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By expressing the expected collective radiation counts
registered by the robotic swarm, at any given workspace
location as a function of the prior knowledge about the dis-
tribution of radiation intensity in the workspace, the sensor
geometry, and the sensors’ trajectories, we apply Bayes’
rule to obtain the probability density function of local radi-
ation intensity conditioned on the collected measurements
and the trajectory of the sensor. From this, we derive ana-
lytical expressions for the entropy of the distributed sensing
system as a function of time. We show that the entropy of
the distributed sensing system is stable and converges to
steady state values.

I. INTRODUCTION

The development of algorithms for the automated de-
tection of weak radiation activity is motivated by applica-
tions in the field of nuclear nonproliferation: nuclear foren-
sics, where one searches for specks of radioactive material
as evidence of illicit activity; or detection of shielded spe-
cial nuclear material, being smuggled through international
points of entry.

One method of approaching this detection problem is
by bringing the sensor close to the source. The Signal-to-
Noise-Ratio follows an inverse square law with respect to
the distance as well as with respect to the area of the sen-
sor. This means by bringing the sensor closer to the source,
one can either achieve the same detection efficiency with
smaller (thus less expensive) sensors, or improve signifi-
cantly the detection capabilities using the same sensor tech-
nology. The key in such an approach is controlled sensor
mobility, and having multiple sensors deployed and coordi-
nated simultaneously will allow scanning reasonably large
areas in little time. Our ultimate goal is to design gradient-
based cooperative deployment control laws for the robotic
swarm, and the entropy formulation presented in this paper
is a first required step in this direction.

Fig. 1. The experimental platform used in our earlier
work1. It consists of a Khepera II mobile robot on which
a La2Br scintillator is mounted.

We consider a group of mobile robots equipped with
radiation detectors as a distributed, reconfigurable, sen-
sor (Fig. 1). The detector on each one of these mobile
robots realizes a communication channel between the en-
vironment and the robotic system, and viewed as such, it
is characterized by a conditional differential entropy. This
quantity is a measure of the uncertainty associated with the
corresponding radiation measurement, and can be used to
distribute the robots in the workspace in a way that im-
proves the world model constructed based on the measure-
ments.

I.A. Prior Related Work

With relatively inexpensive and capable hardware in
communication, computing, and sensing, as well as the
many practical applications, research in cooperative con-
trol of mobile robots has become a big area in controls re-
search. Applications can be found in coordination of robots
for topological mapping.2,3,4 When coordinating robots for



the purpose of mapping, one can set target points for each
robot and then control them toward these target points.2

Such target points are chosen by weighing the cost and
utility of each target point. Other approaches3 define re-
gion frontiers, based on information-theoretic considera-
tions. Frontiers are regions that are on the boundaries of
the area which has been explored and the region which is
unexplored. Then the group is coordinated so that these
frontier regions are continuously extended. An alternative
method is to use an occupancy grid in conjunction with a
Bayesian update rule to coordinate the group for topolog-
ical mapping.4 In an occupancy grid, the environment is
divided into homogeneous cells that contain a probability
of being occupied by an obstacle. Another application in
cooperative control is found in robotic deployment of sen-
sor networks.5,6,7,8 Potential fields can be used to disperse
robots within an area and coordinate their motion.5 Poten-
tial fields place artificial forces on the agents, and through
these forces the desired trajectories are obtained. In a con-
ceptually similar fashion, one can use gradient climbing al-
gorithms to distribute agents in an optimal fashion over the
area of interest.6,7 Agents follow gradients that maximize
a static density function that is weighted by a sensor per-
formance function. Gradient climbing can be implemented
either in a spatially distributed fashion6 or without parti-
tioning the area among the team members, which may help
reducing computational overhead.8

Most of the research in navigation for groups of robots
for the purpose of distributed exploration and mapping as-
sumes a static, time-invariant environment. Because of this,
a good model of the environment is required. In application
like the one considered in this paper, this assumption is not
realistic. Furthermore, most approaches to group naviga-
tion are not reactive with respect to the sensed environ-
ment, and therefore unable to cope with a dynamic envi-
ronment. There are some notable exceptions9, in which
the control of the group is done in a way to reduce state
estimate uncertainty. This type of navigation is named in-
formation surfing, because agents are driven to maximize
their information gain. Information surfing9 has been used
for topological mapping and surveillance, which is, how-
ever, quite different from radiation mapping due to the un-
derlying statistics.

