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Abstract—A nonholonomic motion planner for mo-
bile manipulators moving in cluttered environments is
presented. The approach’ is based on a discontinous
feedback law under the infuence of a special poten-
tial fleld. Convergence is shown via Lyapunov’s di-
rect method. Utilizing redundancy, the methodology
allows the system to perform secondary, configuration
dependent, objectives such as singularity avoidance. It
introduces an efficient feedback scheme for real time
navigation of nonholonomic systems.

I. Introduction

One of the most severe restrictions to a wider
application of robotic manipulators are their lim-
ited workspace. To answer the need for increased
workspace, mobile manipulators were constructed.
The first mobile manipulators operated in space but
nowadays their application is spreading to terrestrial
and aquatic environments.

Mobile manipulators are systems composed of a
robotic arm mounted on a mobile base. This combi-
nation gives rise in a new class of robots with remark-
able properties. Such systems inherit the dexterity of
a robot manipulator and the increased workspace of
a mobile robot. Moreover, the merging also results
in new properties not encountered in any of the com-
ponent subsystems, which should be investigated and
exploited.

Among the unique properties possessed by such a
system, redundancy is one of the most important. Re-
dundancy is created by the increased number of de-
grees of freedom. This property enables one to use
the redundant degrees of freedom to accomplish sec-
ondary tasks. Towards redundancy resolution, several
methodologies have been presented.

Mobile manipulators have been studied during the
last decade and significant work appears in literature
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[1],[2]. Several papers are related to motion planning
for such systems: Desai and Kumar [3] have formu-
lated the problem as an optimal control problem. Pin
et. al [4] performed local optimization at velocity
level to achieve redundancy resolution using their FSP
method. Perrier et. al (5] minimized the total posi-
tion error using a linearized model. Huang et. al [6]
decoupled the motion of the vehicle from that of the
manipulator and optimized each one using different
criteria.

In this paper the system is kinematically steered
between two arbitrary configurations amongst obsta-
cles. Obstacle avoidance, therefore, naturally arises
as a secondary objective which is to be achieved by
utilization of the system’s redundancy. Another im-
portant secondary objective could be the avoidance of
the manipulator singular configurations.

Due to the kinematic constraints imposed on its
base, the mobile manipulator is a nonholonomic sys-
tem. This complicates considerably the motion plan-
ning problem, since no continuous static feedback mo-
tion planning scheme can be applied. The motion
planning strategy has to be either open-loop, time
varying or discontinuous.

Motion planning for nonholonomic systems has tra-
ditionally been divided into two stages: path planing
and trajectory planning. Path planning consists of
defining an admissible continuous sequence of config-
urations linking the initial position with the goal. Mo-
tion planning deals with the time parameterization
of the obtained path. In this framework, a motion
planning strategy is inevitably open-loop. Alternative
methodologies include non smooth feedback and time
varying schemes though they usually focus on tracking
an existing holonomic path.

Particularly for mobile manipulators, the issue has
generally been treated within the framework of opti-
mal control. Optimal control is a powerful tool which
is able to incorporate state constraints. It is noto-
riously known though for its computational require-
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ments that render it impractical in real time applica-
tions. :

Our approach is based on the use of fast feedback.
The system is kinematically steered in real time using
position.information to navigate itself at each time
step. This is made possible with a discontinuous feed-
back law and a special kind of potential field func-
tions. The primary merit of such an approach is that
it merges path planning and motion planning in a
robust and fast feedback scheme. It also allows ad-
ditional configuration dependent secondary objectives
to be simultaneously achieved.

The rest of the paper is organized as follows: Sec-
tion II presents the basic mathematical tools on which
our approach is founded and gives a formal problem
statement. Section III briefly discribes the basic math-
ematical tools used in the paper and presents some
stability and convergence properties of the proposed
scheme. In section IV several implementation issues
are discussed. Section V illustrates the efficiency of the
approach through a number of non trivial numerical
simulations. The authors conclusions are summarized
in section VL

II. Problem Statement

Consider the autonomous nonlinear system
&= f(z)

with a possibly discontinuous right hand side. f:
R™ — R™ is measurable and essentially bounded. The
Filipov set [7], K[f](z), is formed by the images of the
vector field of the system on a neighborhood of point
z. It is important that we can neglect a set of measure
zero where the vector field is not defined.

