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Abstract— In this paper we present an extension to the
navigation function methodology [6], [7] to the case where
unmodelled obstacles are introduced in the workspace. A feed-
back control law is derived, based on the navigation function
built on the initial workspace. Global convergence and collision
avoidance properties are established. The derived closed form
control law is suitable for real time implementation. Colli-
sion avoidance and global convergence properties are verified
through computer simulations.

I. INTRODUCTION

Navigation functions [1], [3], [6], [8] have become an
important tool for potential field based robot navigation
because they yield robust and fast navigation schemes that
are important for real time implementation. Among other
challenges, real time implementation requires that control
systems are able to react promptly and safely to environment
changes and be able to deal with uncertainty by modelling
and incorporating sensory information on line.

This work is motivated by the need to redesign the
potential field each time an environment change is detected.
Our approach is to construct a potential field that models all
known environment features and combine it with an efficient
control scheme that handles additional unknown features.

Most of previous research has focused either on the prob-
lem of completely known environments [6] or of completely
unknown ones [5]. In this paper we bridge this gap and try
to bring the best of both worlds. The navigation problem for
partially known environments can be stated as follows: “For
a partially known workspace, find a control law that steers
a point robot from any initial state to a given final state,
and can incorporate on-line information from newly discov-
ered environment features.”. Our basic idea is to construct
a discontinuous vector field which acts as the predefined
navigation field away from unmodelled obstacles and as a
vorticity-like field close to them. We argue that the flows of
such a vector field will drive our system asymptotically to its
target state, given that the vorticity-like field is appropriately
constructed.

The rest of the paper is organized as follows: Section
II introduces preliminary definitions, notation and some
technical Lemmas, required for further discussion. Section
III describes the construction of the vector field that is used
for robot navigation while section IV presents the proposed

control law. Section V presents the simulation results and the
paper concludes with section VI.

II. PRELIMINARIES

Let the admissible configuration space (workspace) for the
robot be W ⊂ R

2. The obstacle free subset of the workspace
is denoted Wfree ⊆ W , and ϕ : Wfree → R is the potential
(navigation) function which models the known environment.
Let Oi ∈ Wfree be the i’th known obstacle, i = 1 . . . nO,
where nO is the number of known obstacles. We assume that
obstacles boundaries are C2 curves.

Define the class of periodic, vector valued C2 functions:
gj(s+S) = gj(s), with gj(s) : R → R (gj), with j an index
number referring to an obstacle. The range R (gj) ⊂ Wfree

of each of these functions will serve as the bounding surface1

that will bound a newly added obstacle Aj ⊂ Wfree. It is
trivial to note that such functions always exists in a bounded
workspace W as long as Aj ⊂ Wfree ⊆ W since we can
always adjust the range of gj to be arbitrarily close (in the
sense of the minimum distance between set members) to Aj

and still have that R (gj) ⊂ Wfree.
Note that newly discovered obstacles are part of the

initially thought “free” workspace, Wfree. If for a newly
added obstacle Aj ∩ Oi 6= ∅ then R (gj) is extended to
bound it as shown in Fig. 1. We assume that R (gj) has a
nonzero distance d from the contained obstacle’s boundary.

The internal region (see 1) introduces a new obstacle in
the workspace, that is denoted by the set Ogj

⊂ W . Let S
represent the length of ∂Ogj

. If the domain of gj(s), where
s ∈ R is increasing while describing the obstacle’s boundary
counterclockwise, is restricted to s ∈ [a, b) with b − a = S
then gj(s) is required to be a bijection. Obviously R(gj) =
∂Ogj

. Each ∂Ogj
introduces the following topology (Fig. 1):

1) The Ogj
internal, J −

2) The Ogj
boundary, ∂Ogj

3) The Ogj
external, J +

Lemma 1: If ϕ is a navigation function and h ∈ Ogj
then

ϕ (h) attains a minimum value for some h ∈ ∂Ogj

1we use the term bounding surface here to denote that since R (gj) slices
Wfree in two regions, the region where the new obstacle is contained is
termed internal, the external region is the other slice and their boundary is
the bounding surface
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Fig. 1. a. Initial workspace b. Workspace with an additional obstacle A1

c. The resulting bounding obstacle Og1

Proof: Since ϕ is a navigation function for the system
ẋ = −∇ϕ, any dense invariant set should contain the origin.
Let hbmin