The goal in this paper is to enable information surf-
ing for radiation mapping. We need to recast the problem
of “which locations are interesting to visit first" within the
framework of nuclear statistics, and identify the important
differences and similarities that will guide cooperative con-
trol design at a later stage.

I.B. Overview of the Approach

First we express the expected collective radiation
counts registered by the robotic swarm, at any given

workspace location as a function of the prior knowl-
edge about the distribution of radiation intensity in the
workspace, the sensor geometry, and the robots’ trajecto-
ries. With Bayes rule we obtain the probability density
function of local radiation intensity conditioned on the col-
lected measurements and the robot’s trajectory. This al-
lows us to derive analytical expressions for the entropy of
the distributed sensing system as a function of time. The
robotic swarm should only decrease the measurement en-
tropy, facilitating a more accurate description of the radia-
tion world around it.

Assuming that the total number of radiation counts
registered is a strictly increasing function of time, an as-
sumption that is reasonable in the presence of background
radiation, we show that the entropy of the distributed sens-
ing system is stable and converges to steady state values.
The entropy formulation in this paper will be the basis for
the gradients that will guide the robots. The time-varying
nature of the entropy function characterizing measurement
uncertainty makes the stability analysis of the closed loop
system particularly challenging. Thus, the time-asymptotic
analysis of the entropy function and its derivatives, out of
which desired motion directions for the sensors will be de-
rived, is expected to be central to the stability and conver-
gence analysis of the cooperative sensing system.

I.C. Paper Organization

The rest of the paper is organized as follows. In Sec-
tion II we describe our model for radiation measurements
and the associated statistics used in this work. Then in Sec-
tion III we show that by viewing the radiation detector as
an information channel between the environment and the
system, we can associate it with concepts such as differen-
tial entropy and mutual information. Section IV presents
our main result, which describes the asymptotic properties
of the mutual information associated with nuclear measure-
ment in a static environment. In Section V we outline how
to generalize our approach from a single sensor to the dis-
tributed sensor network setting. Finally, Section VI sum-
marizes the discussion and concludes the paper.

II. THE PROBABILISTIC DYNAMICS OF RADIA-
TION MEASUREMENTS

Low-rate counting of radiation from nuclear decay is
described by the Poisson statistics, where the probability
to register n counts in t seconds, from a source assumed to
emit an average of µ counts per second (cts/s) is

P(n, t) =
(µ · t)n

n!
e−(µ·t). (1)



In10, the authors describe how to model radiation mea-
surements from a moving source with a stationary sensor.
In our approach we take that same idea but turn it around
and look at a stationary source with a moving sensor. We
can describe the expected number of source counts, µ, to be
registered by a moving sensor as

µ = χ ·α
Z t

0

1
r2(t)

dt , (2)

where χ is the cross sectional area of the sensor, α is the
activity of the source, and r(t) is the instantaneous distance
of the source to the sensor.

We can now describe the probability density function
(PDF) associated with the random variable c, which is the
total number of counts recorded, for a moving sensor as

f (c) =
(µ)c

c!
· e−(µ), (3)

where µ is expressed in (2).
The expected number of counts µ is conditioned on

the source having activity α, the cross sectional area of the
sensor being χ, and the distance between the source and
sensor being r(t). Therefore the PDF associated with the
random variable c is formally

f (c) = f (c|α,χ,r(t)). (4)

In1 it is seen that Bayes rule allows us to calculate
f (α|c,χ,r(t)) using f (c|α,χ,r(t)). As new measurements
are taken by the sensor, we update the distribution using the
equation

f (α|c,χ,r(t)) =
f (α) · f (c|α,χ,r(t))

fc(c)
. (5)

Function f (α) is the PDF associated with having a source
with activity α at a distance r(t). In our formulation we
take this to be the uniform distribution, from source activity
α1 to a source activity α2. This allows us to search and
map radiation levels from an arbitrary source with activity
α, such that α1 < α < α2. In fact, f (α) is a function of
position too, but when assuming a uniform distribution, the
position of the sensor does not matter. From this point, the
PDF expressing our initial guess about the source activity
will be expressed as

f (α) =

{
1

α2−α1
, if α1 < α < α2

0, otherwise.
. (6)

