I:

  Þ                                                                                         

 Þ

            Þ

 Þ

At x=0,  Þ c1=0

 At x=1, T=200 Þ

Thus,

(a) The maximum temperature in the rod is

       °C (at x=0)

(b) The heat loss at x=L is

       (W)

 

II:

(a) Finite difference equations at the two ends and in the interior.

Node # 1:

 

, because at node1, it’s just half of a cell. The g(dx/4) is the average g(x) in  the half of cell of node1.

Node # M:

 (°C)

Interior nodes (i=2 to M-1):

Where

 

(b) Program (M=10) using Matlab:

heattransfer_rod.m

%numeric solution for one dimension steady-state conduction

%MEEG342 Heat Transfer

%'program for computer assignment 1

%'this program calculates the temperature distribution in a rod with heat generation,

%'insulated at one end, constant temperature at the other end, and side surfaces insulated.

function heattransfer_rod

 

global M L Tend EPS dx k A S ifConverged  Q_out X i T Tanal

%---------------------define constants--------------------------

% M is the grid size, but the initiation of M is done in plot_curve.m

% we can initiate the M with 30 or 10, then the final temperature result

% will be different

L=1; %rod length

Tend =200; %constant temperature at one end

EPS =0.01;%convergence accuracy

 

%--------define and initial arrays ---------------------------

T=ones(1,M); %As Single 'temperatures

T=T*Tend;  %Initial the temperature array with Tend

Tnew=ones(1,M); %As the new caculated temperatures

Tnew=Tnew*Tend; %Initial the array with Tend

Tanal=zeros(1,M); %As Single analytical solution

X=zeros(1,M); %As Single coordinate of nodes

 

%-----------------initial variables---------------------------------

ifConverged=0; %As Boolean flag,initial it as false=0

dx=L/(M-1); %As Single %delta x

k=100; %As Single thermal conductivity

A=100000; %As Single coefficient of heat generation

S=25/10000; %As Single cross sectional area of the rod

 

 

%analytical solution

for  i=1:M

X(i) =(i - 1)*dx;

Tanal(i)= 366.7-166.7*(X(i))^3;

end

 

 

%------------main loop------------------------------------------------

%this loop keeps recalculating the temperature field until

%it has converged

 

while ifConverged==0 %continue the loop if the values doesn't converged

   

%Tnew() holds the newly calculated temperatures

%T() holds the values from the last iteration

 

%left end (insulated)

Tnew(1)=T(2)+A*(dx^3)/(8*k);

 

%right end (constant temperature)

Tnew(M)=Tend;

 

%Interior nodes

    for i=2:(M - 1)

    Tnew(i)=(1/2)*(T(i-1)+T(i+1))+A*(i-1)*(dx)^3/(2*k);

    end

 

%check to see if the temperatures have converged

    ifConverged=1;

    for i =1:M-1

        if abs(T(i)-Tnew(i))> EPS

           ifConverged =0;

        end

    end

    T=Tnew;

end

 

%copy new temperatures to old temperatures and display on the worksheet

T=Tnew;

%calculate the heat loss at the right end

 Q_out=A*(L - dx/4)*S*(dx/2) + k*S*(T(M - 1) - T(M)) / dx;

 

 

Plot_curve.m

%the file is to plot the temperature distribution when M=30 and M=10

%the global variables which is defined and used in heattransfer_rod.m

global M  X  T Tanal

 

%set the value of the M

M=30;

heattransfer_rod;%runing the heattransfer_rod.m to caculate T

 

%plot the Temperature when M=30

%plot the numeric solution of Temperature vs X coordinate

figure;

plot(X,T,'--rs','LineWidth',1,...

                'MarkerEdgeColor','k',...

                'MarkerFaceColor','g',...

                'MarkerSize',8);

hold on;

 

%plot the analytic solution of  T

plot(X,Tanal,'--rp','LineWidth',1,...%plot the analytic solution of  T

                'MarkerEdgeColor','k',...

                'MarkerFaceColor','g',...

                'MarkerSize',8)

 

% give the graph the title

title('curve of temperature distribution ');% give the graph the title

 

% give the x coordinate a label

xlabel('x--unit(m)');

 

% give the y coordinate a label

ylabel('Temperature--unit(K)');

hold all;

 

%plot  the Temperature when M=10

M=10;

 

%runing the heattransfer_rod.m to caculate T, when M=10

heattransfer_rod;

 

%plot the numeric solution of Temperature vs X coordinate

plot(X,T,'--yd','LineWidth',1,...

                'MarkerEdgeColor','k',...

                'MarkerFaceColor','y',...

                'MarkerSize',8);

hold all;

 

%plot the analytic solution of  T

plot(X,Tanal,'--gp','LineWidth',1,...%plot the analytic solution of  T

                'MarkerEdgeColor','k',...

                'MarkerFaceColor','r',...

                'MarkerSize',8);

legend('T when M=30','Tanal when M=30','T when M=10','Tanal when M=30',4);

(c) Plot the temperatures

M=10:

X(i)

Tanal(i)

T(i)

0

366.6667

366.087

0.111111

366.438

365.9165

0.222222

364.8377

364.3763

0.333333

360.4938

360.0944

0.444444

352.0348

351.699

0.555556

338.0887

337.8181

0.666667

317.2839

317.0798

0.777778

288.2487

288.1121

0.888889

249.6113

249.5428

1

200

200

 

Q(L)=

124.9745

 

M=30:

X(i)

Tanal(i)

T(i)

0

366.6667

365.9573

0.034483

366.6598

365.9532

0.068966

366.612

365.9099

0.103448

366.4821

365.7866

0.137931

366.2293

365.5422

0.172414

365.8125

365.1357

0.206897

365.1906

364.526

0.241379

364.3227

363.6722

0.275862

363.1678

362.5331

0.310345

361.6849

361.0678

0.344828

359.833

359.2351

0.37931

357.571

356.9941

0.413793

354.8581

354.3037

0.448276

351.6531

351.1228

0.482759

347.915

347.4104

0.517241

343.603

343.1252

0.551724

338.6759

338.2265

0.586207

333.0928

332.6729

0.62069

326.8127

326.4235

0.655172

319.7944

319.4371

0.689655

311.9972

311.6727

0.724138

303.3799

303.0891

0.758621

293.9016

293.6454

0.793103

283.5213

283.3002

0.827586

272.1978

272.0127

0.862069

259.8904

259.7417

0.896552

246.5579

246.446

0.931034

232.1593

232.0845

0.965517

216.6537

216.6162

1

200

200

 

Q(L)=

124.7409

 

Temperature distribution

From the figure, we can see that both results (M=10 and M=30) are very close to analytic solution.

 

(d) Heat Loss

By running the programs, we find the heat loss at x=L is

Q = 124.9745 (W) when M = 10, and

Q = 124.7409 (W) when M = 30,

while the analytic solution is

Q = 125 (W)