= arg min
hb∈∂Ogj

(ϕ (hb)). If ϕ (hi) ≤ ϕ (hbmin
) for some

hi ∈
(
Ogj

\∂Ogj

)
, that would have meant that Ogj

is an
invariant set. But this is not true since Ogj

is not of measure
zero and it does not contain the origin (otherwise the problem
would be unsolvable). Hence ϕ (hi) > ϕ (hbmin

).
Lemma 2: The following relations hold:

1) ∇ϕ (hbmin
) · ∇gj

(
gj

−1 (hbmin
)
)

= 0
2) ∇ϕ (hbmin

) · ∇⊥gj

(
gj

−1 (hbmin
)
)

< 0

where ∇gj(s) =
[

∂gx
j (s)

∂s

∂g
y

j
(s)

∂s

]
, ∇⊥gj is perpendicular to

∇gj and is directed towards J + (Fig. 2) and hbmin
as defined

in the proof of lemma 1.

=const.

Fig. 2. Unmodelled obstacle in a quadratic (obstacle free) potential field

Proof: The derivative of ϕ along s at the point of
minimum should be zero. Hence

∂ϕ
(
gx

j (s) , gy
j (s)

)

∂s
= 0

=
∂ϕ

∂gx
j

∂gx
j

∂s
+

∂ϕ

∂gy
j

∂gy
j

∂s
= ∇ϕ (gj(s)) · ∇gj (s)

⇒ ∇ϕ (hbmin
) · ∇gj

(
g−1

j (hbmin
)
)

= 0

The second part of the Lemma can be proven in a similar
way as Lemma 1. If −∇ϕ (hbmin

) pointed towards the
interior of J −, that would mean that there exists a point
hi ∈ J− such that ϕ (hi) ≤ ϕ (hbmin

) which is not true as
shown in the proof of Lemma 1. Hence

∇ϕ (hbmin
) · ∇⊥gj

(
gj

−1 (hbmin
)
)

< 0

We now define the vector valued function

a(s) = g(s) + k · ρ · ∇̂g
⊥

(s)

with δ > 0 and k ∈ {−1,+1}. The hat over a vector denotes
that it is normalized, i.e. v̂ = v

‖v‖ . We need this function to
be bijective. This is guaranteed if we require that

a (sm) 6= a (sn) ∀ sm 6= sn (1)

with sm, sn ∈ [0, S). Locally condition (1) is equivalent to a
restriction on curvature. To show this we examine the limiting
behavior of a(sm) − a(sn) when sm → sn. So setting:

∂a(s)
∂s

= 0

⇒ ∂g(s)
∂s

= −ρ · k · ∂∇̂g
⊥

(s)
∂s

And solving for ρ we get:

ρ =
1

k
·

(
gx

′(s)
2

+ gy
′(s)

2
) 3

2

gy
′(s) gx

′′(s) − gx
′(s) gy

′′(s)
(2)

where (gx, gy) = g. Examining eq. (2) we can see that
it corresponds to the inverse of the curvature of g(s) or
equivalently to the radius of g(s) at the point s . This implies
that locally, the requirement (1) is equivalent to choosing a
ρ > 0 such that:

ρ < ρm = min
s∈[0,S)

∣∣∣∣∣∣∣

(
gx

′(s)
2

+ gy
′(s)

2
) 3

2

gy
′(s) gx

′′(s) − gx
′(s) gy

′′(s)

∣∣∣∣∣∣∣
(3)



III. NAVIGATION VECTOR FIELD

A. Belt Zones

The vector field that is used to generate desired motion
directions for the robot is primarily based on a predefined
navigation function. However, the system needs to be able
to avoid initially unmodelled obstacles, discovered through
sensing during execution, and still be able to reach the goal
configuration.

To construct such a vector field we are going to use the
concept of sliding motion along surfaces of discontinuity.
This type of motion is generated by two additional vector
fields, which are attached across the boundary ∂Ogj

of each
Ogj

. We call the region where those vector fields are defined
the “belt zone”, and these vector fields, “belt zone” vector
fields. The “belt zone” is the region close to the ∂Ogj

and is
thought to be composed of an “internal belt” and an “external
belt” region. The “internal belt” region width is fixed for
every ∂Ogj

. The geometry of the “external belt” depends on
the initial conditions. The “belt zone” concept is represented
in Fig. (3).

