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Abstract

A manipulated deformable object is viewed as an
underactuated mechanical system. In this context con-
trollability issues are discussed and results on the na-
ture of the constraints and the controllability proper-
ties of an important class of deformable objects being
modeled with finite elements are stated. For this class
of deformable objects the results permit to circumvent
the usual procedure of calculating Lie brackets to estab-
lish a base for the associated Lie algebra, and answers
the question of determining the kind of constraints im-
posed on the system in a straightforward algebraic way.
Inequality constraints associated to material strength
limitations are also included.

1 Introduction

Among all kinds of material that a robot is called to
manipulate, very few are actually rigid. Our world is
formed mainly of deformable materials, the flexibility
of which varies significantly. It becomes clear that dif-
ferent kinds of material can not allow a uniform treat-
ment. Therefore, there should be a way to distinguish
between manipulated objects that have different prop-
erties and follow different handling strategies, bearing
in mind the individual characteristics.

Previous approaches to deformable object handling
focus mainly on formulating general continuous dy-
namic equations for the object in a way to enhance
computation or allow for certain control strategies.
Sun et al. [9] followed Terzopoulos’ [11] hybrid ap-
proach to deformable objects. Kosuge et al. [2] used
finite elements but ignored the dynamics of the ob-
ject and consentrated only on the static conditions.
Wu et al. [12] approximated the distributed parame-
ter system with a lumped parameter model. Yukawa
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et al. [13] investigated a vibrating flexible object and
modeled it using model reduction theory.

The authors have previously modeled a deformable
object being manipulated by multiple mobile manip-
ulators [10]. They used elastodynamic equations to
model the object and indicated the simplest finite el-
ement grid structure able to describe the object being
handled by multiple manipulators. In this paper we
generalize this approach, by introducing a framework
that both includes a rich variety of mechanical systems
and allows more detailed description. We consider
the deformable object as an underactuated mechanical
system [8] and ‘discretize’ the distributed parameter
system using finite elements [6]. As underactuated
systems, a great variety of mechanical systems can be
included in this framework e.g. chains, structures with
passive joints, systems with rolling contact, etc. This
broadens considerably the prespective of the approach
to object handling.

The rest of the paper is organized as follows: In
section 2 a deformable object is described as an under-
actuated system and the state equations are derived.
In section 3 the dynamic constraints imposed on the
system are classified. The controllability properties
are investigated in section 4. Constraints related to
material strength limitations are included in section
5. In section 6, some examples are presented which
verify the theoretical results. Finally, in section 7 the
results of the paper are summarized.

2 The Underactuated System

Strictly speaking, a deformable object has infinite
degrees of freedom. An attempt to simplify the prob-
lem is to ‘discretize’ the structure, reducing the num-
ber of its degrees of freedom to a finite countable set.
A popular way is finite elements.



The extend of discretization can depend on the in-
dividual characteristics of the material. Almost rigid
materials do not require dense discretization grids;
flexible ones do. Adjusting the grid, completely rigid
to flexible materials can be described.

We consider the discetized deformable object as
an underactuated mechanical system. Underactuated
systems have less inputs than degrees of freedom [8].
The system at hand is underactuated since only a few
degrees of freedom are directy controlled, namely the
ones coinciding with the grasp points. The rest are
staticaly and dynamically coupled to the actuated and
can be regarded as passive.

The class of underactuated mechanical systems is
very broad and includes systems with passive joints,
flexible link robots, mobile robots, flexible link robots,
space robots and a variety of other systems out of
many robotics fields. This broad class motivates the
investigation of new manipulation tasks, including sys-
tems of rigid bodies or combinations of rigid and de-
formable objects, modeled as underactuated systems.

Following the Lagrangian formulation of the dy-
namics of mechanical systems with n generalized co-

ordinates q = (qu,--.,4q,)T € Q, the equations of
motion can be derived

d [0 oL

— [ =) = =F,; i= v

dt (aq',-) B ¢ 1=1....n

It is well known that the above can take the form:
M(q)g + C(q,9)q + K(q) = B(q)u (1)

where M is the symmetric and positive definite inertia
matrix, C contains the Coriolis and centrifugal terms,
K is formed by the terms associated with gravity and
elastic forces, and u is input. In the case of under-
actuated systems the space of generalized coordinates
can be partisioned into an actuated and passive part:
q” = (qf,qY), and (1) can be written [8]

mi; gy +mi2qe +ci(q,q) +ki(q) =0 (2a)
my; §; + m2z G2 + ¢2(q,q) + k2{q) = b(q)u (2b)

where b(q) € ™*™ is assumed nonsingular.