For nonsmooth functions V, the gradient 8V is de-
fined as a set of vectors [7]. The time derivative of a
Lyapunov function for the system can be defined as:

ve ) e (MUE).

£€8V ()

Then %V(:c) exists almost everywhere and

d a.e. 17

The above implies that for a discontinuous system, the
time derivative of its Lyapunov function is not a sin-
gle value any more, but belongs in a set formed by
the intersection of all values resulting from dot mul-
tiplication of the gradient of the Lyapunov function

with a vector containing the Fillipov set as part of its
components. Lyapunov’s direct method and LaSalle’s
invariant principle have been extended [7] to the case
where either f(z) is discontinuous, V(z) nonsmooth
or both. These extentions facilitate the stability anal-
ysis of the discontinuous closed loop system by pro-
viding the necessary mathematical tools. They allow
the system to be treated in the usual fashion in the
framework of Lyapunov’s direct method and LaSalle’s
invariant principle.

The problem at hand is to plan the motion of a mo-
bile manipulator between any two arbitrary configura-
tions, coordinating the mobile robot and the attached
manipulator to utilize redundancy and achieve sec-
ondary objectives. Such objectives could be obstacle
and singularity avoidance. Both systems are modeled
kinematically. Thus, although the proposed method-
ology could easily be classified as a control scheme, we
would rather refer to it as a motion planning strategy.
In such a framework, the mobile base is modeled as
a unicycle while the manipulator will be trivially de-
scribed as a parallel series of integrators. A joint con-
figurations space description of the manipulator can
accomodate obstacles.

An additional desired feature for the planning
scheme is feedback. This would enable the rejection of
disturbances and/or noise and the reduction of com-
putational burden which is typical of optimal control
methodologies.

The problem can be formally stated as follows:

Definez£ [z y 6 q]T where z,y denote the
position of the mobile platform on the plane on
which it is moving, 6 is its orientation, and q £
[ - agm] T are the manipulator joint position vec-
tor. Then consider the system:

Z = vcosf (1a)
Yy =wvsind (1b)
f=w (1c)
q=u (1d)

Given an obstacle free configuration space, C, a singu-
larity submanifold S, and two arbitrary points zo, zs
lying in the same connected component of C, de-
fine a feedback scheme U : q — [v w u] such that
the resulting trajectory r: [0,T] = C, satisfies r(0) =
zg, r(T') = z; and, if possibly, r(t) € S.

The configuration space of the system is the mani-
fold ®2 x S™+1, The obstacle free configuration space,
C, is formed by removing from the configuration space
the obstacle regions. Although the phrase ‘if possibly’,
is not very suited for a formal statement we wish to
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allow the trajectory to have singular points in the case
no other singularity free admissible trajectory exists.

III. Approach to Solution

Designing a joint path for such a holonomic system
as this series of integrators that describe the manipula-
tor, may not be so difficult. The nonholonomic nature
of the mobile base, however, poses severe restrictions
on the kind of potential motion planning schemes: no
smooth, time invariant feedback law would do {8].

Therefore, the adoption of feedback leaves only two
options: either nonsmooth [9] or time varying strate-
gies [10]. Both of these have been explored in the liter-
ature and significant results have been presented. The
authors feel that a nonsmooth, time invariant scheme
suits better, since there are several structural require-
ments and performance limitations in the latter case.

A. Navigation Functions

For obstacle and singularity avoidance potential
fields provide a conceptually appealing option. Nav-
igation functions [11] are a special kind of potential
field generating functions that do not have local min-
ima. In this framework a relatively wide class of obsta-
cles can be taken into account. What is more, poten-
tial fields can be easily incorporated in a feedback loop
and can accomodate configuration constraints such
as obstacles and singularities. Singularities can be
avoided by maximizing manipulability. Since manip-
ulability is configuration dependent an obstacle func-
tion can be built to drive the system away from sin-
gular points. The robot can then navigate following
the negated gradient of the potential function. The
flow of this vector field is guaranteed to reach the des-
tination, whenever the problem admits a solution. In
other words, if there is a solution it will always be
found. Stability can be established using Lyapunov’s
direct method.

