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Abstract—In this paper we derive necessary and sufficient
conditions for a group of systems interconnected via near-
est neighbor rules, to be controllable by one of them act-
ing as a leader. It is indicated that connectivity seems
to have an adverse effect on controllability, and it is for-
mally shown why a path is controllable while a complete
graph is not. The dependence of the graph controllabil-
ity property on the size of the graph and its connectivity
is investigated in simulation. Results suggest analytical
means of selecting the right leader and/or the appro-
priate topology to be able to control an interconnected
system with nearest neighbor interaction rules.

I. Introduction

Apart from the intellectual challenges of the issues re-
lated to control and coordination of large scale intercon-
nected systems, progress has also been fueled by recent
technological advances in the areas of embedded com-
putation, wireless communication and microfabrication.
Yet, how much can we say that we really know about
these systems today? Can we claim that we have sat-
isfactory addressed the fundamental issues in this area?
This paper tends to show that there are fundamental
issues regarding the interplay between control and com-
munication that are still unresolved and can be formal-
ized into nontrivial new problems.

Significant part of the work associated with control of
interconnected systems has been done in the framework
of formation control. Lack of space does not let us com-
ment on all of this work, but we can broadly group them
in several categories. One class focuses on the effect of
interconnection topology on the type of formation equi-
librium configurations [1], [2], where it was shown that
the rigidity of the interconnection graph plays a crucial
role. Another class of coordination algorithms uses po-
tential functions to express the group task [3], [4], [5].
Potential fields have been combined with synchroniza-
tion control inputs to yield coordinated formation and
decentralized flocking and swarming motion [6], [7], [8],
[9]. The role of the interconnection topology on infor-
mation flow and formation stability was investigated in
a number of papers [10], [11], [12]. A hybrid system ap-
proach was adopted in [13] whereas in [14] graph theory

and LMIs are being used. Location optimization prob-
lems were examined within a cooperative control frame-
work in [15]. Leader-follower local control laws with
vision-based feedback were employed in [16] to stabilize
a formation to a particular shape. More reactive, be-
havioral schemes were employed in [17], [18], [19], [20]
to shape formations of vehicles. The investigation of
“structural controllability” in [21] is close to the prob-
lem discussed in this paper.

In this paper, however, we consider the classical notion
of controllability, for a group of autonomous agents in-
terconnected through nearest neighbor rules. We de-
rive conditions on network topology that ensure that the
group can be controlled by a particular member which
acts as a leader. The rest of the network remains in
its original condition, both in terms of interconnection
topology and in terms of control laws. It turns out that
the answer to the question of whether the group can
be controlled depends on the structure of the intercon-
nection topology: the set of all possible interconnection
configurations can be partitioned in a class that is con-
trollable and another class that is uncontrollable. We
derive algebraic conditions that distinguish and charac-
terize the controllable class and we investigate the de-
pendence of the controllability property on the size of
the group and on its connectivity.

The rest of the paper is organized as follows: Section II
is a brief review of the graph theoretic terminology used
in the paper. Section III follows with an introduction of
the interconnected system and concludes with the dy-
namics of the followers. Our main result is presented
in Section IV, in which simulation results are included
to verify the analytical derivations. Section V discusses
the effect of group size and connectivity on the group
controllability and Section VII closes the paper sum-
marizing the discussion and pointing into new research
directions.

II. Graph Theory Preliminaries

This section provides a brief introduction to the alge-
braic graph theoretic objects and their properties that



are going to be used in the subsequent analysis. The
interested reader is referred to [22] for details.

An (undirected) graph G consists of a vertex set, V , and
an edge set E , where an edge is an unordered pair of
distinct vertices in G. If x, y ∈ V , and (x, y) ∈ E , then
x and y are said to be adjacent, or neighbors and we
denote this by writing x ∼ y. A graph is called com-
plete if any two vertices are neighbors. The number of
neighbors of each vertex is its valency or degree. A path
of length r from vertex x to vertex y is a sequence of
r + 1 distinct vertices starting with x and ending with
y such that consecutive vertices are adjacent. If there is
a path between any two vertices of a graph G, then G is
said to be connected.

The valency matrix ∆(G) of a graph G is a diagonal
matrix with rows and columns indexed by V , in which
the (i, i)-entry is the valency of vertex i. Any undirected
graph can be represented by its adjacency matrix, A(G),
which is a symmetric matrix with 0 − 1 elements. The
element in position (i, j) (and (j, i) due to symmetry) in
A(G) is 1 if vertices i and j are adjacent and 0 otherwise.
The symmetric matrix defined as:

L(G) = ∆(G)−A(G)

is called the Laplacian of G. those, is the fact that L
is always symmetric and positive semidefinite, and the
algebraic multiplicity of its zero eigenvalue is equal to
the number of connected components in the graph. For
a connected graph, the n-dimensional eigenvector asso-
ciated with the single zero eigenvalue is the vector of
ones, 1n. The second smallest eigenvalue, λ2 is posi-
tive and is known as the algebraic connectivity of the
graph, because it is directly related to how the nodes
are interconnected. Moreover, it is known that the ma-
trix obtained from L(G) after deleting the row and the
corresponding column that is indexed to any vertex, is
equal to the number of spanning trees in (G).