Viewing (2a) as a set of n —m dynamic constraints,
a natural question to ask what kind are they. We will
name them intrinsic constraints to distinguish them
from any external imposed constraints related to ob-
ject material strength or obstacle avoidance. Intrinsic
constraints can either be holonomic, first order non-
holonomic or second order nonholonomic. The kind
of constraints imposed determines the controllability
properties of the system. Therefore, it is quite impor-
tant to classify these constraints before proceeding to
investigating controllability properties.
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2.1 Collocated Linearization and State
Space Description

Certain forms of system description enhance anal-
ysis. A valuable tool for analysis is feedback lineariza-
tion, which unveils the system structure. An impor-
tant property of system (2a) - (2b) is that it can be
partially feedback linearized with respect to the actu-
ated degrees of freedom [8]. Indeed, by examination
of (2a) it can be seen that my;; is square and non-
singular, since the original inertia matrix is positive
definite. Therefore (2a) can be solved for @

&1 = —my; [mis &2 + c1(q, q) + ki(q))]
and then substitute in (2b)
m(q) G +&(q,q) + k(q) = bu

where

m(q) = ms2(q) — m2(q) my;' (q) miy(q)
&(q,4d) = c2(q,q) — mz;(q) mj;'(q) c1(q, q)
k(q) = kz(q) — m2;(q) mi7'(q) ki1 (q)

Now, using the linearizing feedback
u=b"im(q) v +&(q, ) + k(q)] (3)

the system (2a) - (2b) takes the form

qQ =V (48.)
G =J(q)d: + R(q,9) (4b)

where

J(q) = —mij (q)miz(q)
R(q,4) = -m{}(q)c1(q,q) - my (q)k:(q)

Then setting
x1=q €R™, x2=q €R"™, x3=q, x4=4q,

equations (4a)-(4b) come into state space form [7]

).Cl = X3 (53')
X2 = X4 (5b)
X3=v (5¢)

x4 = J(x1, %2)v + R(x1, %x2,X3,X4) (5d)



3 Constraint Classification

When the manipulated object is considered com-
pletely rigid, intrinsic constraints permit integration
yielding algebraic expressions of the form

q1 = g(q2)

In this case they are holonomic and they can be used
to eliminate a number of generalized coordinates and
reduce the dimension of the state space by 2(n — m):
}'(1 = X3 5(3 =V

The second case is when the constraints are first-
order nonholonomic. The dimension of the con-
figuration space remains the same, but the dimension
of its tangent bundle is reduced by n — m. The con-
straints can be expressed in the form

A(q) [ﬂ =0 AeRO-mx2 ©6)

A base S(q) € R("+™)*2n for the annihilator of A is
formed and (1) is ‘projected’ into the space generated
by the columns of ST. This results in n + m state
equations. The existence of S implies a relation [1]:

{5 aer @
which can be used to obtain
7 =D(q) + G(q,7)u 8

where D and G are derived by differentiation and sub-
stitution of (7) into (1) and ‘projection’ of the result-
ing equations onto the distribution spanned by ST.

The last case is when these constraints are com-
pletely nonintegrable, forming a set of n —m second-
order nonholonomic constraints. A formal defini-
tion of second order nonholonomic constraints is given
in [7] by defining the distribution A = span{o,7;}
where

g i)
+Z(Q1kaq Rké—a;)"'a

; Jij j=1,...,m.
i 6q2,] 2; ”a PP
Definition. (from [7]): Consider the distribution A
and C its accessibility algebra. Let C the accessibil-
ity distribution generated by C. The system (4a)-(4b)
is said to be completely second-order nonholonomic if

dimC(x,t) = 2n + 1,V(x,t) € M x R.

Here, the dimension of the state space is not re-
duced. We show that finite element models of de-
formable objects exhibit second-order nonholonomic
constraints. The presence of second-order nonholo-
nomic constraints is typical in the dynamic description
of underactuated robots [5].

4 Controllability Issues

When k intrincic constraints are holonomic, then
the system motion is restricted to an n—k dimensional
manifold. The system has n — k degrees of freedom;
the remaining k can be eliminated. Control must be
restricted to this manifold of admissible motions.

