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Abstract— We apply a novel motion planning and
control methodology, which is based on a non-smooth
navigation function, to a point mobile robot moving
amongst moving obstacles. The chattering introduced
by the discontinuous potential field is suppressed using
nonsmooth backstepping. The combined controller
guarantees global asymptotic convergence and collision
avoidance. This controller is particularly suitable for
real time implementation on systems with limited com-
putational resources. The effectiveness of the proposed
scheme is verified through computer simulations.

I. INTRODUCTION

Navigation function methodologies [5], [7], [11]
have a long history of application in mobile robot
navigation with encouraging results in terms of guar-
anteed collision avoidance and convergence. How-
ever the use of this method has been limited to cases
where the environment is stationary.

The basic motivation for this work comes from
the need for simple and fast real time navigation
algorithms for autonomous agents navigating in dy-
namic environments, with limited sensing and com-
putational resources. Such algorithms need to be
robust enough to deal with uncertainty. Our approach
is to develop a controller based on a non-smooth
navigation function and implement it using a non-
smooth integrator backstepping technique [9]. The
moving obstacles are assumed to be disk shaped,
an assumption that is not too restrictive since arbi-
trary star shaped obstacles can be diffeomorphically
mapped to disks in ��� [5]. Methods for constructing
diffeomorphisms are discussed in [7] for point robots
and in [10] for rigid body robots. The obstacles move
in the workspace under the assumptions that an upper
bound of the obstacle speeds is known a’ priori, the
minimum approach distance between the obstacles
is nonzero and the obstacles eventually will not sit
forever on the robot’s target configuration.

The rest of this paper is organized as follows:
Section II discusses the mathematical preliminaries
necessary for the analysis. In section III we present
the construction of non-smooth navigation functions
while section IV discusses the controller synthesis.
In section V we present our simulation results and
the paper concludes with section VI.

II. PRELIMINARY DEFINITIONS

Our approach relies on the notion of the gener-
alized gradient which is a fundamental concept in
nonsmooth analysis:

Definition 1 ([1]): For a locally Lipschitz func-
tion ���	�
���
� define the generalized gradient
of � at �����
� by:
� ��������� �������! !"$#%�&�����(' �*)(�+�-,.�*)	/�10	2�3

where 0	2 is the set of measure zero where the
gradient of � is not defined and ��� denotes the
convex closure.

Definition 2: We call generalized critical point of
a locally Lipschitz function 45���6�1�7� , a point
�����
� for which:

8 � � �������
Without loss of generality we assume that the

origin is the desired configuration. Let 9;:<�6� be
the robot workspace with =>�?9 .

Definition 3: A function @A�B97��� is called a
non-smooth navigation function (NNF) if it has the
following properties:

i. @ is absolutely continuous in 9 ,
ii. @ has exactly one minimum at the origin,

iii. @ has a countable number of isolated general-
ized critical points,

iv. C&�D�FEG�IH&C����*)J�F,LKF�FE���MONP,LKF�*)O�>9RQSMON
where MON denotes the boundary of 9



Definition 4: Let � � ��� � � be an absolutely
continuous function and consider the differential
equation ��>��� #�� . Then [2] a vector function �O��� �
is called a solution of the differential equation (in the
Filippov sense) if �O��� � is absolutely continuous and����	� � ������� .

Proposition 1: If @ � 9 �+� is an NNF, then for
the Filippov solutions of �� �
� # @ , the following
statements are true:

i. The set 9 is a positive invariant set.
ii. The positive limit set of 9 consists of the

generalized critical points of @ .
iii. There is a dense open set �� :$9 whose limit

set consists of the unique minimum of @ .
Proof: From property (iv) of definition 3 it

follows that the negated gradient over the boundary
of 9 is directed in the interior of 9 . Hence 9
is positively invariant. A limit set of the Filippov
solution �O��� � by application of LaSalle’s theorem [8]
for @ in 9 is a generalized critical point since for8 � �@ to be true, it must hold that

8 � � C%����� . To
prove the last property take the minimum of @ and
define a circle of radius 
 around it. Since the critical
points are isolated, we can always have an 
�H 8 for
which the set �� � � �����G������
 3 contains only one
critical point, which is the unique minimum of @ .

III. NON-SMOOTH NAVIGATION FUNCTIONS

Let � ��� 8 ,��$����� 8 ,��$� be a smooth function
having the following properties:

i. �%� 8 � � 8
ii. ��� � 8 � � 8 ,

iii.
8 ����� ��������� , ��� �"! , with ��� �"!