III. The Interconnected System and its Leader

Consider N agents with simple, first order dynamics:

ẋi = ui, i = 1, . . . , N.

The dimension of x could be arbitrary, as long as it
is the same for all agents. The analysis that follows is
valid for any dimension n, with the difference being that
expressions should be rewritten in terms of Kronecker
products. For simplicity, we will hereby present the one-
dimensional case.

Assume now that each agent is interconnected to a fixed
number of other agents. Then we can define the inter-
connection graph as follows:

Definition III.1 (Interconnection graph) The in-
terconnection graph, G = {V , E}, is being defined as an
undirected graph consisting of:

• a set of vertices (nodes), V = {n1, . . . , nN}, in-
dexed by the agents in the group, and

• a set of edges, E = {(ni, nj) ∈ V × V | ni ∼ nj},
containing unordered pairs of nodes that correspond
to interconnected agents.

The indices of the agents that are interconnected to i

form its neighboring set, Ni = {j | i ∼ j}. Since this set
is fixed, the interconnection graph G is time invariant.
Interconnections are realized through the control inputs,
ui:

ui = −
1

|Ni|

∑

j∼i

(xi − xj). (1)

If we now write the interconnected system in a matrix
form, with x = (x1, . . . , xN )T being the stack vector of
all the agent states, we will have:

ẋ = −∆−1/2L∆−1/2x, (2)

where ∆ is the valency matrix of the graph of intercon-
nections and L its Laplacian matrix. Normalizing L in
(2) is not crucial, and all the results presented in this
paper also hold for the system ẋ = −Lx.

Remark III.2 (n-dimensional generalizations)
If x was to be considered n-dimensional, and with In

denoting the n-dimensional identity matrix, then (2)
would have been written in the form:

ẋ = −((∆−1/2L∆−1/2)⊗ In)x.

Let us know select an agent arbitrary an agent to be the
group leader. Without loss of generality, we can assume
that this agent is the one labeled N , and rename the
agent states as z , xN yi , xi, i = 1, . . . , N − 1 with
y being the stack vector of all yi. Interconnections with
the leader are now assumed unidirectional: the leader’s
neighbors still obey (1), but the leader is indifferent, and
is free to pick uN arbitrarily. Partitioning (2), we can
write the new system in the form:

[

ẏ

ż

]

= −

[

F r

0 0

][

y

z

]

+

[

0
uN

]

, (3)

where F is the matrix obtained from ∆−1L after delet-
ing the last row and column, and r is the vector of the
first N−1 elements of the deleted column. From (3), we
extract the dynamics of the followers that correspond to
the y component of the equation set:

ẏ = −Fy − rz. (4)



Remark III.3 (Multiple leaders) One could also
consider the case where multiple leaders are selected. In
this case, r is going to be a matrix and z will be a vector.
Picking more than one leaders offers additional control
authority over the group at the expense of the follower
population.

The question that arises now is whether (4) is control-
lable through z. This will imply that the motion of the
leader could bring the group to any desirable configura-
tion. This is the subject of the next section.

IV. Controllable Interconnection Topologies

The controllability matrix of system (4) is

C =
[

−r Fr −F 2r · · · (−1)nFn−1r
]

Matrix F is symmetric since L is symmetric, and thus it
can be expressed as F = UDUT [23], where the columns
of U contain the orthonormal eigenvectors of F , and D

is the diagonal matrix of the eigenvalues of F . Then C

can be rewritten:

C = [−r UDUT r − (UDUT )2r · · ·

· · · (−1)n(UDUT )n−1r]

which simplifies to

C = [−r UDUT r − UD2UT r · · ·

(−1)nUDn−1UT r]

= U [−UT r DUT r −D2UT r · · ·

· · · (−1)nDn−1UT r] (5)

The rank of the right hand side of (5) is not affected by
U because the latter is nonsingular. Therefore, we can
focus on the rank of the matrix multiplying from the
right:

[−UT r DUT r −D2UT r · · ·

· · · (−1)nDn−1UT r], (6)

which is the controllability matrix of the (decoupled)
system q̇ = −Dq − UT rz. Since D is a diagonal non-
singular matrix (due to the matrix-tree Theorem), the
effect of D multiplying a vector will be a scaling along
each of its dimensions. From this form it is clear that a
necessary condition for (6) to be full rank is that all el-
ements of UT r are nonzero; if one is zero then a whole
row in (6) will be zero and the matrix will be rank-
deficient. In addition, for the system to be controllable,
no two elements of D can be the same; otherwise one
could be trying to steer the same dynamics, with the
same (scaled) input to different states - in (6) this would
appear as one row being the scaled version of another.