If the constraints turn out to be completely first or-
der nonholonomic then the system configuration space
is not confined. Proving that these constraints are
completely nonholonomic is equivalent to evaluating
the dimension of the accessibility distribution of the
system, C, which should be 2n. Then the system is ac-
cessible. Due to the presence of a drift term D in (8),
accessibility do not imply controllability. For nonholo-
nomic systems with drift there is no available general
necessary and sufficient result for establishing com-
plete controllability [4]. One has to resort to other
forms of controllability, such as strong accessibility
and STLC (small-time local controllability). For the
latter there exist only sufficient conditions, but once
it has been established one can utilize the manifold of
equilibrium points of the drift vector to reach an arbi-
trary small neighborhood of the desired configuration.
Systems which are STLC are not asymptotically stabi-
lizable via time-invariant feedback; piecewise analytic,
however, may be used.

If the system (4a)-(4b) is proved to be second-order
nonholonomic, then it is has been proved that it is
strongly accessible [7]. Moreover, there is a chance for
smooth stabilization, provided that a sufficient condi-
tion for non-existence of a smooth stabilizing control
law is not satisfied.

Theorem. ([7]): Assume that R;(q,0) = 0,Vq €
Q, for some 1 € I,_,n, = {1,...,n — m}. Let
n—m > 1 and let (q%,0) denote an equilibrium so-
lution. Then the second-order nonholonomic system,
defined by (4a)-(4b), is not asymptotically stabilizable
to (q¢,0) using time-invariant continuous (static or
dynamic) state feedback law.

If Vi,3q € Q|Ri(q,0) # 0, then the system could
perhaps be stabilizable by continuous control law.

In the remaining of this section we will show that a
class of deformable objects being modeled with finite
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elements share some interesting properties if they sat-
isfy a certain condition. The discussion concentrates
on finite element models for which (1) takes the form:

Mg + Cq+ Kq = Bu 9)

i.e. the characteristic matrices are independent of the
generalized coordinates and speeds. The above model
is standard and can be found in many finite elements
textbooks [6]. The state equations derived from the
above model have the form

Q@ =V (10a)
& =J& +Riq,q) (10b)
We proceed with the following Lemma:
Lemma 1. For equations (10a - 10b) it holds:

1 [rx,ad] 7} =0 Vr>0, kj€{l,...,m}

AT
ArJ; e
Omx1
2. aditTry = e
o B, [3; e]"
O(m+1)x1
A,, B, € RO=mX1 ] yhere J; is the jth column
of J and e; is the j** base vector of R™.

for r > 0 and

9. The vectors that form the vector field ad}tir; can
be expressed as

R oR
B, = (-1 [_A,_ +ORp
( ) Oqy ' 01 !
A, =(-1)"1'B.; with
OR OR OR oR
Bi= o=t i = A= —
! dq Odar 049 ! oq

Proof. (1) can be proved by noticing that if we set
g=[q" ¢ t]T then %% = 0. (2) can be proved by
straightforward calculation, taking into account that J
is independent of § and R does not contain quadratic
terms in neither q or q. For (3), note the special

dad} 7;
structure of 22 and that ——2" = 0. |
G aq

Our main result follows:

Proposition 1. If for system (9) all matrices in the
sequence

Ay AZ(n—m!

o|[ J ] |l o J ]
Bl Ime BZjn—m[ Ime
0 0

have full rank, (9) is second-order nonholonomic.
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Proof. The proof follows immediately from the above
Lemma and from Definition, by noting that this se-
quence is directly accossiated with the filtration of the
accessibility distribution C. The filtration is regular
with relative growth vector s = (m+1,m,m,... ,m).
N —

T
Therefore the dimension of the distribution is finally
2m + 1+ 22=myy = 9n O

Being second-order nonholonomic, the finite element
model (9) is also strongly accessible [7]. Moreover,
a careful investigation shows that it does not sat-
isfy the sufficient condition for STLC presented
in [3], since J is constant and R does not have a term
which is quadratic in velocities. This of course does
not mean that the system is not STLC. Finally, at
the equilibrium the system does not satisfy the con-
dition R(q®%,0) =0 Vq which is sufficient for nonex-
istence of a time-invariant continuous state feedback
law. Therefore, such a control law might exist.