Let #1�F� 8 ,%$'&(�(� 8 ,��$� be a smooth function having
the following properties:

i. #��)$ �I� 8 ,
ii. �! !"*,+�- # �D�����.� ,

iii. �/�0�1#2� �����3�.�4�5�76B,LKF�>� � 8 ,%$'&
where 6RH 8

is a parameter. Define the function
�&�)8 � �9�%�%�%8:� � where 8+�(� � is the robot’s
position, and ; ).�<8 � ��# �%��8=�78 )>���	? )J� , where 8 ) the
center of the circle representing the obstacle @ . We
assume that each obstacle is assigned an “external”
radius, ?BADC , where the robot can sense the obstacle
and begins the avoidance maneuver. The robot may
continue approaching the obstacle until it reaches the
“internal” radius ?�) beyond which there is collision.
We have that ?,ADC �E? )�FG$ with $�H 8 . We assume
that ��8 )2�78%HI�	HEJK?BADC2FL?BANM�O for @�P�1Q or equivalently

the minimum distance between the obstacle volumes
is greater than RS$ .

Let us define the following function:

C%�<8 � �
T

�%�<8 � , U%H 8
�%�<8 �VF1;WH �<8 �XUZY 8 (1)

where U �E��8=�78%HI���"?BANM and Q �G[]\>^�"  D_`,aSb �%8=�78 ` � ,
where c is the set of obstacle indices. By construc-
tion C%�<8 � is absolutely continuous, since ;>H �<8 � � 8
when UP� 8 . We can now define the discontinuous
vector field: ���<8 ����� # C%�<8 � (2)

Consider the following differential equation:

��?�d� ����� (3)

Then, according to Def. 4, the Filippov solutions:
�O��� � of (3), are absolutely continuous and �� �e � �:& ����� , wheree � �:& ����� � ���I�S�! !"1� ���*)J�(' �*)(� �-,.�*) /�gf 3
and f is a set of measure zero. Let �h!��<8 � �E���<8 �
when U H 8 and �hiI�<8 � �G���<8 � when U�Y 8 . We call��! and �hi the branches of � . Across the surface of
discontinuity, the set

e � �:& ����� is a linear segment
[2] joining the endpoints of the vectors �h! and �hi .

When the system reaches the surface of disconti-
nuity, we can distinguish the following cases [2] (see
figure 1):j Region b: �V!	�k�hi H 8 and the solutions pass

from lmi to ln! .j Region c: �V!3� �hioY 8 and function �O�qpG� satisfies
[2] the equation :

��>�d� - ����� (4)

which describes a sliding motion . Plane r is
tangent to the surface of discontinuity at point
x. The segment

e � �:& ����� intersects r and the
intersection is the endpoint of vector � - ����� .
Then � - �Gst� ! F �Wuv�7sB�W� i (5)

where

s � �Sw i�Sw i �L�Sw !
and �Sw ! , �Sw i are the projections of the vectors��! and �hi to the normal to the plane r .j Points “a”: �V!��)�hi1� 8 and the solutions depart
from the surface of discontinuity.
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Fig. 1. Surfaces of discontinuity

j Point “s”: �V!P�����:�hi , with �?H 8 hence from
eq. (5) � - � 8 and from eq. (4) we have that�� � 8 .

Lemma 1: Point “s” is unique.
Proof: Setting �V! � ���:�hi , � H 8

we get� � *� * � �������N# � * i *��� * i *�� � , where � and ��� the robot and
obstacle center positions. For this to be true since#2��� 8

we need
*� * � � * i *��� * i *�� � which for a disk

obstacle this holds for �?�	����O���G�
�k� F������'?BADCL� , with��� ��
 u . Since the origin is not contained in the set
defined by the obstacle’s external radius, then ���	�F u and the proof is complete.