Navigation functions are positive definite smooth
functions, attaining a maximum at the boundary of
the free configuration space, and vanishing only at the
origin. Their gradient does not vanish except for the
origin and perhaps a countable set of isolated points
-therefore no local minima are created. Navigation
functions serve as natural Lyapunov function candi-
dates. The mathematical requirements for the exis-
tence of navigation functions are not severe: every
smooth connected and compact manifold with bound-
ary admits a navigation function [11].

Potential-based motion planning methods assume
that the system can be described as a single point in
the configuration space. Real robots however are gen-
erally multilink mechanisms consisted of rigid bodies.
In order to shrink the robot to a point we have to ac-
count for its volume and increase the obstacles’ volume
accordingly [12]. Such a procedure may not be trivial
since the shape of the robot is generally nonsmooth
and irregular. The issue of determining a construc-
tive procedure for generating grown obstacles for ar-
bitrarily shaped robots such as a mobile manipulator
remains under investigation.

B. Motion Planning Scheme
Given a navigation function describing the robot

workspace, we propose the following discontinuous
feedback law:

= 6_V s()+?zsin0 .
v =—sgn axco By

{5+ ()

(2a)
+k; (22 +y?) }

w=kg(64—0)-sgn (—%;—(04 - 0)) (2b)
ov

uy = —a—ql (2c)
ov

where V is the navigation function, k,, k., and ky are
positive control gains, tuned to regulate the relative
weight of the control actions. In particular, a large
value for k, keeps v from vanishing in configurations
away from the origin where % = %—V =0. On the
other hand, k, amplifies the influence of the.potential

field on the system evolution. 8, is defined as:

N av av
64 = arctan2(sgn(z) B sgn(z) e )

while the sign function is defined as

a )l , 220
sgn(z) = -1 ,2<0

Stability for the system can be obtained via Lya-
punov’s direct method, utilizing features from nons-
mooth analysis.

Proposition II1.1: Under the control law (2), the
system (1) converges asymptotically to the origin.
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Proof: Consider a smooth navigation function
as a Lyapunov candidate. It is positive definite by

construction.
Then
vcosf
- in@
V= m TK vsin
w
£€dV u
and since V is smooth,
[vcosf Klv]cosb
V=vvTK vsiné cvyT K{v]sin6
K{w]
u u

=-K [sgnL(‘gV cosf + Qy—smg)] ( cosf + B—V-smO)

v ov o+
{k"L(az) +<6y) :|+kZ( +y)}
+ 500K [sgn (-5 0a—9))]
_(_)2 ( )2

6V BV
—-~—|a cosf + a—ysme

(-5 + (&) e}

- |5 a0 - G -

Then, by LaSalle’s invariant principle for nonsmooth
systems [7], every trajectory converges to the largest

invariant set which is included in § £ {z[0 € V}. It is
V =0 only when:

%%cos9+
8V :p 8V _
3—ysm9—0, %5 =0, v
or and or A —‘,-)a- =0
av av _ _
=% = 0=20y
z=y=0

In an invariant set inside S it is also required

v _av

0=9d and —8;_71/-

=zg=y= 0
However, in that case we have 83 =0 so § =0 and
the invariant set reduces to the origin. Therefore, the
closed loop system: trajectories converge to the origin.
| ]
A problem here is that the function 64 is not con-
tinuous at 0. This means that in a neigborhood of
the origin 4 could be different from zero, implying

that the system would approach the origin with arbi-
trary orientation and will only correct it after reaching
(z,y) = (0,0). This will be remedied by the use of a
special kind of potential field functions, introduced in
the following section.

IV. Implementation Issues
A. Dipolar Navigation Functions

Although strategy (2) theoretically guarantees con-
vergence to the origin, there are some practical issues.
The main idea behind (2) is to align the mobile base
with the direction of the navigation function gradient.
In practice, the base will follow a nonholonomic tra-
jectory, reach the origin and reorient itself there. This
is facilitated by the ability of the unicycle to rotate
freely at any fixed position. In order to produce more
realistic trajectories we propose the use of a (possibly
nonsmooth) potential field the flows of which are tan-
gent to the z axis at the origin. Although this will not
avoid the need to rotate in place at locations where
ﬂ =& = 0, it will cause the mobile base to ap-
proach t%le origin with 8 — 0. We will call this kind of
potential field functions dipolar navigation functions.
The introduction of dipolar navigation functions was
motivated by the form of the field produced by a mag-
netic dipole. A dipolar navigation function, similar to
the one used in the simulation examples is shown in
Figure 1. The figure is a countour plot of the nav-
igation function on which potential field vectors are
marked by arrows.