Function fc(c) is the marginal density function of f (c)

fc(c) =
Z

α2

α1

[
(χ ·α

R t
0

1
r2(t) dt)c

c!
· e
−(χ·α

R t
0

1
r2(t)

dt)
]

dα. (7)

III. DIFFERENTIAL ENTROPY AND MUTUAL
INFORMATION

Viewing our radiation sensor as a communication
channel between the robot (receiver) and its environment
(sender), we can introduce metrics to describe the trans-
mission of information. An entropy-based metric provides
an intuitive way of measuring how much information we
gain by a given measurement. The entropy is also known
as self information, and is related to uncertainty because as
the latter decreases the information gain increases. By us-
ing such a measure we can formalize the objective of our
control law as reducing the uncertainty of our belief regard-
ing the radiation levels over the area of interest.

Considering a single sensor at first, we imagine an in-
formation channel between this sensor and every location
in the environment where a radiation source is likely to be
present. Thus every such channel is “anchored" at a partic-
ular location in the workspace, and the information metric
we derive is therefore associated to that location. Conce-
quently, one can define the distribution of such a metric
over the whole workspace, and use this distribution to guide
measurement collection.

Information theory defines the conditional differential
entropy of a continuous random variables A associated with
the transmitted signal, (in our case the radiation source ac-
tivity), and C associated with the received signal, (in our
case the number of counts registered by our sensors) as fol-
lows,

h(A|C) =−
Z

α2

α1

f (α|c) · log2 f (α|c)dα . (8)

Note that we are using the definition of the differen-
tial entropy for continuous distributions even though the
Poisson distribution is discrete. This because our ultimate
objective is to derive a continuous time/space control laws
based on information gradients. Our workspace is continu-
ous even if our measurement events are discrete.

Using (5), denoting the generalized hypergeometric
function Ω(·) and defining

d ,
Z t

0

1
r2(t)

dt, (9)

we get a closed form solution for the differential entropy in
(8) as follows

h(A|C) =
−d ·χ

[Γ(c+1,α1 ·d ·χ)−Γ(c+1,α2 ·d ·χ)] log2

·

[(
c ·Ω(c+1,c+1;c+2,c+2;−α1 ·d ·χ)(α1 ·d ·χ)c+1

(c+1)2d ·χ

− (c+1)2Γ(c+2,α1 ·d ·χ)
(c+1)2d ·χ

)



·
(

c ·Ω(c+1,c+1;c+2,c+2;−α2 ·d ·χ)(α2 ·d ·χ)c+1

(c+1)2d ·χ

− (c+1)2Γ(c+2,α2 ·d ·χ)
(c+1)2d ·χ

)
·
(

(c+1)Γ(c+1,α1dχ)(α1dχ+ log(e−α1dχ)(α1dχ)c)
(c+1)2d ·χ

−c ·Γ(c+2) log(α1)
(c+1)2d ·χ

)
·
(

(c+1)Γ(c+1,α2dχ)(α2dχ+ log(e−α2dχ)(α2dχ)c)
(c+1)2d ·χ

−c ·Γ(c+2) log(α2)
(c+1)2d ·χ

)]

−
log

(
d·χ

Γ(c+1,α1·d·χ)−Γ(c+1,α2d·χ)

)
c! log2

, (10)

Note that (10) is a time and position dependent quantity.
It is known that continuous differential entropy can not

be directly associated with self-information – contrary to
the discrete scheme11. One concept that does carry over
from the discrete setting is the mutual information

I(X ;Y ) , h(X)−h(X |Y ).

Mutual information quantifies the mutual dependence of
the two random variables, X and Y . It tells us how know-
ing one variable, Y, reduces our uncertainty about the other
variable, X . We exploit the property of mutual information
expressed in the following Lemma.

Lemma III.1. (12) I(X ;Y ) ≥ 0 with equality iff X and Y
are independent.

For our problem, the mutual information is defined as

I(A;C) = h(A)−h(A|C),

where

h(A) =−
Z

α2

α1

f (α)dα

=−
Z

α2

α1

1
α2−α1

· log
(

1
α2−α1

)
dα

= (α2−α1)
[ 1

α2−α1
· log

(
1

α2−α1

)]
, K,

which is a constant. With h(A|C) as in (10), mutual infor-
mation is described as

I(A;C) = K−h(A|C). (11)

Equation (11) expresses how knowing the number of radia-
tion counts, reduces our uncertainty regarding the presence
of the source A.