Lemma 2: Point “s” is a saddle point
Proof: A normal to the tangential plane r

at “s” is f � � � ��� where � is the position
vector of point “s” and ��� is the position vector
of the center of the encountered circle. At that
point �hi � � #m# �%� � � ��� ���	?�� � �$# � �%� � � � and��! � � # � �%� � � � . We have that � iw � �f ���hi
and � !w � �f ����! . Substituting s in eq. (5) we

get : � - � � � -* � -����� ���"� � �m��� - ���D�Z� � - � & � ,

with � � ��� *���� i �%*���! * i *��!"$# !  � i ���%"$# �'& * # ! � # . The matrix

#�� - is the hessian of the potential function that
produces � - . Note also that � - is the negated gradient
of a potential field. Hence it is sufficient to show
that #�� - has a positive eigenvalue and that the
corresponding eigenvector is in the tangential planer . Point “s” has coordinates: �?��� - F ? *��( * #� ! � #� and

�?��� - F ? ���( * #� ! � #� since the target is not contained

in the circle (see proof of lemma 1). Substituting the
coordinates in #�� - and calculating the eigenvalues,

we get: ����� 8
and � � � ��� ( * #� ! � #�)+* J ( * #� ! � #� ! ) O with

corresponding eigenvectors: ,-� � � *����� u � and , � �� � ���*�� u � respectively. We can see that � � H 8
,

since by definition ��� H 8 . Moreover f �., � � 8
which means that , � is in the tangent space of r ,
which denotes the existence of a feasible direction
of movement along the surface of discontinuity.

The value of �/� (which is actually a set of values
due to the discontinuous function) does not affect the
behavior of our system, since the point “s” belongs to
the discontinuity surface, which is a set of measure
zero. Hence point “s” will be an isolated critical point
as long as � � P� 8 , regardless of the value of �/� .

Proposition 2: Function C has one local mini-
mum at the origin and a countable number of isolated
saddle points.

Proof: At a critical point we have that
# C � 8

. Expanding: # C&�<8 �+� # � �%��8:���ZF0 #m# �%� �<8=�78 )J�B���	? )J���21� 1 � �)���>F
0 �31 i 1 C� 1 i 1 C � #2� , where0 � 8

when U H 8
or
0 �(u when U Y 8

. For0 � 8
the only critical point is the origin, where

�! !"1 +�- # C&�<8 � � � 4�5.6��<6 �76G D_(�<6 � & � �����J�%��8:��� � 8 where

6 is the angle with which 8 approaches zero. This
is the unique minimum of C%�<8 � for

0 � 8
, since��� ���%8:� � H 8 ,LK��%8:�&H 8

. For
0 � u at a critical

point it must be: 1� 1 � �I���2F
0 � 1 i 1 C� 1 i 1 C � #2� �

8
. This

condition can never be satisfied since �V�4P� �v#2� by
definition. Hence the only critical points that are not
local minima are generalized critical points that lie
on the surface of discontinuity. But by Lemmas 1
and 2 there is only one isolated generalized critical
point per obstacle which is a saddle point.

We can now state the main result of this section:

Proposition 3: Function C �-9 � � defined in
(1) is an NNF.



Proof: Property (i) of definition 3 is satisfied
since �%�<8 � and ; H �<8 � are smooth and over the switch-
ing surface ; H �<8 � � 8

. Properties (ii) and (iii) are
satisfied by proposition 2. Property (iv) is satisfied
since for any �%8:���G� it holds that �! !"1 +���� C&�<8 � �.�and only for 8 � M�N . This is due to the properties
(ii) and (iii) of # and the fact that � �%��8:��� is finite for
finite �%8:� because of property (iii) of it’s definition.
Hence C%�<8 �m� ��,
K�8�� 9RQSMON and property (iv)
of definition 3 is satisfied.

IV. CONTROLLER SYNTHESIS

Assume that the robot kinematics are described
by: �� ��� (6)

and let the following equation describe the motion
of the obstacles in the workspace:

�8 )(� �B)B�<pG�*, @�� u��	�	��

� (7)

where 

� represents the number of obstacles and�B)G�qpG� are unknown functions with the following prop-
erties:

i. ��8 )2�78%HI�	H�?BADC2FL?BANM , @�P�1Q
ii. The obstacles will not stop at a configuration

where they cover the origin:

�! !"A +�� �%��8 )B�qpG�B� ����?BADC2F 

with 
�H 8 , and

iii. the obstacle speed is bounded: � �8�)%��Y��
Let ��� be a vector across the eigen-direction of

the positive eigenvalue at the saddle point calculated
in the proof of Proposition 2 with

���G��� ���$� �G��� .
As discussed in the proof of Proposition 2, this is
perpendicular to � . Let the switch �*�<U ��� u for U�Y 8
and �*�<U � � 8

for U H 8
with U as defined in (1)

and the switch ���)�������.��� u for ��������P� � 8�8 & and���)�������.� � 8 for ������� � � 8 8 & , with � as defined in
(2) .

Proposition 4: The system (6) under the control
law: �?���/� � �8 ) F�� � �	8 )�G� �	8 )%��� F ,
where , ���7�V�������/F �Wu ��� ���F��� , is globally
asymptotically stable.