I
E

d Obstacle

Fig. 3. Vector fields present in the “belt zone ”

Let
β(s) = gj(s) − δ · ∇̂gj

⊥
(s)

with 0 < δ < ρm .The “internal region” is the set:

Ij = {q : q = λgj (s) + (1 − λ) β (s) ,

λ ∈ [0, 1] , s ∈ [0, S)}

The “external region” is the set:

Ej = {q : q = λgj (s) + (1 − λ) σ (s) ,

λ ∈ [0, 1] , s ∈ [0, S)} \∂Ogj

where

σ (s) = gj(s) + ∆ (ϕ (gj (s)), η(s), s) · ∇̂gj

⊥
(s)

η(s) =
−∇ϕ (gj (s)) · ∇̂gj

⊥
(s)

‖∇ϕ (gj (s))| ·
∥∥∥∇̂gj

⊥
(s)

∥∥∥

and

∆(x, y, s) =

=

{
δ
2

(
x−ϕk

1−ϕk
+ s2

ε+s2 m (y)
)

x ≥ ϕk

δ
2

s2

ε+s2 m(y) x < ϕk

with

m (y) = max

(
0,

sin (θesc) − y

sin (θesc) + 1

)

where s is the distance travelled in the belt zone, ε << 1
a positive number, π

2 > θesc > 0 is the minimum angle
between the local tangent at ∂Ogj

and −∇ϕ for which the
system is allowed to leave ∂Ogj

.
Let hkj

∈ ∂Ogj
be the point where the system intersects

∂Ogj
for the kj’th time (for notational brevity, index ”j”

might be dropped where it can be assumed by the context),
since it is possible for the system to hit the same boundary
for more than one times. Then ϕkj

= ϕ
(
hkj

)
is the value of

ϕ at that point and is maintained while the system is in the
belt zone. The choice of the width function ∆(q) is such that
it only vanishes at the point of entry or when ϕ(q) < ϕ(hk)
and the escape angle criterion is met.

To be able to create the belt zones in an environment, as
described above, we must require that the minimum curvature
ρmin of any unmodelled obstacle is at least ρmin > d +
δ > 0. The parameters d > δ > 0 can be chosen to be
arbitrarily small to satisfy the ρmin requirement. In practice,
since ρmin is not known in advance, it is determined by the
capabilities of the robot sensory equipment. In this case the
sensor perceived obstacle perimeter is a smoothed version
of the actual one, with ρmin−perceived ≥ ρs, where ρs is
the minimum curvature the sensory equipment can detect.
Parameters d and δ can then be chosen to satisfy ρs > d+δ >
0.

B. Belt zone vector fields

We wish to choose the vector fields in such a way that the
Filippov [2] solutions of the differential inclusion (6) will
be a sliding motion along the boundary ∂Ogj

. Moreover, the
system must be able to leave this boundary when it reaches a
configuration in which h ∈ ∂Ogj

, where ϕ (h) ≤ ϕk and the
neighboring vector fields point in the appropriate direction.

Let hE ∈ E , hI ∈ I and s∂ to be such that g (s∂) =
h∂ . Then for each hE and hI , there exists unique h∂ hence
unique s∂ such that hE = λ1g (s∂) + (1 − λ1)σ (s∂) and
hI = λ2g (s∂) + (1 − λ2)β (s∂) for some λ1, λ2 ∈ [0, 1]
as long as δ < ρm. This follows from g(s) being bijective,
since we can choose δ to be small enough so we can bring the
internal and external belt zone boundaries arbitrarily close to
∂Ogj

which is described by g(s). Locally this is also true
because since the distances of the belt zone boundaries are
lower than the local radius of g(s) for each s, then the set
of points of minimum distance of any hE ∈ E or hI ∈ I
from ∂Og contains only one point h∂ of ∂Og . So we can
define the surjective functions hE

∂ : q ∈ E → q ∈ ∂Og and
hI

∂ : q ∈ I → q ∈ ∂Og . Let s(q) = g−1(q) denote the
inverse function of g.

We choose for q ∈ E (external zone) the vector field:

VE (q) = θ · k1 · ∇g
(
s
(
hE

∂(q)
))

− k2∇g⊥
(
s
(
hE

∂(q)
))



where ∇g(s) = ∂g(s)
∂s

and k1 and k2 are positive tuning
constants and

θ =

{
1 −∇ϕ (hk) · ∇g (s (hk)) ≥ 0
−1 −∇ϕ (hk) · ∇g (s (hk)) < 0

For the region q ∈ I we choose the vector field:

VI (q) = θ · k3 · ∇g
(
s
(
hI

∂ (q)
))

+ k4∇g⊥
(
s
(
hI

∂ (q)
))

with k3, k4 positive tuning constants.
We assume for the workspace that the minimum distance

between disjoint objects is greater than α = 2d + 2δ with
d > δ. Objects closer than α will be considered as one. The
resolution parameter α < 2ρs, can be chosen to be arbitrarily
small.