IV. ASYMPTOTIC PROPERTIES OF MUTUAL IN-
FORMATION

The following Lemma summarizes the main result of
our paper.

Lemma IV.1. Let I(q, pi, t) be the mutual information of
the radiation sensor information channel. Then,

lim
t→∞

∂I(q, pi, t)
∂t

= 0.

Proof: Taking the mutual information defined in equa-
tion (11), we find its time derivative to be

∂I(q, pi, t)
∂t

=
∂h
∂d

∂d
∂t

.

The first partial derivative takes the form

∂h
∂d

=
12

∑
i=1

Ai, (12)

where A1 through A12 are fractional terms that make up the
whole expression. For the first term

A1 ,
−(1+ c)Γ(1+ c,α1 ·d ·χ)2

(1+ c)dc!(Γ(1+ c,α1dχ)−Γ(1+ c,α1dχ)2) log2
,

we find that
lim
d→∞

A1 = 0,

due to having c! in the denominator, which is the total num-
ber of radiation counts collected during the mission. Notice
that the total number of counts c, grows much faster than d
does, because of the added effect of background radiation
and source. Other terms that show this same behavior are:

A2 =
(−1− c)Γ(1+ c,α2dχ)2

(1+ c)d · c!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2)) log2
,

A3 =
(−1− c)e(−α1α2)dχΓ(1+ c,α1dχ)

(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

·
(

α1deα2dχχ(α1dχ)c(1+α1dχΓ(1+ c))
(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

− (α1deα2dχχ(α1dχ)c)2e(−α1−α2)dχΓ(1+ c,α2dχ)
(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

)
,

A4 =−α1(1+ c)e−(α1+α2)dχ+α2dχ
χ(α1dχ)c

Γ(2+ c)

·
Γ(2+ c,α1dχ)−Γ(2+ c,α2dχ)+ cΓ(1+ c) log(α1

α2
)

(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2
,



A5 =−(α2dχ)α2(1+ c)e−(α1+α2)dχ+α1dχ
χ

· (1+ c+α2dχΓ(2+ c))Γ(1+ c,α2d,χ)
(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

,

A6 =−(α2dχ)α2(1+ c)e−(α1+α2)dχ+α1dχ
χ

· Γ(2+ c)Γ(2+ c,α1d,χ)
(1+ c)d · c!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

,

A7 =−(α2dχ)α2(1+c)e−(α1+α2)dχ+α1dχ
χΓ(1+c,α1dχ)

·
(1+ c+Γ(2+ c))

(
α1dχ+ log( e−α1dχ(α1dχ)c

e−α2dχ(α2dχ)c

)
(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

,

A8 =−α2dχα1(1+ c)e−(α1+α2)dχ+α2dχ
χΓ(1+ c,α2dχ)

·
(1+ c+Γ(2+ c))

(
α1dχ+ log( e−α2dχ(α2dχ)c

e−α1dχ(α1dχ)c

)
(1+ c)dc!(Γ(1+ c,α2dχ)−Γ(1+ c,α1dχ)2) log2

.

The last four terms that make up (12) are the ones that
involve a generalized hypergeometric function, Ω(·):

A9 = α
2
1cde(−α1−α2)dχ+α2dχ

χ
2(α1dχ)2c

· Ω(1+ c,1+ c,2+ c,2+ c,−α1dχ)
(1+ c)2(Γ(1+ c,α1dχ)−Γ(1+ c,α2dχ))2 log2

,

A10 = α
2
1cde(−α1−α2)dχ+α1dχ

χ
2(α2dχ)2c

· Ω(1+ c,1+ c,2+ c,2+ c,−α2dχ)
(1+ c)2(Γ(1+ c,α1dχ)−Γ(1+ c,α2dχ))2 log2

,

A11 = (α1α2cde(−α1−α2)dχ+α1dχ
χ

2(α1dχ)c

· Ω(1+ c,1+ c,2+ c,2+ c,−α1dχ))
(1+ c)2(Γ(1+ c,α1dχ)−Γ(1+ c,α2dχ))2 log2

,

A12 = (α1α2cde(−α1−α2)dχ+α2dχ
χ

2(α1dχ)c

· Ω(1+ c,1+ c,2+ c,2+ c,−α2dχ))
(1+ c)2(Γ(1+ c,α1dχ)−Γ(1+ c,α2dχ))2 log2

.

