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Abstract: This paper introduces the notion of formation input-to-state stability in order
to characterize the internal stability of leader-follower formations, with respect to inputs
received by the formation leader. Formation ISS is a weaker form of stability than string
stability since it does not require inter-agent communication. It relates group input to internal
state of the group through the formation graph adjacency matrix. In this framework, different
formation structures can be analyzed and compared in terms of their stability properties and
their robustness.
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1. INTRODUCTION

Formation control problems have attracted increased
attention following the advances on communication
and computation technologies that enabled the de-
velopment of distributed, multi-agent systems. Direct
fields of application include automated highway sys-
tems (Varaiya, 1993; Swaroop and Hedrick, 1996;
Yanakiev and Kanellakopoulos, 1996), reconnais-
sance using wheeled robots (Balch and Arkin, 1998),
formation flight control (Mesbahi and Hadaegh, 2001;
Beard et al., 2000) and sattelite clustering (McInnes,
1995).

For coordinating the motion of a group of agents, three
different interconnection architectures have been con-
sidered, namely behavior-based, virtual structure and
leader-follower. In behavior based approach (Balch
and Arkin, 1998; Lager et al., 1994; Yun et al., 1997),
several motion premitives are defined for each agent
and then the group behavior is generated as a weighted
sum of these primary behaviors. Behavior based con-
trol schemes are usually hard to analyze formally,
although some attempts have been made (Egerstedt,
2000). In leader-follower approaches (Beard et al.,
2000; Desai and Kumar, 1997; Tabuada et al., 2001;

Fierro et al., 2001), one agent is the leader of the
formation and all other agents are required to fol-
low the leader, directly or indirectly. Virtual structure
type formations (Tan and Lewis, 1997; Egerstedt and
Hu, 2001), on the other hand, usually require a cen-
tralized control architecture.

Balch and Arkin (1998) implement behavior - based
schemes on formations of unmanned ground vehicles
and test different formation types. Yun et al. (1997)
develop elementary behavior strategies for maintain-
ing a circular formation using potential field meth-
ods. Egerstedt and Hu (2001) adopt a virtual struc-
ture architecture in which the agents follow a vir-
tual leader using a centralized potential-field control
scheme. Fierro et al. (2001) develop feedback lineariz-
ing controllers for the control of mobile robot forma-
tions in which each agent is required to follow one
or two leaders. Tabuada et al. (2001) investigate the
conditions under which a set of formation constraints
can be satisfied given the dynamics of the agents and
consider the problem of obtaining a consistent group
abstraction for the whole formation.

This paper focuses on a different problem: given a
leader-follower formation, investigate how the leader
input affects the internal stability of the overall for-
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mation. Stability properties of interconnected systems
have been studied within the framework of string
stability (Swaroop and Hedrick, 1996; Yanakiev and
Kanellakopoulos, 1996). String stability actually re-
quires the attenuation of errors as they propagate in
the formation. However, sting stability conditions are
generally restrictive and generally require inter-agent
communication. It is known, for instance (Yanakiev
and Kanellakopoulos, 1996) that string stability in au-
tonomous operation of an AHS with constant interve-
hicle spacing, where each vehicle receives information
only with respect to the preceding vehicle, is impos-
sible. We therefore believe that a weaker notion of
stability of interconnected system that relates group
objectives with internal stability would be useful.

Our approach is based on the notion of input-to-state
stability (Sontag and Wang, 1995) and exploits the fact
that the cascade interconnection of two input-to-state
stable systems is itself input-to-state stable (Khalil,
1996; Krstić et al., 1995). This property allows the
propagation of input-to-state gains through the for-
mation structure and facilitates the calculation of the
total group gains that characterize the formation per-
formance in terms of stability. Formation ISS is a
weaker form of stability than string stability, in the
sense that it does not require inter-agent communica-
tion and relies entirely on position feedback only (as
opposed to both position and velocity feedback) from
each leader to its follower. We represent the formation
by means of a formation graph (Tabuada et al., 2001).
Graphs are especially suited to capture the intercon-
nections (Tabuada et al., 2001; Fierro et al., 2001)
and information flow (Fax and Murray, 2001) within
a formation. The proposed approach provides a means
to link the formation leader’s motion or the external
input to the internal state and the adjacency matrix of
the formation. It establishes a method for comparing
stability properties of different formation schemes.