Proof: Using the navigation function C defined
in (1) as a Lyapunov function candidate, we have
that: �C � �"!� A F#� � # C with �"!� A ���$���%#2� * i 1 C� * i 1 C � � �8 )

and # C ���4� #2� * i 1 C� * i 1 C � Fo���
*� * � . For � and � at non-

switching positions, �C attains unique values. Over
the switching surfaces, �C is a multi-valued function
and it’s variations are considered in the generalized
sense, i.e. # C � � C%����� , �"!� A � � C%�qpG� and� � �������! !"%�O���*) , pL)J� ' �D�*) , pL)J� � ���-, pG� ,����*)L, pL) ��/��0'& 3
with 0'& the set where � is not defined. For the
case � � 8

we have that: �C � ,1��# C . But� � 8
only at a saddle point or at the origin. By

construction the saddle point is on the boundary
of the discontinuous surface where �R� u which
contradicts the fact that �6� 8 . At the target point , �
���)( �! !"%� �,��������F �Wuv�*� � � ��� ' �?� 8 ,+�?�L� 8 ,Bu�&+,
but ��� 8 ��� ��� � 8 ��� 8 hence ,%� 8 and �CR� 8 . For
all other points we have �C � �=� �I� � 8 . So for� � 8 we have that �C Y 8 with the equality holding
at the origin.

For the case �6� u we have that: �C ���v#2� * i 1 C� * i 1 C � ��8 ) F.- �8 ) F�� * i 1 C� * i 1 C � F ,�/��0->#2� * i 1 C� * i 1 C � F ���
*� * � / which

after algebraic manipulation simplifies to:

�C ���/��# � F � � ������ � �8 ) F�� � �78 )�G� �78 )>� � F ,4�G# C (8)

For the term , � # C+�1-�� �,��������F �Wuv�*� � � ���2/5�
���=�(�7Y 8

since when � � u then �=�7�2� Y 8
,

for � � 8 or � switching (because �$� � 8 8 & and
�g� ��� � 8 ), , � # CA� 8 . Hence , � # C Y 8 and
from eq. (8) we have: �C Y ���%#2�]F �m� ���]F	���k� � �8 )%� .
But #2���0����� �.6 and substituting we get: �C Y��� �'6�FL���I�I� �8 )%� . Now since � �8 )>��Y�� and �������
we have: �C Y.���m�'6�F	�"�	� and �C � 8 as long as6 H43 * 56 .

For the case of � switching, � assumes
all the values in the range � 8 ,Bu�& . We have�C � ���I�S�! !" 4 ' �>� �87�,.�$/� f 3 with 4 �9� �-���� #2� F ���I�/��Z�8- �8 ) F�� * i 1 C� * i 1 C � /0/ZF , � # C and �87
a point at the surface of discontinuity. The first
term was examined in the case � �(u and if the
conditions defined there are satisfied, then the term
is made negative semidefinite (zero at the zero value
of � ). The last term can be written as ,g� # C �-:� ��F �Wuv�*� � ����/��S���=�(�����)� �m� �m� �Wu��;� � ���"���
with �=���V�XY 8

and the term �<�.�V� � ���.�-=���'#2� * i 1 C� * i 1 C � F ���
*� * � />� 8 since ��� ���P� 8 and at

the point “s” where �>�G8 )SF ���� ?BADC , ���Z� * i 1 C� * i 1 C � �
8
.

At the origin �<� � 8 ��� 8 . Hence ,Z� # C Y 8 , with
the equality holding at the origin and at the saddle
points. So for all > � e � �:& �D�-, pG� , we have that



>�� � �� 8 1. Since the positive limit set of the obstacle
configurations is away from the origin, the largest
invariant set eventually (i.e. as p �X� ) contains only
the origin. (The system cannot identically stay on
the saddle points since when there � P� 8

). Hence
by applying the nonsmooth version of LaSalle’s
invariance principle [8], we have that the origin of the
system is (eventually) globally asymptotically stable.

The discontinuous control law � defined in propo-
sition 4 when applied to the system (6) results in
chattering in the neighborhood of the surfaces of dis-
continuity. To reduce chattering we use an integrator
backstepping technique for nonsmooth systems [9],
[6]. To this extend consider the augmented system:

��?� � ���=F s�� ��� � ���n�7� (9)

where s is a stabilizing controller of system (6), �
a virtual state,

� ,G� are positive constants and � as
defined in eq. (2). Obviously system (6) can perform
the trajectories of system (9) if the input to system
(6) is set to be � � � ����F s . For the constructive
procedure the interested reader is referred to [6], [9].

