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Abstract

Formation stability is now analyzed under a new prism
using input-to-state stability. Formation ISS relates
leader input to internal state of the formation and
characterizes the way this input affects stability per-
formance. Compared to other notions of stability for
interconnected systems, formation ISS does not require
attenuation of errors as they propagate, but instead
quantifies the amplification and provides worst case
bounds. The control interconnections that give rise to
the formation are represented by a graph. The forma-
tion graphs considered are built from a small number of
primitive graphs, the stability properties of which are
used to reason about the composite. For the case of
linear dynamics, a recursive expression allows the cal-
culation of the bounds using the graph theoretic rep-
resentation of the formation via the adjacency matrix.
Illustrative examples demonstrate how formation ISS
can be used as an analysis and a design tool.

1 Introduction

Control and coordination of multi-agent systems has
been an active area of research in the last years, moti-
vated by recent advances in computation and communi-
cation and a large number of application areas such as
automated highway systems [1, 2], cooperative robot
reconnaissance [3] and manipulation [4, 5], formation
flight control [6, 7] and satellite clustering [8] . Analysis
methods for these kind of control interconnections be-
tween (possibly heterogeneous) systems, is therefore an
important issue [9]. Existing methods are based mainly
on three different approaches to interconnection archi-
tecture. In the behavior based approach [3] each agent
is thought of being able to exhibit a number of primary
behaviors. Another approach focuses on maintaining a
certain group configuration and forces each agent to be-
have as a particle in a rigid virtual structure [10, 11].
The leader-follower approach [7, 12] distinguishes a des-
ignated leader which the other agents follow.
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Stability properties of interconnected systems has been
investigated using string stability [13, 2]. In more di-
mensions, string stability has been generalized to mesh
stability [14], which expresses the property of each in-
terconnection to suppress disturbances as they propa-
gate. In [14] it has been shown that exponential stabil-
ity of each unforced system and global Lipschitz conti-
nuity are sufficient conditions for mesh stability.

The approach presented in this paper is motivated
by the propagation properties of input-to-state sta-
bility [15]. We consider formations that are based
on leader-following and define formation input-to-state
stability (ISS), that relates leader input to formation
internal state. Preliminary work on formation ISS [16]
suggests that this notion can be used to define a per-
formance measure in leader-follower formations. While
approaches based on string and mesh stability [2, 17]
aim at suppressing error propagation, we allow errors
to amplify focusing on quantifying and bounding the
amplification. Since ‘week interaction’ conditions [2]
are not imposed, we are able to analyze a much richer
class of interconnected systems and local controllers.
Formation ISS bounds can be used to derive leader mo-
tion specifications that guarantee the boundedness of
formation errors and suggest ways of improving perfor-
mance by changing interconnection topology.

The paper is organized as follows: in Section 2 the in-
terconnection topology is defined using graph theoretic
terminology and the notion of formation input-to-state
stability is defined. Section 3 presents our results on
ISS propagation the systems involved are described by
nonlinear dynamic equations. Section 4 specializes in
the linear case, where conditions for ISS and resulting
gains turn out to be less conservative. In Section 5
combinatorial expressions for the ISS gains for the for-
mation graph and its subgraphs are provided, in which
the topology of the formation appears explicitly in the
form of the adjacency matrix. Finally, examples illus-
trate the use of the notion of formation ISS in Section 6
and Section 7 summarizes the results of this work.

2 Formation Control Graphs

Previous work has motivated the use of graphs to rep-
resent agent interaction [6, 12, 18] In this paper, the
control-related interconnections between the agents of
a formation are being modeled by means of a (directed)



formation control graph. The vertices of the graph cor-
respond to the agents in the formation and the edges
represent leader-follower relationships.

Definition 2.1 (Formation Control Graph) A
formation control graph Fc = (V, E, D) is a directed
graph that consists of:

• A finite set V = {v1, . . . , vp} of vertices and a
mapping that assigns to each vertex vi a control
system describing the dynamics of a particular
agent: ẋi = fi(xi, ui), where xi ∈ R

n is the state
of the agent and ui ∈ R

m is the control input.