The rest of the paper is organized as follows: in sec-
tion 2 the definitions for formation graphs and for-
mation input-to-state stability (ISS) are given. Section
3 establishes the ISS properties of an leader-follower
interconnection and in section 4 it is shown how
these properties can be propagated from one formation
graph edge to another to cover the whole formation.
Section 5 provides examples of two stucturally differ-
ent basic formation configurations and indicates how
interconnection differences affect stability properties.
In section 6 results are summarized and future re-
search directions are highlighted.

2. FORMATION GRAPHS

A formation is being modeled by means of a formation
graph. The graph representation of a formation allows
a unified way of capturing both the dynamics of each
agent and the inter-agent formation specifications. All
agent dynamics are supposed to be expressed by lin-

ear, time invariant controllable systems. Formation
specifications take the form of reference relative posi-
tions between the agents, that describe the shape of the
formation and assign roles to each agent in terms of
the responcibility to preserve the specifications. Such
an assignment imposes a leader-follower relationship
that leads to a decentralized control architecture. The
assignment is expressed as a directed edge on the
formation graph (Figure 1).
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Fig. 1. An example of a formation graph

Definition 2.1. (Formation Graph). A formation graph
F = (V,E,D) is a directed graph that consists of:

• A finite set V = {v1, . . . ,vl} of l vertices and a
mapping vi �→ TR

n that assignes to each vertice
an LTI control system describing the dynamics
of a particular agent:

ẋi = Aixi + Biui

where xi ∈ R
n is the state of the agent accociated

with vectice vi, ui ∈ R
m is the agent control input

and Ai ∈ R
n×n,Bi ∈ R

m×m is a controllable pair
of matrices.

• A binary relation E ⊂ V × V representing a
leader-follower link between agents, with (vi,v j)∈
E whenever the agent associated with vectice vi
is to follow the agent of v j.

• A finite set of formation specifications D indexed
by the set E, D = {di j}(vi,v j)∈E . For each edge

(vi,v j), di j ∈ R
n, denotes the desired relative

distance that the agent associated with vectice vi
has to maintain from the agent associated with
agent v j.

Our discussion specializes in acyclic formation graphs.
This implies that there can be at least one agent vL
that can play the role of a leader (i.e. a vectice with no
outgoing arrow). The input of the leader can be used
to control the evolution of the whole formation. The



graph is ordered starting from the leader and following
a breadth-first numbering of its vertices.

For every edge (vi,v j) we associate an error vector
that expresses the deviation from the specification
prescribed for that edge:

zi j � x j − xi −di j ∈ Rni j

The formation error z is defined as the augmented
vector formed by concatenating the error vectors for
all edges (vi,v j) ∈ E:

z �
[
ze

]
e∈E

A natural way to represent the connectivity of the
graph is by means of the adjacency matrix, A. We
will therefore consider the mapping E → R

l×l that
assigns to the set E of ordered vertice pairs (vi,v j) the

adjacency matrix AE ∈ R
l×l .

Our aim is to investigate the stability properties of the
formation with respect to the input uL of the formation
leader. We thus need to define the kind of stability in
terms of which the formation will be analyzed:

Definition 2.2. (Formation Input-to-State Stability). A
formation is called input-to-state stable iff there is
a class � � function β and a class � function γ
such that for any initial formation error z(0) and for
any bounded inputs of the formation leader u L(·) the
evolution of the formation error satisfies:

‖z(t)‖ ≤ β(‖z(0)‖,t)+γ
(

sup
τ≤t

‖uL‖
)

(1)

By investigating the formation input-to-state stability
we establish a relationship between the amplitude of
the input of the formation leader and the evolution of
the formation errors. This will provide upper bounds
for the leaders input in order for the formation shape
to be maintained inside some desired specifications.
Further, it will allow to characterize and compare
formations according to their stability properties.