IV. CONTROL STRATEGY

We assume that we have a stationary environment and the
robot can be described trivially by a fully actuated, first order
kinematic model. In the workspace, the robot is represented
by a point. The obstacles present in the environment are
modelled by the navigation function [6]. The goal is for the
robot to be able to navigate using the navigation function
constructed on a predefined space, even if several obstacles
have been added to the workspace (and are not modelled in
the navigation function).

Let us define a vector field through the following multi-
function:

f (q) =





−∇ϕ (q) q ∈ Wfree

VEi
(q) q ∈ Ei

VIi
(q) q ∈ Ii

(4)

Consider the following differential equation:

ẋ = f (5)

Definition 1 (Filippov [2]): A vector function x (·) is
called a solution of (5) if x (·) is absolutely continuous and

ẋ ∈ K [f ] (x) (6)

where

K [f ] (x) = co {lim f (xi) |xi → x,xi /∈ N}

and N some set of measure zero. Across the surfaces of
discontinuity, the set K [f ] (x) is a linear segment, joining
the endpoints of the vectors f+ and f− belonging to the
neighboring vector fields.

By construction, switching in eq. (4) happens when the
system reaches a distance dmin > δ from some Ai or
Oj . The behavior of the “external zone” at hk is depicted
in Fig. 4. At hk the system is in the neighborhood of 4
neighboring vector fields: −∇ϕ, VI , and the two lobes of VE .
Let P be the tangential plane at hk and N its normal vector
pointing towards J+. Computing the differential inclusion at
that point we have:

K [f ] (hk) = co {lim f (xi) |xi → hk,xi /∈ N}

which for the given neighboring vector fields reduces to the
following:

K [f ] (hk) = −w1 · ∇ϕ + w2 · VI + (w3 + w4) VE

with wi ∈ [0, 1], i = 1 . . . 4 and
4∑

i=1

wi = 1. Taking the

inner product of K [f ] (hk) ·
(
θ · ∇g

(
g−1 (hk)

))
with θ as

defined in Section III-B one can verify that the resulting set
has only nonnegative elements. Then the Filippov solutions
of the system will move across the surface of discontinuity
in the direction of

(
θ · ∇g

(
g−1 (hk)

))
.

I

EE

x(t)

g(s)
hk

Fig. 4. Neighboring with 4 vector fields

Hence the system will enter the belt zone and start
performing sliding motion. When the “external zone” has
nonzero width, the Filippov solutions will satisfy:

ẋ = f0

where
f0 = a · VE + (1 − a) · VI

and
a =

N · VI

N · VI − N · VE
.

The “external zone” has zero width by construction at the
point where s = 0 (i.e. at hk), and at the points where
− N ·∇ϕ

‖N ·∇ϕ‖ ≥ sin (θesc), ϕ ≤ ϕ(hk) both hold. At those points
the system’s trajectories will flow along the solutions of the
differential equation:

ẋ = −∇ϕ

Now we can state the following:
Proposition 1: The system

ẋ = u

under the control law:

u = f

with f as defined in eq. (4) is globally asymptotically stable,
almost everywhere 2

2Almost everywhere i.e. everywhere except a set of initial conditions of
measure zero



Proof: We will consider the system as operating in
two possible modes: Mode Φ where q ∈ Wfree and mode
B where q ∈ E

⋃
I. We will show that while in mode Φ

the potential ϕ decreases, when in mode B the system stays
there for only finite time and the exit potential from mode B
is lower than the entry potential.

Since ϕ is a navigation function, all initial states in the
original environment are brought to the origin, except a set
of initial states having measure zero, that lead to unstable
saddle points. For q ∈ Φ we have that :

ϕ̇ (x) = −‖∇ϕ‖2 a.e.
< 0

with
ϕ̇ (x) = 0∀x ∈ {0}

⋃
S

S being the set of saddle points. A navigation function has
exactly that many isolated saddle points as the number of
obstacles [3] . Hence under the given control law the potential
is strictly decreasing almost everywhere in Φ. Assume now
that the system enters the belt zone: q ∈ B with entry
potential ϕ (hk). The system will then start tracing the
boundary ∂Ogj