• A binary relation E ⊂ V × V representing a
leader-follower relationship between agents, such
that (vj , vi) ∈ E, if ui depends on xj .

• A finite set of formation specifications D indexed
by the set E, D = {dij}. For each edge (vj , vi),
dij ∈ R

n, denotes the desired relative state be-
tween agent i and agent j.

The class of formation graphs considered in this paper
are directed acyclic graphs. Vertices with no incom-
ing edges, are formation leaders, v` ∈ L ⊂ V . Every
follower is responsible for meeting the specifications on
the edges incoming to it. We assume that the forma-
tion specifications {dij} are constant. In case of many
incoming edges, the desired state for a follower j is
formed as: xr

j =
∑

i Sij(xi − xj − dij), where Sij are
projection matrices such that

∑
i rankSij = n. Then

the agent error is defined as the deviation from that
desired state: x̃i , xr

i − xi. The formation error x̃ is
defined by stacking the errors of all the agents vi ∈ V :
x̃ , (x̃1, . . . , x̃p). Our aim is to investigate the stability
properties of the formation with respect to the input
u`, of the formation leaders:

Definition 2.2 (Formation ISS) A formation is
called input-to-state stable if there is a class KL
function β and a class K function γ such that for
any initial formation error x̃(0) and for any bounded
inputs of the formation leaders u`(t), the formation
error satisfies:

‖x̃(t)‖ ≤ β(‖x̃(0)‖ , t) +
∑

`∈L γ(sup[0,t] ‖u`‖) (1)

We consider three primitive subgraphs of diameter two,
which serve as building blocks: the cascade intercon-
nection of three agents (Figure 1), the parallel inter-
connection of four agents (Figure 2) and the multiple-
leader interconnection (Figure 3). These three prim-
itive subgraphs, and graphs that can be decomposed
into these subgraphs, are representative of a fairly
broad class of formations.
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Figure 3: Multiple leader
interconnection.

We prove the ISS property of the primitive subgraphs
and we show how we can propagate the property when
these primitives are connected. Exploiting the propa-
gation properties of input-to-state stability we can de-
rive a bound for the formation error that depends on
the leaders input and the initial errors. Such a rela-
tionship is important, firstly because it allows to de-
rive specifications for the leader behavior in order for
stability of the group to be preserved and secondly can
serve as a measure for comparison between different in-
terconnection structures. One can then investigate the
effect of interconnection changes on formation stability.

3 Formation ISS for Nonlinear Agents

Consider a leader-follower interconnection, such as the
one depicted in Figure 1. Let the dynamics of the leader
j and the follower i be given, respectively:

ẋj = fj(xj , uj) (2)
ẋi = fi(xi, ui)

and let a feedback control law ui(xi, xj) be applied to
the follower to meet the specifications dji. Follower
error dynamics, x̃i = xj − dji − xi can be written as:

˙̃xi = f̃i(xi, xj) + fj(xj , uj) (3)

Lemma 3.1 Let (2) be ISS with respect to uj and (3)
be ISS with respect to xj and uj:

‖xj(t)‖ ≤ βj(‖xj(0)‖ , t) + γj(sup ‖uj‖)
‖x̃i(t)‖ ≤ βi(‖x̃i(0)‖ , t) + γi1(sup ‖uj‖) + γi2(sup ‖xj‖)

for some KL functions βj, βi and some K functions
γj, γi1 and γi2 . Then (2)-(3) is ISS.



Proof: Since γi1 and γi2 are class K,
γi1(sups≤τ≤t ‖uj‖) ≤ γi1(sups≤τ≤t ‖uj‖ +
sups≤τ≤t ‖xj‖) and γi2(sups≤τ≤t ‖uj‖) ≤
γi2(sups≤τ≤t ‖uj‖ + sups≤τ≤t ‖xj‖). Then
it is always possible to find a class K
function γi such that γi(sups≤τ≤t ‖uj‖ +
sups≤τ≤t ‖xj‖) ≤ γi1(sups≤τ≤t ‖uj‖+sups≤τ≤t ‖xj‖)+
γi2(sups≤τ≤t ‖uj‖ + sups≤τ≤t ‖xj‖). By application
of known results on the cascading ISS systems
([19]-Appendix) the proof is completed.