3. EDGE INPUT-TO-STATE STABILITY

In the leader-follower configuration, one agent is re-
quired to follow another by maintaining a constant
distance, x j − xi = di j. If agent i is required to follow
agent j, then this objective is naturally pursued by
applying a follower feedback control law that depends
on the relative distance between the agents. For xi =
x j −di j to be an equilibrium of the closed loop control
system:

ẋi = Aixi + Biui

it should hold that Ai(x j − di j) ∈ �(Bi); otherwise
the follower cannot be stabilized at that distance from
its leader. Suppose that there exists an ei j such that
Biei j = −Ai(x j − di j). Then the following feedback
law can be used for the follower:

ui = Ki(x j − xi−di j)+ ei j

leading to the closed loop dynamics:

ẋi = (Ai −BiKi)(xi − x j + di j)

Then the error dynamics of the i- j pair of leader-
follower becomes:

żi j = (Ai −BiKi)zi j + ẋ j

which can be written, assuming that agent j follows
agent k:

żi j = (Ai −BiKi)zi j + gi j (2)

where gi j � −(A j −B jKj)z jk.

The stability of the follower is thus directly dependent
on the matrix (Ai−BiKi), the eigenvalues of which can
be arbitrarily chosen, and the interconnection term g i j.
The interconnection term can be bounded as follows:

gi j ≤ λM(A j −B jKj)‖z jk‖
where λM(·) is the maximum eigenvalue of a given
matrix.

If Ki is chosen so that Ai −BiKi is Hurwitz, then the
solution of the Lyapunov equation:

Pi(Ai −BiKi)+ (Ai−BiKi)
T Pi = −I

provides a symmetric and positive definite matrix Pi
and a natural Lyapunov function candidate Vi = xT

i Pixi
for the interconnection dynamics (2) that satisfies:

λm(Pi)‖xi‖ ≤Vi ≤ λM(Pi)‖xi‖
where λm(·) and λM(·) denote the minimum and max-
imum eigenvalue of a given matrix, respectively. For
the derivative of Vi:

V̇i ≤−‖xi‖2 + 2λM(Pi)λM(A j −B jKj)‖xi‖‖z jk‖
≤ −(1−θ)‖xi‖2 ≤ 0

for all ‖xi‖ ≥ 2λM(Pi)λM(A j−B jKj)
θ ‖z jk‖ where θ ∈

(0,1). Viewing (2) as a perturbed system:

‖zi j(t)‖ ≤
(

λM(Pi)
λm(Pi)

) 1
2

‖zi j(0)‖e
− 1−θ

2λM (Pi)
t

+
2(λM(Pi))

3
2 λM(A j −B jKj)

(λm(Pi))
1
2 θ

‖z jk‖

Equation (3) implies that (2) is input-to-state stable
with respect to ‖z jk‖ as input and

βi(r, t) = rβ̄ie
− 1−θ

2λM (Pi)
t

(3)

γi(r) = γ̄ir (4)

where

β̄i =
(

λM(Pi)
λm(Pi)

) 1
2

γ̄i =
2(λM(Pi))

3
2 λM(A j −B jKj)

(λm(Pi))
1
2 θ



4. FROM EDGE STABILITY TO FORMATION
STABILITY

An important property of input-to-state stability is that
it is preserved in cascade connections. The property
allows propagation of ISS properties from one agent
to another, all the way up to the formation leader.
This procedure will yield the global input gains of
the leader and give a measure of the sensitivity of the
formation shape with respect to the input applied at
the leader.