5 Material Constraints

In practice, rarely do we need to control all degrees
of freedom [10]. Steering only the directly controlled
degrees of freedom is usually sufficient, provided that
the rest are confined within specific limits. These lim-
its naturally arise from material strength limitations
and are written in the form:

o<é (11)

where o is the stress tensor of the structure and & is
the maximum admissible stress for the particular ma-
terial and object. These constraints can be included
in (9) through Kuhn-Tucker multipliers:

.. . 0
Mg+ Cq+Kq=Bu+ (_c'%)T“

wr(@ =0, pu>0

Note that in this case, the multipliers cannot be elim-
inated because they correspond to inequality condi-
tions which do not reduce the dimension of the state
space. Then the Kuhn-Tucker term can be included
into the potential terms, yielding equations (2a)-(2b)

my;q; +mde +ed+ki(q,p) =0
my; 1 + Mmoo G2 + c2q + ka(q, ) = bu
u'r(@) =0, p>0

When the stress conditions are satisfied, then p van-
ish and the equations describe the motion of an un-
constrained system.
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Figure 1: A deformable object under axial load

6 Examples

6.1 Rod under axial load

Consider a beam under axial load. The beam is di-
vided into two finite elements (Figure 1). The system
has three degrees of freedom, two of which are directly
controlled. The element characteristic matrices are:

_pAL[2 1 _pALT2 1
M_T[l 2] €= 2
AE[1 -1
K‘T[—l 1]

Assembling the element equations to form the com-
plete equations and rearranging the terms to single
out the actuated part from the unactuated, yields the
dynamic equations

p(A161+A242) pA 4y £A212 o
3 6 6 92
pALL pAL L 0 G
6 3 It
eAglg 0 gAazlz Ga
(A6 +A20) pAts pAcle [
6 6 q2
+ pALl pALl 0 qQ
] 3
EAszlz 0 EAsztz- _43_
AE | AJE  _AE _AE7 -
A I o4 b 12 a2 0
+ -5= 5= 0 ol =k
- Al 2E Al 'zE 93] P

Where A;, A, and ¢y, are the elements cross sec-
tions and lengths, respectively. Applying the lineariz-
ing feedback (3) yields the familiar form (10a-10Db)

G =
Gz = vo

[jQ:J[’Ul ’UQ]T+R

1
= Sh T A MG Al
_ 3 7] . pAL Yl
R= p(Alzl + A2£2) [3 (Alel + A2e2)q2 + 6 q1

uAgls | A A, AE AE
El—+-= - —q - —
+ 6 q3 + (51 + A q2 A Q1 A q3

Using Proposition 1 we can conclude that the system
is second-order nonholonomic. Indeed, in this case
r = 1 and the matrix

_B_}_i J 1 J2
L=|on o g&} 1 0
2] 942 0¢ 0 1
has a determinant:

9(A1 b+ 2A2£2)E[I,A2

detlL] = - 4p%6r(A1l1 + Azls)? #0

Therefore it is nonsingular and the system is second-
order nonholonomic. This can be verified by taking
the vector fields:

o=1[@ d& d 0 R 0 1"
n=[0 001 4 0 0
=0 000 J 1 0

and calculating a base for the accessibility algebra:

T
["0,7'1]=[“‘1 2(A1241-fA—52¢2 0 000 O}

T
[TO’TZ]=[O 2("12‘}{/‘2_[2-7 -1 0 0 O 0:|

adn=[0 000 G o 0]
a2mi=[0 -G 0 0 0 0 0]

where G = 3A"§$ﬁifii’j§2 ;’f%;:f”‘g) # 0. Clearly the
dimension of the accessibility algebra is 2n + 1 and
therefore the system is second-order nonholonomic by
definition.

6.2 Beam under bending load

Consider a beam resisting bending moments ap-
plied on its plane (Figure 2). Here the finite element
model is more complex. There are six degrees of free-
dom four of which, the linear and angular displace-
ments at the grasp points, are actuated. Displace-
ments gz and g4 are not directly controlled. This sys-
tem is also second-order nonholonomic. The matrix
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Figure 2: A deformable beam resisting bending

sequence has 2@7—@2 = 1 elements. Therefore we only
need to calculate the matrix:

L=|sm , 3k ar [] k=3,4.
3q toa a] LI

Its determinant turns out to be:
4254529125 p? A2E?I?
det[L] = £
562432 migd
indicating that the system is second-order nonholo-

nomic. A direct calculation of a base for the accessi-
bility algebra verifies the result.

7 Conclusion

A deformable object being manipulated can be dis-
cretized using finite elements and regarded as an un-
deractuated mechanical system. In this framework
many different kind of mechanical systems and ma-
nipulating tasks can be studied. We presented a suffi-
cient condition for second-order nonholonomy, for an
important class of deformable objects modeled with
finite elements. This result permits to circumvent the
usual procedure of calculating Lie brackets to estab-
lish a base for the associated Lie algebra, and answers
the question of determining the kind of constraints
imposed on the system in a straightforward algebraic
way. Moreover, constraints associated with material
strenght limitations have also been included.
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