Consider five agents i, j, k, m and n. First let agents
i, j and k be connected in cascade (Figure 1), where
i is assigned to follow j, j should follow k and k may
have to follow some reference trajectory y(t). Define
the errors for agents i, j and k as:

x̃i , xr
i − xi ≡ xj − dij − xi

x̃j , xr
j − xj ≡ xk − djk − xj

x̃k , xr
k − xk ≡ xm − dkm − xk

Suppose that control laws ui = ui(xi, xj), uj =
uj(xj , xk) and uk = uk(xk, xm) are designed so that
each follower can track its leader, and the closed loop
error dynamics can take the form:

˙̃xi = f̃i(t, x̃i, x̃j) (4)
˙̃xj = f̃j(t, x̃j , x̃k) (5)
ẋk = fk(t, x̃k) (6)

Proposition 3.2 (Nonlinear Cascade) If (4) and
(5) are ISS with respect to x̃j and x̃k respectively, then
the x̃g = (x̃i, x̃j)-system is ISS with respect to x̃k:

‖x̃g(t)‖ ≤ βg(‖x̃g(0)‖ , t) + γgk
(sup ‖x̃k‖)

where

βg(r, t) = βi(2βi(r, t/2) + 2γij (2βj(r, 0)), t/2)
+ γij (2βj(r, t/2)) + βj(r, t),

γgk
(r) = βi(2γij (2γjk

(r)), 0) + γij (2γjk
(r)) + γjk

(r).

Proof: Follows from Lemma 3.1 and the ISS pair
expressions derived for cascading ([19]-Appendix).

Consider the parallel interconnection of Figure 2.
Agents i and j are assigned to follow agent k, and k fol-
lows the group leader m. Application of the feedback
laws ui = ui(xi, xk), uj = uj(xj , xk), uk = uk(xk, xm)
can bring the closed loop error dynamics to the form:

˙̃xi = f̃i(t, x̃i, x̃k) (7)
˙̃xj = f̃j(t, x̃j , x̃k) (8)
˙̃xk = f̃k(t, x̃k, x̃m) (9)

where x̃i = xk − dki − xi, x̃j = xk − dkj − xj and
x̃k = xm − dmk − xk.

Proposition 3.3 (Nonlinear Parallel) Let (7) with
input x̃k and (8) with input x̃k be ISS and (9) be ISS
with respect to x̃m:

‖x̃i(t)‖ ≤ βi(‖xi(0)‖ , t) + γik
(sup ‖x̃k‖) (10)

‖x̃j(t)‖ ≤ βj(‖xj(0)‖ , t) + γjk
(sup ‖x̃k‖) (11)

‖x̃m(t)‖ ≤ βm(‖xm(0)‖ , t) + γkm (sup ‖x̃m‖) (12)

Then the composed x̃g = (x̃i, x̃j , x̃k)-system is ISS with
respect to x̃m with gain functions:

βg(r, s) = βi(2βi(r, s/2) + 2γik
(2βk(r, 0)), s)+

γik
(2βk(r, s/2)) + βj(2βj(r, s/2) + 2γjk

(2βk(r, 0)), s)
+ γjk

(2βk(r, s/2)) + βk(r, s)
γgk

(r) = βi(2γik
(2γkm(r)), 0) + γik

(2γkm(r))+
βj(2γjk

(2γkm(r)), 0) + γjk
(2γkm(r)) + γkm(r)

Proof: From (10) and (11) for interval [t/2, t]:

‖x̃i(t)‖ ≤ βi(‖x̃i(t/2)‖ , t) + γik
(sup[t/2,t] ‖x̃k‖),

‖x̃j(t)‖ ≤ βj(‖x̃j(t/2)‖ , t) + γjk
(sup[t/2,t] ‖x̃k‖)

For the interval [0, t/2] the same relations yield:

‖x̃i(t/2)‖ ≤ βi(‖x̃i(0)‖ , t/2) + γik
(sup[0,t/2] ‖x̃k‖),

‖x̃j(t/2)‖ ≤ βj(‖x̃j(0)‖ , t/2) + γjk
(sup[0,t/2] ‖x̃k‖)

From ISS of the x̃k subsystem we obtain:

sup[0,t/2] ‖x̃k‖ ≤ βk(‖x̃k(0)‖ , 0) + γkm(sup ‖x̃m‖),
sup[t/2,t] ‖x̃k‖ ≤ βk(‖x̃k(0)‖ , t/2) + γkm(sup ‖x̃m‖)

Substituting and combining with (12) we obtain for the
x̃g = (x̃i, x̃j , x̃k) system:

‖x̃g‖ ≤
{
βi(2βi(‖x̃g(0)‖ , t/2)+2γik

(2βk(‖x̃g(0)‖ , 0)), t)

+ γik
(2βk(‖x̃g(0)‖ , t/2)) + βj(2βj(‖x̃g(0)‖ , t/2)

+ 2γjk
(2βk(‖x̃g(0)‖ , 0)), t) + γjk

(2βk(‖x̃g(0)‖ , t/2))

+ βk(‖x̃g(0)‖ , t)
}

+
{
βi(2γik

(2γkm(sup ‖x̃m‖)), 0)+

γik
(2γkm(sup ‖x̃k‖)) + βj(2γjk

(2γkm(sup ‖x̃m‖)), 0)

+ γjk
(2γkm(sup ‖x̃k‖)) + γkm(sup ‖x̃m‖)

}

The multiple leader interconnection of Figure 3 is re-
alized by the feedback control laws ui = ui(xi, xj , xk),
uj = uj(xj , xn), uk = uk(xk, xm) that can bring the
closed loop error dynamics to the following form:

˙̃xi = f̃i(t, x̃i, x̃j , x̃k) (13)
˙̃xj = f̃j(t, x̃j , x̃n) (14)
˙̃xk = f̃k(t, x̃k, x̃m) (15)



Proposition 3.4 (Nonlinear Multiple-Leader)
Let (13) be ISS with respect to x̃j and x̃k, (14) be ISS
with respect to x̃n and (15) be ISS with respect to x̃m:

‖x̃i(t)‖ = βi(‖x̃i(0)‖ , t) + γij (sup ‖x̃j‖) + γik
(sup ‖x̃k‖)

(16)

‖x̃j(t)‖ = βj(‖x̃j(0)‖ , t) + γjn(sup ‖x̃n‖) (17)
‖x̃k(t)‖ = βk(‖x̃k(0)‖ , t) + γkm(sup ‖x̃m‖) (18)

Then the composed x̃g = (x̃i, x̃j , x̃k)-system is ISS with
respect to x̃n and x̃m:

‖x̃g(t)‖ ≤ βg(‖x̃g(0)‖ , t) + γgn(sup ‖x̃n‖) + γgm(sup ‖x̃m‖)
where

βg(r, s) = βi(2βi(r, s
2 ) + 2γij (2βj(r, 0)) + 2γik

(2βk(r, 0)), s
2 )

+ γij (2βj(r, s
2 )) + γik

(2βk(r, s
2 )) + βj(r, s) + βk(r, s)

γgn(r) = βi(4γij (2γjn(r)), 0) + γij (2γin(r)) + γjn(r),
γgm(r) = βi(4γik

(2γkm(r)), 0) + γik
(2γkm(r)) + γkm(r)

Proof: From (16): ‖x̃i(t/2)‖ ≤ βi (‖x̃i(0)‖ , t/2) +
γij (sup[0, t

2 ] ‖x̃j‖) + γik
(sup[0, t

2 ] ‖x̃k‖). Setting ini-
tial time to t

2 : ‖x̃i(t)‖ ≤ βi (‖x̃i(t/2)‖ , t) +
γij (sup[ t

2 ,t] ‖x̃j‖) + γik
(sup[ t

2 ,t] ‖x̃k‖). Substituting for
‖x̃i(t/2)‖, and for ‖x̃j‖, ‖x̃k‖ from (17), (18), respec-
tively, and adding (17) - (18) the result follows.