It must be emphasized that it is always possible
to generate a smooth dipolar potential field (e.g. by
artificially increasing the potential along y axis.)

B. Chattering

Typical to discontinuous control law is the appear-
ance of chattering. Chattering is characterized by a
high frequency switching in the control signals. Under
law (2) chattering occurs primarily do to the change
in the sign of v when the platform velocity is almost
tangent to an isopotential surface. In particular, chat-
tering will occur at positions where:

%‘;/cost9+ %%sm@ 0 or %=0
We alleviate the effect of chattering by employing hys-
teritic switching [13]. What is actually done is to add
a delay to switching when crossing the discontinuity
surface, thus reducing the chattering frequency. We
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Fig. 1. A dipolar potential field

should point out however that the proposed feedback
law steers the system away from the first surface of
chattering behavior. In fact, it can easily be shown
that aligning @ with 84 makes %% cosd + %% sinf # 0,

for every (z,y,0,q) #0.

V. Simulations

In the simulation example a two link planar mobile
manipulator is considered. The mobile base consists of
a planar rectangular region. At its center lies the first
rotational manimulator joint. The two manipulator
links are of the same size and shape.

The system has five degrees of freedom: three
to specify the mobile base position on the plane,
(%,y,60) and two for the manipulator configuration,
(g1,92)- At the center of the workspace a rectangu-
lar obstacle is placed. The destination point is at
(z,9,0,¢1,q2) = (0,10,0,0,7/2), just above the rect-
angular obstacle. This configuration gives rise to a
relatively difficult motion planning problem, since the
destination point is close to the obstacle region and
the situation requires careful manoeuvres. At the
initial points the angle variables are arbitrarily set
to (8,q1,92) = (0,7/3,—m/4). Simulations were con-
ducted with MATLABS. The figures demonstrate the
obstacle avoidance and convergence properties of the
proposed scheme.

It is also interesting to note that the second link is

: initiat position

30 H : ; H
-30 -20 -10 0 10 20 30

Fig. 2. Initial condition:(x,y)=(10,-20)

—T T T T

initial p{;sition

Fig. 3. Initial condition:(x,y)=(20,20)

stretched during each manoeuvre to stay as far from
the singularity at go = 7 as possible. . Only at the
end of the manoeuvre does it reach its prescribed final
value. This is indicative of the singularity avoidance
properties of the proposed scheme. The singularity at
g2 = 0 where the rank of the manipulator jacobian is
decreased is not taken into account. It is not difficult,
however, to do so without removing all set of points
with g2 = 0 from the free configuratin space. One can
model this singularity as a repulsive ‘near-obstacle’
region, which is nonetheless reachable in case no other
path exist.

Figures 2-4 depict the system motion with different
initial conditions. ;
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Fig. 4. Initial condition:(x,y)=(-20,-20)

VI. Conclusions

In this paper the motion planning problem for non-
holonomic mobile manipulator systems is investigated.
The proposed motion planning scheme is based on a
full state discontinuous feedback law which guaran-
tees convergence the to desired final position and si-
multaneous obstacle and singularity avoidance. The
feedback nature of the scheme makes it particularly
useful for real time applications, providing robustness
against measurement and modeling errors. Another
remarkable novelty is the merging of the path plan-
ning and trajectory generation stages of the motion
planning problem. Trajectories are generated in real
time and solutions, if any, are guaranteed through the
use of navigation functions.

One of the intrinsic limitations of the potential-field
approach is the requirement for a topological model of
the robot’s geometry and its environment. At this is-
sue, however, potential-based methods are superior to
classical findpath algorithms since the symbolic math-
ematical representation of the workspace theoretically
allows a computationally cheap adaptation of the nav-
igation function parameters as new (or revised) infor-
mation comes along [11].

Research is continued on the construction of dipo-
lar navigation functions and grown obstacle represen-
tation. In the future it is expected that more config-
uration dependent constraints, such as conditions for
avoiding tip-over, would be accomodated.
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