Proposition 5: The origin of the system (9) is
globally asymptotically stable.

Proof: Let us construct a control Lyapunov
function for our system: Let � � � C F ` � � � with
C defined in (1). We have �� � � �C F � �	� �/��&��"!� A F �� � ��F � ���n���� . Then �� � � �"!� A F � � ���=F sB� ���F � �
�	� ��� �3�����L��� �9�"!� A F sL� # C F � �
� �W� �3���n�L� F1�(� � �C - � � �F� ��� �.Y 8

, where�C - is the time derivative of C along the trajectories
of (6) and is negative semidefinite as was proved in
proposition 4, with the equality holding at the origin.
Hence �� � Y

8
with the equality holding at the origin.

Using the results from the proof of proposition 4
and applying the nonsmooth version of LaSalle’s
invariance principle [8], we have that the origin of the
system is (eventually) globally asymptotically stable.

V. SIMULATION RESULTS

To verify the properties of the proposed scheme,
we run simulation examples using the parameters of
Table 1, which are in accordance with the specifica-
tions prescribed in our analysis.

1a.e.: almost everywhere i.e. everywhere except a set of
measure zero

Case Study 1:
The robot was originally at �O� 8 � � � ��
]& � , func-

tions �B) were chosen as �/�S�qpG��� � � ����� �qpG���B@ 
I�qpG� & �
and � � �qpG� � � 5 � � �B@ 
I�qpG�G� ����� �qpG� & � and their initial
conditions were 8 ��� 8 � � � 
 8 & � and 8 � � 8 � � � ��u��,& � .
Figure 2 shows the trajectories of the robot and the
obstacles. The trajectory of the robot is represented
with black line. The red spots over the robot’s
trajectory represent successive robot positions over
constant time intervals. The trajectory of obstacle � �
is represented with a magenta line and of obstacle � �
with a green line. Over the trajectories of � � and � �
the cyan and magenta spots respectively represent
successive obstacle positions over the same constant
time interval with the red spots over the robot’s
trajectory. At the initial positions of the obstacles � �
and � � two concentric circles are drawn representing
the obstacle’s internal and external radius. The sys-
tem avoids the obstacles and navigates to the origin.

−2 −1 0 1 2 3 4 5 6 7

−1

0
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Internal radius 

External radius 

Initial robot
 position    

Destination 

Fig. 2. Case Study 1 simulation results.

Functions Variables������� ��������� � �"!$#%���&� � !(' ) * !+)
, ����� -/.+�1012 ��3 - !546' 798 : !(' )3 !<;�' ; = !(!>5? )�' @ >5A C !(' 7

TABLE I

SIMULATION PARAMETERS



Case Study 2:
The robot was originally at the origin �O� 8 �&�� 8 8 & � , functions � ) were chosen as �/�S�qpG� � � � � �

��������� �Wu 8 �BpG� & � and � � �qpG��� � � ��������� �Wu 8 �BpG� & � and
their initial conditions were 8.��� 8 � � � �=R 8 � �,& � and8 � � 8 � � � ��� � 8 � �,& � . Figure 3 depicts the trajectories
of the system. The colored spots over the system’s
trajectories are in the same context with case study
1. The robot successfully avoids collisions with the
moving obstacles and returns to the origin.

It must be noted that in both case studies the
backstepping integrator is successful in suppressing
the chattering effects of the underlying discontinuous
controller.

−6 −5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

O1 

O2 

Robot initial &      
destination position 

Fig. 3. Case Study 2 simulation results.

VI. CONCLUSIONS-ISSUES FOR FURTHER

RESEARCH

In this paper we developed a methodology for nav-
igating point robots in dynamic environments. A new
class of nonsmooth navigation functions (NNFs) was
introduced. The methodology provides a simple and
computationally inexpensive closed form feedback
solution, enabling fast feedback and rendering the
algorithm particularly suitable for real time motion
planning and control of autonomous agents with
limited computational resources and limited sensing
range. The proposed scheme guarantees both conver-
gence and collision avoidance. Application of non-
smooth integrator backstepping significantly reduces
chattering, resulting in smooth motion paths for the
system.

Our future plans include the study of robot nav-
igation in dynamic environments (2D and 3D) with

arbitrarily shaped obstacles, in multiple robot scenar-
ios with kinematic constraints.
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