4 The Linear Case

Linearity allows for less conservative bounds than those
obtainable from Propositions 3.2, 3.3 and 3.4, primarily
because of the ability to exactly decompose the K class
functions. The computation of ISS gain functions β, γ
can be performed using a recursive formula. The proofs
of the statements for the linear case, similar in spirit
with that of Proposition 3.3, will be omitted due to
lack of space.

Consider the cascade interconnection of Figure 1 and
suppose that the dynamics of agents i and j can be de-
scribed by linear differential equations, where the pairs
(Ai, Bi) and (Aj , Bj) are controllable:

ẋi = Aixi + Biui, ẋj = Ajxj + Bjuj (19)

For xr
i = xj − dij to be an equilibrium of the closed

loop control system: ẋi = Aixi + Biui, it should hold
that Aix

r
i ∈ R(Bi). Suppose there exists eij such that

Biei = −Aix
r
i . Application of the following control law

for the follower: ui = Ki(xj − xi − dij) + eij and using
standard linear systems theory:

‖x̃i(t)‖ ≤ β̂i ‖x̃i(0)‖ e−
1−θ

2λM [Pi]
t + γ̂ij sup (‖ẋj‖) (20)

where β̂i =
(

λM [Pi]
λm[Pi]

) 1
2
, γ̂ij = 2(λM [Pi])

3
2

(λm[Pi])
1
2 θ

. and Pi is the

solution of the Lyapunov equation Pi(Ai−BiKi)+(Ai−
BiKi)T Pi = −I, and θ ∈ (0, 1). Equation (20) implies
that the closed loop system is input-to-state stable with
respect to ẋj as input and gain functions: βi(r, t) =

rβ̂ie
− 1−θ

2λM [Pi]
t, γij (r) = γ̂ij r. Apply the following linear

feedback:

ui = Kix̃i + ei, uj = Kjx̃j + ej , uk = Kkx̃k + ek (21)

where ei, ej and ek are such that: Biei = −Aix
r
i ,

Bjej = −Ajx
r
j , and Bkek = −Akxr

k.

Corollary 4.1 (Linear Cascade) Consider the in-
terconnection of Figure 1 where agents have linear dy-
namics of the form (19). Then the application of con-
trol laws (21) results in a closed loop x̃g = (x̃i, x̃j)-
system which is ISS with respect to x̃k:

‖x̃g(t)‖ ≤ β̄g ‖x̃g(0)‖ e−µt + γ̄gk
sup ‖x̃k‖

where µ , 1−θ
4max{λM [Pi],λM [Pj ]} and

β̄g ,β̄2
i + ((β̄j + β̄i)γ̄ij + 1)β̄j ,

γ̄gk
,((β̄i + β̄j + 1)γ̄ij + 1)γ̄jk

where

β̄i =
(

λM [Pi]
λm[Pi]

) 1
2

, γ̄ij = 2(λM [Pi])
3
2 λM [Aj−BjKj ]

(λm[Pi])
1
2 θ

(22)

For the parallel interconnection of Figure 2 it can also
be shown that the application of appropriate feedback
laws can renter the closed loop system ISS with respect
to the error of the group leader:

Corollary 4.2 (Linear Parallel) Consider the par-
allel interconnection of Figure 2 where the agents have
dynamics of the form (19). Then the application of lin-
ear feedback ur = Krx̃r + er, r = {i, j, k, m}, results in
a closed loop system for x̃g = (x̃i, x̃j , x̃k) which is ISS
with respect to x̃m:

‖x̃g‖ ≤ β̄g ‖x̃g(0)‖ e−µt + γ̄gm sup ‖x̃m‖
where µ = 1−θ

4max{λM [Pi],λM [Pj ],λM [Pk]} ,

β̄g = β̄2
i + β̄2

j + ((β̄k + β̄i)γ̄ik
+ (β̄k + β̄j)γ̄jk

+ 1)β̄k,

γ̄gk
= ((β̄i + β̄k + 1)γ̄ik

+ (β̄j + β̄k + 1)γ̄jk
+ 1)γ̄km ,

and β̄i, γ̄ij given by (22).

