as a neural network, it is also more difficult. To use
neural networks to map the relation between EMG signals and
muscle activation, we have to train the neural network by giving
it the information of both EMGs and muscle activation. EMG
signals can be measured in our experiment, but the problem is
that we do not have accurate muscle activation values to help
to train the model. In this research, an adjusted back-propaga-
tion algorithm has been proposed and implemented. In this algo-
rithm, we used the joint moment error to calculate the derivative
of joint moment to muscle activation function and used this to
change the interconnection weights in the neural network.

A guideline for the minimum amount of data required for
training is 10 , where equals the number of in-
puts and equals the number of outputs [7]. In this research,

. Another rule of thumb is that the number of
training cases should be ten times the number of model weights.
In our neural network model, there are four layers with 10, 15,
15, and 10 neurons, respectively. Thus, we have 525 (1015

15 15 15 10) neurons. The training experiment was
approximately 10 s; the sampling rate was 1000 Hz, yielding
10 000 samples. This is 20 times the number of weights. Thus

the training data amount in this research satisfies the above re-
quirements.

The critical issue in developing a neural network is general-
ization: how well will the network make predictions for cases
that are not in the training set? Neural networks, like other flex-
ible nonlinear estimation methods, can suffer from either un-
derfitting or overfitting. A network that is not sufficiently com-
plex can fail to detect fully the signal in a complicated data set,
leading to underfitting. A network that is too complex may fit the
noise, not just the signal, leading to overfitting. Overfitting is es-
pecially dangerous because it can easily lead to predictions that
are far beyond the range of the training data with many of the
common types of neural networks. Overfitting can also produce
wild predictions in multilayer perceptrons, even with noise-free
data.

The best way to avoid overfitting is to use a large amount
of training data. If there are at least 30 times as many training
cases as there are weights in the network, overfitting is less un-
likely, although some slight overfitting may occur no matter how
large the training set is. For noise-free data, five times as many
training cases as weights may be sufficient [7].

As calculated before, in this paper the training data amount
was around 20 times that of the number of interconnection
weights. This should be enough to avoid significant overfitting,
but it is not enough to say that there is no overfitting in this
system, which is another explanation for the larger error in the
predictions associated with Experiment 3.

The model was developed using data for each subject
independently; therefore, a neural network constructed from
one subject should not be used for others. For similar reasons,
a neural network constructed from one group of muscles and
joints should not be used for others. In fact, a neural network
constructed from a group of muscles could not be reused the
next day for the same muscles on the same subject without
recalculating the model, because the EMG signal could change
with renewed electrode placement. That means that no general
artificial neural network can be obtained. However, we can use
the current connection weights as initial values to train new
neural networks in order to expedite the training process.

From the prediction results, we can see that the prediction
error associated with Experiment 3 was larger than the error
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for Experiments 1 and 2. The reason for this lies in the differ-
ence between Experiment 3 and the training experiment. The
neural network does not have information about the difference
in the protocols. Another reason is due to the overfitting of the
neural network model. Thus the approach is best used when the
data from which the predictions are to be made are fairly sim-
ilar to that on which the model was trained. This limitation can
be diminished by combining several different trials of different
experiments when constructing the training set. This will give
the neural network more information about different situations,
making it more robust.
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