In the previous section it was shown that under the
assumption of pure state feedback, a formation graph
edge is input-to-state stable. The gain functions for the
cascade interconnection

ẋ1 = f1(t,x1,x2,u)

ẋ2 = f2(t,x2,u)

are given as:

β(r, t) = β1(2β1(r,
t
2
)+ 2γ1(2β2(r,0)),

t
2
)

+γ1(2β2(r,
t
2
))+β2(r,t),

γ(r) = β1(2γi(2γ2(r)+ 2r),0)

+γ1(2γ2(r)+ 2r)+γ2(r).

From the general expressions and (3)-(4) the leader j
- follower i composite ISS gains become:

βi j(r, t) =
(

2β̄2
i e

− 1−θ
2λM (Pi)

t
+ 4γ̄iβ̄iβ̄ je

− 1−θ
4λM (Pi)

t

+2γ̄iβ̄ je
− 1−θ

4λM (Pj )
t
+ β̄ je

− 1−θ
2λM (Pj )

t
)

r

γi j(r) =
(

4β̄iγ̄iγ̄j + 4β̄iγ̄i + 2γ̄iγ̄j + 2γ̄i + γ̄j

)
r

Based on the above we define:

β̄i j � βi j(1,0) = 2β̄2
i + 4γ̄iβ̄iβ̄ j + 2γ̄iβ̄ j + β̄ j

γ̄i j � γi j(1) = 4β̄iγ̄iγ̄j + 4β̄iγ̄i + 2γ̄iγ̄j + 2γ̄i + γ̄j

Although the βi j function for any connected i, j ver-
tices on the formation graph has to be calculated
through successive compositions, the γi j function can
be algorithmically calculated:

Let ai be the i row of the n×n adjacency matrix A of
the formation graph, F = (V,E,D). Define:

β̄0 �
[
β̄1 · · · β̄n

]T
, γ̄0 �

[
γ̄1 · · · γ̄n

]T

and for the k + 1 iteration let

β̄ k+1 �
[
β̄ k+1

1 · · · β̄ k+1
n

]T
,

γ̄k+1 �
[
γ̄k+1

1 · · · γ̄k+1
n

]T

be given recursively as:

γ̄k+1 = γ̄k + nn−kck
γ , β̄ k+1 = β̄ k + nn−kck

β

where
nn−k = [0 · · · 0︸ ︷︷ ︸

n−k−1

1 · · · 0]T
,

ck
γ = 2(2an−kβ̄

kan−kγ̄
kγ̄k

n−k + 2an−kβ̄
kan−kγ̄

k

+an−kγ̄
kγ̄k

n−k + an−kγ̄
k),

ck
β = 2(2an−kβ̄

kan−kγ̄
kβ̄ k

n−k + 2an−kγ̄
kβ̄ k

n−k

+an−kβ̄
k)

The algorithm terminates in at most n−1 steps, since
this is maximum path length in a directed acyclic
graph with n vectices. It results in a γ̄ vector contain-
ing the formation ISS input gains of each agent. These
are the gains that express the sensitivity of the forma-
tion stability with respect to the dynamic interaction
at each agent due to interconnection. Thus if agent i
follows agent j, then the steady state of the formation
errors, (zk)ss of all edges k between the descendants of
agent i is bounded:

‖(zk)ss‖ ≤ γ̄i‖zi j‖
The steady state error for the whole formation will
then be bounded by a linear function of the norm of
the leader’s velocity:

‖zss‖ ≤ γ̄1‖ẋ1‖

5. EXAMPLES

Consider the case of three agents where one is as-
signed to be a leader of the formation and the other
two have to be followers. Denote the leader by v1 and
the followers by vi, i = 2,3. Suppose that the task is
for v2 to follow v1 keeping a constant distance d and
v3 to follow v2 keeping the same constant distance d
(Figure 2).
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Fig. 2. Serial interconnection

A simple one dimensional model of the formation
could be given as:

ẋ1 = u

ẋ2 = k(d + x1 − x2)

ẋ3 = k(d + x2 − x3)

where xi, i = 1,2,3 are each agent absolute coordi-
nates, u is the leader’s velocity, d is the inter-agent
desired distance, and k is the gain of the feedback law
which is based on relative position measurements. By
a change of coordinates,



z1 = x1

z2 = x2 − x1 −d

z3 = x3 − x2 −d

the formation equations can be written as:

ż1 = u

ż2 =−kz2 −u

ż3 =−kz3 + kz2

For the 1 − 2 interconnection, a Lyapunov function
candidate could be:

V2(z2) � 1
2

z2
2

Obviously, 1
2 |z2|2 ≤V2(z2) ≤ 1

2 |z2|2. Then,

V̇2(z2) = −kz2
2 + z2u

Select any θ ∈ (0,1) and write V̇2 as

V̇2(z2) = −k(1−θ)z2
2− kθz2

2 + z2u ≤−k(1−θ)z2
2,

for |z2| >
supτ≤t |u|

kθ ,θ ∈ (0,1). Then it follows that,

|z2| ≤ |z2(0)|e−
√

2k(1−θ)t +
supτ≤t |u|

kθ
= β2(|z2(0)|,t)+γ2(sup

τ≤t
|u|)

The ISS input-gain function for agent v2 is

γ2 =
supτ≤t |u|

kθ
Similarly, for agent v3 a Lyapunov function candidate
could be:

V3(z3) � 1
2

z2
3

and its time derivative would then be

V̇3(z3) = −kz2
3 + kz3z2

For |z|3 >
supτ≤t |z2(τ )|

θ it follows that

γ3 =
supτ≤t |z2(τ )|

θ
Then the formation, as a cascade connection of the
subsystems of agents v2 and v3, is input-to-state stable
with

γ(sup
τ≤t

|u|) =
6+ 6kθ +θ

kθ2 sup
τ≤t

|u|

In the second case, both agents v2 and v3 are to follow
the leader at designated distances that are d for v2
and 2d for v3. The formation shape is the same as
in the previous case, however the interconnections are
different as reflected in the different formation graphs
(Figure 3).

The formation equations in this case are:

ẋ1 = u

ẋ2 = k(d + x1 − x2)

ẋ3 = k(2d + x2 − x3)

which by a change of variables:

1
2

2d

d
3

Fig. 3. Parallel interconnection
z1 = x1

z2 = x2 − x1 −d

z3 = x3 − x2 −2d

For the same Lyapunov candidate functions used in
the previous case, it follows that:

β2 = |z2(0)|e−
√

2(1−θ)t , γ2 =
1

kθ
sup
τ≤t

|u|

β3 = |z3(0)|e−
√

2(1−θ)t , γ3 =
1

kθ
sup
τ≤t

|u|

and the input gain for the formation is:

γ(sup
τ≤t

|u|) =
2

kθ
sup
τ≤t

|u|

It can be shown analytically that the second formation
can outperform the first in terms of the magnitude of
relative errors with respect to the leader’s velocity.
Specifically, if we denote by γs the input-to-state gain
of the first interconnection connection and by γp the
input-to-state gain of the second interconnection,

γs

supτ≤t |u|
=

6+ 6kθ +θ
kθ2 ≥ 6θ + 6kθ +θ

kθ2

=
6kθ + 7θ

kθ2 =
6k + 7

kθ
≥ 7

kθ
≥ 2

kθ
=

γp

supτ≤t |u|

6. CONCLUSIONS

In this paper, the notion of formation input-to-state
stability has been introduced. This form of stability
can be used to characterize the internal state of a
formation that has a leader-follower achitecture, and
establishes a link between the motion of the leader
of the formation or its external input and the shape
of the formation. Formation ISS is a weaker form
of stability than string stability, in the sense that it
does not require inter-agent communication and relies
entirely on position feedback only (as opposed to both
position and velocity feedback) from each leader to
its follower. Moreover, it establishes a link between
the formation internal state and the outside world.
In the proposed framework, different formation struc-
tures can be analyzed and compared in terms of their
stability properties.

Future work is directed towards investigating the ef-
fect of (limited) inter-agent communication on forma-
tion stability and consistent ways of group abstrac-
tions that are based on the formation ISS properties.
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