In the interconnection of multiple leaders depicted in
Figure 3 the linear feedback will be of the form:

ui =ei + Kix̃i uj =ej + Kjx̃j uk =ek + Kkx̃k

um =em + Kmx̃m un =en + Knx̃n (23)



where ei, ej and ek satisfy Biei = −Aix
r
i , Bjej =

−Ajx
r
j , Bkek = −Akxr

k, Bmem = −Amxr
m and Bnen =

−Anxr
n. and Ks, s ∈ {i, j, k, m, n}, selected to make

(As − BsKs), Hurwitz.

Corollary 4.3 (Linear Multiple-Leader)
Consider the interconnection of Figure 3 where
agents i, j, k, n and m have dynamics of the form
(19). Then control laws (23) result in a closed loop
system for x̃g = (x̃i, x̃j , x̃k) which is ISS with respect
to x̃m and x̃n:

‖x̃g‖ ≤ β̄g ‖x̃g(0)‖ e−µt + γ̄gn sup ‖x̃n‖ + γ̄gm sup ‖x̃m‖

where µ = 1−θ
4max{λM [Pi],λM [Pj ],λM [Pk]} , γ̄ik

as in (22),

β̄g = β̄2
i + (β̄j + β̄i)β̄j γ̄ij + (β̄k + β̄i)β̄kγ̄ik

) + β̄j + β̄k

γ̄gn = (γ̄ij (1 + β̄j + β̄i) + 1)γ̄jn ,

γ̄gm = (γ̄ik
(β̄k + β̄i) + 1)γ̄km

5 The Adjacency Matrix in Formation ISS

The ISS gain expressions of Corollaries 4.1, 4.2, 4.3 can
be grouped into a single formula that enables abstract-
ing a primitive graph of diameter two into a diameter
one, equivalent from the stability point of view. Used
recursively, they provide a computational means of de-
riving the formation ISS gains. Consider the adjacency
matrix of the formation graph, A and define constant
matrices Γ, B as follows:

B =[bij ], where

{
bij = β̄j , if i = j

bij = 0, otherwise

Γ =[gij ], where

{
gij = γ̄ji , if (vi, vj) ∈ E

gij = 0, otherwise

It can be shown by direct calculation that the matrices:

B1 = B + (AB2 + B2Γ + BΓB)AT (24a)

Γ1 = Γ + (Γ2(I + B) + ΓBΓ)AT (24b)

give the group ISS gains, for each primitive subgraph,
with the (i, j) element corresponding to the particular
group gain of the (i, j) interconnection. To provide a
little insight to (24) observe the ISS gain expressions
of Corollary 4.1: β̄g = β̄2

i + β̄2
j γ̄ij + β̄iβ̄j γ̄ij + β̄j. It is

easy to show that the first term in the above expession
is provided by AB2AT , the second term by B2ΓAT ,
the third by BΓBAT and the last by B. The same
reasoning can be applied for Γ1. The propagation is
performed through matrix products of the form A2AT

in the expression for Γ1 which can be shown to pro-
vide the number of paths of length two starting with
a specified edge. Propagation for B1 is done through
products of the form AAT which give the number of
immediate successors of a vertex. A detailed proof will
be omitted here due to lack of space and will provided
in a forthcoming publication.

Due to linearity, combinations of the three primitive
graphs can be superimposed, and therefore, equations
(24) can be used to abstract any formation graph of
diameter three into one of two. The ISS gains for the
whole formation graph can then be computed using the
recursive formulas, with k = 1, . . . , p :

Bk = B + (AB2
k−1 + B(BΓk−1 + Γk−1Bk−1)AT (25)

Γk = Γ + Γ(Γ(I + Bk−1) + BΓ)AT , (26)

In matrix Bp the element at position (i, j) denotes the
linear gain of the transient term bounding the errors
in the part of the formation where agent j is the group
leader following agent i. Similarly, an entry at position
(i, j) in Γp matrix, gives the gain of input from agent i
to the error of the group where agent j is the leader.