. A point qx ∈ B is candidate for exit point
if ϕ (qx) ≤ ϕ (hk) and − N ·∇ϕ

‖N ·∇ϕ‖ ≥ sin (θesc). Proposition
1 guarantees the existence of a set of points of minimum
for ϕ across ∂Ogj

, while Proposition 2 guarantees that for
the points of minimum, −∇ϕ (qx) points outwards Og and
moreover that is perpendicular to ∇ (g). Hence we have
established the existence of points over ∂Ogj

where the
system will exit mode B. An upper bound for the time
that the system will remain in B can always be established,
depending on the choice of g. From the assumptions imposed
on g, ∇g(s) is nonzero for all s. Hence

∥∥f0
∥∥ > 0 and let

f0 = min
∥∥f0

∥∥. Then the time the system remains in B is
bounded by tmax = S

f0

.
Hence we have that for every system switching from Φ to

B and back to Φ, the potential level of ϕ decreases. If that
was not the case, that would have meant that our entry point
had minimum potential, which is a contradiction since at the
point of minimum potential −∇ϕ points outwards as stated
in Lemma 2.

It is thus shown that when the system is in Φ the potential
decreases, if the system enters B then there will always
be a point where the system will exit B and for every
transition Φ → B → Φ the potential level of ϕ decreases.
Hence the system will eventually come to rest when ϕ
reaches its minimum, which is, by construction, the desired
configuration. Treating ϕ as a common Lyapunov function,
stability is established in the context of switched systems [4].

V. SIMULATION RESULTS

Computer simulations have been carried out to verify the
feasibility and efficacy of the proposed methodology. In the
first three case studies, three disks of unit radii were assumed

to be the modelled obstacles. In all case studies the unknown
obstacle(s) were assumed to be in configurations inhibiting
convergence. Modelled obstacles were represented with blue
color, non-modelled with red and robot trajectories with
black. The robot was assumed to have a radial proximity
sensor with limited range capability (only a small fraction of
the unmodelled obstacle was visible). A simple sensor data
processing algorithm had been applied to interpret sensor
readings.

Case Study-1: Two non – modelled (unknown) obstacles
were added to the workspace (Fig. 5). The added obstacles
were touching the modelled ones, so the robot had to bypass
both modelled and un-modelled obstacles to get to the target.
The modelled obstacles were placed at (−4, 6), (4, 6), (0, 3).
The robot initial configuration was: x(0) = (6, 0) and the
target was set at xgoal = (0, 0). Fig. 5 depicts the first
simulation results.

−6 −4 −2 0 2 4 6
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Fig. 5. Robot path in case study-1.

Case Study-2: A different unmodelled obstacle was intro-
duced in the workspace (Fig. 6). The modelled obstacles were
placed at (−2.5, 0), (2.5, 0), (0, 3). The robot was placed at
x(0) = (1.5, 3) and the target was the origin. Fig. 6 depicts
the second simulation’s results.

Case Study-3: the robot was placed at x(0) = (0.2, 4.5)
and the target was the origin (Fig. 7). The workspace was the
same as in case study-2. Observe that the robot is heading
away from the modelled obstacle and in opposite direction
from the target in the beginning. This is due to the use of
the navigation function’s repulsive potential of the obstacle
placed at (0, 3).

Case Study-4: In this case study, the modelled workspace
was the one shown with blue color in Fig. 8 and the non-
modelled obstacle with red. The robot was placed at x(0) =
(−11, 6) and the target was set at xgoal = (3, 1). And in this
scenario, our algorithm successfully converges to the goal
configuration avoiding modelled and unmodelled obstacles.
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Fig. 6. Obstacles and trajectory for case study - 2
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Fig. 7. Obstacles and trajectory for case study - 3
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Fig. 8. Obstacles and trajectory for case study - 4

VI. CONCLUDING REMARKS

A methodology of navigating a point robot in partially
known environments has been derived. Partial knowledge
about the robot’s environment is modelled using a navigation
function. Based on the properties of the navigation functions,
an obstacle avoidance scheme is applied to successfully avoid
both known and unknown obstacles. The analysis is based
on the assumptions that there are no sharp edges in nature,
i.e. any sharp edge in nature has a non zero radius of
curvature, and that robot sensors can detect a nonzero radius
of curvature. The methodology achieves global asymptotic
convergence to the target with guaranteed collision avoidance
properties. Due to the closed form of the feedback controller,
the methodology is particularly suitable for implementation
on real time systems with limited computation capability.
Current research directions include motion planning in non –
static partially known environments, multiple robot scenarios
in partially known environments and navigation in partially
known three dimensional environments.
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