We summarize this discussion in the following Theorem:

Theorem IV.1 (Controllable Topologies)
Consider an interconnected system described by
(2) that corresponds to a connected interconnection
graph with Laplacian L. Let z = xk be one of the states
of (2) and let F be the matrix obtained by ∆−1L after
deleting the kth row and column. Let r be the the vector
derived from the kth column of ∆−1L after deleting the
kth element. Then z can control the dynamics of all
other states in x if and only if the following conditions
are satisfied:

1. The eigenvalues of F are all distinct;

2. The eigenvectors of F are not orthogonal to r.

From Theorem IV.1 it is clear that the topology of the
interconnection graph completely determines its control-
lability properties. The conditions of the Theorem par-
tition the set of all connected interconnection graphs
into a controllable and an uncontrollable class. The lack
of a graph theoretic characterization of these classes at
this point prevents us from being able to construct con-
trollable interconnection topologies. Developing such a
characterization is along the directions of our current
research.

A. Numerical Verification of Theorem IV.1

In this section we present simulation results that show
how the interconnected systems can be steered to spe-
cific positions by regulating the motion of a single sys-
tem that plays the role of the group leader. The inter-
connection graph consists of ten nodes, (Figure 1) and
node 10 is being used as a leader. The objective is move
the leader so that the remaining 9 nodes are in succes-
sively steered into configurations which outline the three
letters: U, N, M.
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Fig. 1. The controllable interconnection graph used in
simulations. Node 10 is the leader.



The interconnection graph that corresponds to the sys-
tem at hand has the following Laplacian:

L =















1 0 0 0 0 0 0 −1 0 0
0 3 −1 0 0 0 −1 0 −1 0
0 −1 2 0 0 −1 0 0 0 0
0 0 0 2 −1 0 0 0 0 −1
0 0 0 −1 3 0 0 −1 −1 0
0 0 −1 0 0 2 0 0 −1 0
0 −1 0 0 0 0 2 0 −1 0
−1 0 0 0 −1 0 0 2 0 0
0 −1 0 0 −1 −1 −1 0 4 0
0 0 0 −1 0 0 0 0 0 1















The spectrum of F , which for simplicity it is taken with-
out the ∆-scaling are:

σ(F ) = {5.47633, 4.08251, 3.58315, 2.50829, 2.35533,

1.44384, 1.22489, 0.278455, 0.0471964}

It is immediately seen that they are distinct. As for the
eigenvectors of F , we have

UT r = (−0.1166,−0.2315,−0.2804,−0.1154, 0.5721,

0.3211,−0.6182, 0.0963,−0.1376)

giving a vector that is element-wise nonzero. Thus the
requirements of Theorem IV.1 are satisfied.

The nodes start from random initial positions as de-
picted in Figure 2. They are shown as filled black dots
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Fig. 2. Initial node configurations.

with the exception of the leader which is depicted as
a (green) circle. Interconnections are marked as dot-
ted fainted (green) lines connecting the corresponding
nodes. Starting from this initial configuration, the nodes
are initially steered to the configuration of Figure 3.
Figure 4 shows the evolution of the position errors, from
the initial (random) configuration to that which forms
the letter U. This is the initial configuration for the sec-
ond run, which drives the nodes to form the next letter,
N, at steady state (Figure 5). The time history of these
position errors is given in Figure 6. Similarly, N is the
initial state for the third run which steers the nodes to
form the last letter, M, shown in Figure 7, along trajec-
tories the errors of which are given in Figure 8.
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Fig. 3. The letter U.
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Fig. 4. Position errors.
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Fig. 5. The letter N.
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Fig. 6. Position errors.
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Fig. 7. The letter M.
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Fig. 8. Position errors.

V. Connectivity is Not Always Good

It is surprising that increased connectivity has an ad-
verse effect on the controllability of the network. At the
two far ends of the connectivity scale we have systems
that are either always controllable or always uncontrol-
lable.

Proposition V.1 A complete graph KN is uncontrol-
lable.

Proof: The Laplacian of a complete graph is given
as L = N · IN − 1T

N1N , with IN denoting the N -
dimensional identity matrix and 1N the N -dimensional
vector of ones. No matter what column is deleted, F
will still be expressed as IN−1 −

1
N 1

T
N−11N−1. Thus,

the spectrum of F will be { 1
N , 1(N−2)}, so unless N = 2

(trivial case), eigenvalue 1 will have multiplicity and the
graph will be uncontrollable according to Theorem IV.1.