Recall that the generalized hypergeometric function Ω

is defined as

Ω(1+ c,1+ c,2+ c,2+ c,−α1dχ) =
∞

∑
n=0

(1+ c)n(1+ c)n

(2+ c)n(2+ c)n
·
−αn

1
n!

, (13)
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Fig. 2. The behavior of ∂h
∂d (on the vertical axis) as d (on

the horizontal axis) grows large, under the conditions:
α1 = 1 cts/s, α2 = 10 cts/s, χ = 1 cm, c = 2d.

where (1 + c)n = (1 + c)(1 + c + 1)(1 + c + 2) · · ·(c + n).
Function (13) exhibits oscillatory behavior with n, and be-
cause of this the net effect is

Ω(1+ c,1+ c,2+ c,2+ c,−α1dχ) = 0.

In fact, any reasonably large finite term approximation of
Ω will yield outcomes that are numerically insignificant.
For this reason, we get no contribution from the terms A9
through A12, and (12) becomes

∂h
∂d

=
8

∑
i=1

Ai.

Note now, that for all terms A1 through A8 it holds

lim
d→∞

∂h
∂d

= 0,

and with c! growing much faster than time as captured by
the evolution of d (even in the case of only background
radiation),

lim
t→∞

∂I(q, pi, t)
∂t

= lim
t→∞

∂h
∂d

∂d
∂t

= 0.

The asymptotic analysis of the proof of Lemma IV.1 is ver-
ified in the plot of the rate of change of the entropy, as a
function of variable d, given in Fig. 2.

V. DISTRIBUTED SENSING

When collecting measurements with mutliple detec-
tors attached to mobile robots scattered over a certain area,
one can view the system as a single, “shattered" radiation
sensor. This distributed, reconfigurable sensor has a cross
sectional area equal to the sum of the areas of each indi-
vidual detector. An individual detector becomes a piece of



the single virtual detector and radiation counts collected by
any one of the detectors are assumed to be shared. They are
treated as counts registered by the single virtual detector.

Recalling equation (10), we note two variables in the
expression of differential entropy: the number of counts
c, and the function d, which is related to the distance be-
tween source and sensor. The question thus becomes, how
to define these two parameters, if one needs to evaluate the
differential entropy in a distributed (robot) setting.

As we have implied, the number of counts c is taken
as the sum of the counts registered collectively by all indi-
vidual detectors. Function d is dependent on the distance
between source and sensor r(t) as shown in (9). Consider-
ing a source at a specific location within the workspace, q
and a group of mobile sensor platforms positioned at pi(t),
for i = 1, . . . ,n, the distance r(t) = mini∈{1,...,n} ‖pi(t)−q‖
varies with time, but evolves in a piecewise continuous
fashion, so that the integral of (9) can still be computed.

Consequently, one way to carry over the analysis of
Sections III–IV to a multi-robot setting is to implement (10)
using

c =
n

∑
i=1

ci, d =
Z t

t0

1
mini∈{1,...,n} ‖pi(τ)−q‖

dτ, (14)

where ci is the total number of counts collected by all n
sensor platforms, q is the location of the assumed radiation
source, and pi(t) is the distance between the ith robot and
the source at q at time t. Substituting these expressions in
(10) makes h(A|C) a function of the number of counts c,
the source location q, and time t; thus for every location
q in the workspace that could have a radiation source, a
function hq(c, t) is defined. For that particular workspace
location again, the corresponding function Iq(A;C) defined
using (11) captures the amount of information contained in
the collective measurement signal of all n sensors, that have
registered a total of C = c counts possibly coming from a
source of activity A = α at location q.

VI. CONCLUSIONS

In this paper, we treated a radiation sensor as an in-
formation channel between the environment and the auto-
mated monitoring system. As such, the measurements that
a sensor makes can be associated with entropy and mutual
information. The main result described in this paper is a
formal analysis of the asymptotic properties of the mutual
information associated with a sensor/channel, which con-
cludes that for a static environment, the rate of information
that flows from the environment to the system decays with
time. Then we carry the analysis over from a single-sensor
setting to the distributed sensor network setting, suggesting
how the collective measurements can be fused together in

the calculation of differential entropy. We expect this anal-
ysis to be useful in designing control algorithms for mobile
sensor networks tasked with monitoring and mapping radi-
ation distributions.
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