6 Examples

Equations (25)-(26) provide a computational way of as-
sessing the performance of leader-follower formations
in terms of stability. Intuitively, it may be clear that
the interconnection of Figure 2 can outperform that of
Figure 1 because of error propagation. This can now
be formally shown using (26). Assume identical dy-
namics and control laws for all agents so that for all
s ∈ {i, j, k, m}, β̄s = 1.2 and γ̄s = 1.8, (due to identi-
cal dynamics, the leader of each agent is insignificant).
Then it turns out that the input gain is significantly
increased in the cascade case γ̄cas = 34.2778 than in
the parallel case γ̄par = 23.832. Note however the de-
pendence of the comparison result on the dynamics: if
the gains are sufficiently small, e.g. with γ̄s = 0.8 and
β̄s = 0.2, the error reaching agent i in the cascade in-
terconnection will have attenuate and will be smaller
than the corresponding error propagated in the paral-
lel formation. In this case ISS gain calculation yields:
γ̄cas = 1.76256 and γ̄par = 2.592.

Equations (25)-(26) can also help to draw conclusions
about ways to improve performance. Consider the for-
mation of Figure 4. For a given a range of values
for the leader input, the estimated region for the for-
mation errors could be unacceptably large. If how-
ever, the input gain for the group (2, 3, 5, 6), γ1

F =
γ̄32(1 + (1 + β̄3 + β̄5)γ̄53 + (1 + β̄3 + β̄6)γ̄63), is small
enough, one could consider breaking the formation by
eliminating the edge (2, 3) if the gain of the remaining
part, γ2

F = γ̄21(1 + (1 + β̄2 + β̄4)γ̄42) is small enough.
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Figure 4: Example formation.

7 Conclusion

Formation input-to-state stability is a new notion of
stability for interconnected systems that can be used
in the performance analysis and design of formations.
It yields quantitative measures of the performance of
leader-follower formation structures in terms of stabil-
ity. The class of formation structures considered can be
described by connected, acyclic directed graphs, which
can be constructed by combination and superposition
of primitive types of subgraphs. It is shown how ISS
can be propagated through the formation graph and
how performance measures can be calculated. Illustra-
tive examples show how formation ISS can be used to
perform stability analysis and guide control design.
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[9] D. Šiljak, Large Scale Dynamic Systems: Stabil-
ity and Structure. North-Holland, 1978.

[10] K.-H. Tan and M. A. Lewis, “Virtual structures
for high-precision cooperative mobile robot control,”
Autonomous Robots, vol. 4, pp. 387–403, October 1997.

[11] M. Egerstedt and X. Hu, “Formation constrained
multi-agent control,” in Proceedings of the IEEE Con-
ference on Robotics and Automation, (Seoul, Korea),
pp. 3961–3966, May 2001.

[12] P. Tabuada, G. J. Pappas, and P. Lima, “Feasi-
ble formations of multi-agent systems,” in Proceedings
of the American Control Conference, (Arlington, VA),
pp. 56–61, June 2001.

[13] K. C. Chu, “Decentralized control of high
speed vehicle strings,” Transportation Science, vol. 8,
pp. 361–383, 1974.

[14] A. Pant, P. Seiler, and K. Hedrick, “Mesh sta-
bility of look-ahead interconnected systems,” IEEE
Transactions on Automatic Control, vol. 47, pp. 403–
407, Feb. 2002.

[15] E. D. Sontag and Y. Wang, “On characteriza-
tions of the input-to-state stability property,” Systems
& Control Letters, no. 24, pp. 351–359, 1995.

[16] H. G. Tanner, V. Kumar, and G. J. Pappas, “The
effect of feedback and feedforward on formation ISS,”
in IEEE International Conference on Robotics and Au-
tomation, (Washington, DC.), pp. 3448–3453, 2002.

[17] D. Yanakiev and I. Kanellakopoulos, “A simpli-
fied framework for string stability analysis in AHS,”
in Proceedings of the 13th IFAC World Congress, (San
Francisco, CA), pp. 177–182, July 1996.

[18] J. P. Desai, J. P. Ostrowski, and V. Kumar,
“Modeling and control of formations of nonholonomic
mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 6, pp. 905–908, 2001.
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