At the other end of the connectivity range, things look
more optimistic:

Proposition V.2 A path PN is controllable.



Proof: By renaming the vertices we can always
write the Laplacian of PN into the following form:

LPN
=









1 −1 0 0 ··· 0 0
−1 2 −1 0 ··· 0 0
0 −1 2 −1 ··· 0 0

...
. . .

...
0 0 0 0 ··· 2 −1
0 0 0 0 ··· −1 1









This matrix is easily identified as the opposite of a Ja-
cobi matrix. For Jacobi matrices the eigenvalues are real
and distinct. Matrix F is constructed from the N − 1
leading principal submatrix of LPN

, L̄PN
. The eigenval-

ues of a the leading principal submatrix of Jacobi matrix
separate those of the Jacobi matrix, which means that
they are distinct two. Thus, ∆−1/2L̄PN

∆−1/2 has dis-
tinct eigenvalues. Notice that:

L̄PN
x = (x1 − x2,−x1 +2x2 + x3,−x2 +2x3 + x3, . . .

. . . ,−xN−2 + 2xN−1 + xN ,−xN−1 + 2xN ).

If x is an eigenvector affording an eigenvalue λ, then

λ(x1, . . . , xN ) = (x1 − x2,−x1 + 2x2 + x3, . . .

. . . ,−xN−2 + 2xN−1 + xN ,−xN−1 + 2xN ).

If xN = 0, then it is easily seen that the equality prop-
agates and results to:

x1 = x2 = · · · = xN = 0

which is a contradiction. Thus, in all eigenvectors of
L̄N−1, the last element is nonzero. In this case, given
that r = (0, 0, . . . , 0,−1), it is clear that r · x 6= 0 for all
eigenvectors x of L̄N−1. Therefore, both conditions of
Theorem IV.1 are satisfied and PN is controllable from
either end-node.

VI. Size Does Matter

Lacking a graph theoretic characterization of the class
of controllable graphs, that would enable us to construct
controllable graphs instead of checking their controlla-
bility a posteriori, we run simulations to assess the effect
of the size of the graph on its controllability properties.

In these simulations, we constructed random graphs of
different sizes which we then tested for controllability.
We distinguished between graphs with different edge
probability, since we determined in the previous section
that connectivity, and therefore edge density, has an ad-
verse effect on controllability. For a given edge proba-
bility we constructed a large number of graphs and we
recorded the number of iterations needed each time be-
fore a controllable graph was discovered. Then we took
the mean over twenty iteration samples. Figure 9 de-
picts the general trend of these mean values with respect
to the graph size and the edge probability.
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Fig. 9. Probability of finding a controllable random
graph for different probabilities for edge occurrence
and graph sizes. The numbers on the legend on
the right give the probabilities for edge occurrence
in each random graph. The first is the case of a tree
(minimum connectivity)

Simulations verify that it is unlikely for a graph with
increased connectivity to be controllable. This can be
seen in Figure 9 from the fact that as the edge occur-
rence probability increases, the corresponding iteration
curve moves upwards. It is notable that for edge prob-
ability greater or equal to 0.3, it was not possible to
find a controllable graph for N = 13 in a reasonable
number of trials. The simulations also indicate that the
probability of finding a controllable graph within the set
of random graphs with certain probability decreases ex-
ponentially with the size of the graph. For graphs of
size larger than N = 14 it proved extremely difficult to
obtain controllable samples, regardless of connectivity.

These results emphasize the importance of a graph the-
oretic characterization of the class of controllable inter-
connections, which will enable the justification of the
effect of graph size through a formal analysis.

VII. Conclusions

In this paper we demonstrated how the structure of the
interconnection topology in a group of systems linked
with nearest neighbor interaction rules can affect the
controllability of the overall interconnected system. We
derived necessary and sufficient conditions that enable
the states of interconnected subsystems to be controlled
from a single one acting as a leader. These conditions
are translated to algebraic tests on the eigenvalues and
eigenvectors of the submatrix of the graph’s Laplacian,
which corresponds to the followers in the group. It was
also demonstrated, both in theory and in simulation that
increased graph connectivity does not necessarily im-
prove the controllability of the interconnected system.
The lack of a graph theoretic characterization of the
controllability property prevents us from building con-
trollable interconnection topologies and the probability
of discovering such topologies seems to decrease with



the size of the graph. Further research is directed on
constructive characterizations of controllability in such
interconnected systems, where interaction is based on
local, nearest neighbor rules.
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