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Abstract

This note analyzes the stability properties of a group of mobile agents that align their velocity

vectors, and stabilize their inter-agent distances, using decentralized, nearest-neighbor interaction rules,

exchanging information over networks that change arbitrarily (no dwell time between consecutive

switches). These changes introduce discontinuities in the agent control laws. To accommodate for

arbitrary switching in the topology of the network of agent interactions we employ nonsmooth analysis.

The main result is that regardless of switching, convergence to a common velocity vector and stabilization

of inter-agent distances is still guaranteed as long as the network remains connected at all times.

Index Terms

Multi-agent systems, cooperative control, nonsmooth systems, algebraic graph theory.

I. INTRODUCTION

In this note we interpret Reynolds flocking model [3] as a mechanism for achieving velocity

synchronization and regulation of relative distances within a group of agents, and derive de-

centralized controllers which provably give rise to such a phenomenon, even when information

exchange between the agents can change arbitrarily fast. Since flocking is defined in many

different ways in literature [4]–[7], the emphasis in this note is not on reproducing flocking, but
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rather on providing a decentralized coordination method in the case where the rate of change of

the network, over which agent information is disseminated, affords no bounds.

We make a distinction between the sensing and the communication network. These two

networks need not necessarily coincide, a fact that further motivates a nonsmooth approach

to cooperative control design and analysis. Under the assumption of connected (but arbitrarily

switching) communication network topology, we construct local control laws, composed of

artificial potential field [8], [9], and neighbor velocity difference terms, that allow a group of

mobile agents with double integrator dynamics to align their velocities, move with a common

speed and achieve desired inter-agent distances while avoiding collisions with each other. We

establish the stability properties of the interconnected closed loop system using nonsmooth

control analysis and algebraic graph theory.

A. Related Work

The mechanism triggering formation clustering without centralized coordination in groups of

autonomous moving creatures such as flocks of birds, schools of fish, crowds of people [10], [11]

has also been investigated in ecology and theoretical biology, in the context of animal aggregation

and social cohesion in animal groups (see for example [12], [13]). A computer model mimicking

animal aggregation was proposed by [3]. At the same time, several researchers in the area of

statistical physics and complexity theory have addressed flocking and schooling behavior in the

context of non-equilibrium phenomena in many-degree-of-freedom dynamical systems and self

organization in systems of self-propelled particles [4], [14], [15]. Similar problems have become

a major thrust in systems and control theory, in the context of cooperative control, distributed

control of multiple vehicles and formation control. Within the space limitations of a technical

note, no literature review can be anywhere close to being complete, but the interested reader is

referred to [7], [16]–[27]. The main goal in the work cited above is to develop a decentralized

control strategy so that a global objective, such as a tight formation with desired inter-vehicle

distances, is achieved.

In related work on time-varying interconnections [28], a node has to be connected to all other

nodes over all time. If, on the other hand, dwell time is assumed between switching instances, as

in [17], the stability analysis can be based on recent results for switched nonlinear systems [29]

as sketched in Remark IV-B. (The analysis in [22] involves only velocity synchronisation and is
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performed in discrete time.) The main contribution of this note is in providing a stability result

for the case where the topology of agent interconnections changes in a completely arbitrary

manner, and without dwell time between switching instants.

II. PROBLEM FORMULATION

Consider a group of N mobile agents moving on the plane, with dynamics expressed by

double integrators:

ṙi = vi (1a)

v̇i = ui = ui = αi + ai, i = 1, . . . , N , (1b)

where ri = (xi, yi)
T is the position of agent i, vi = (ẋi, ẏi)

T its velocity, and ui = (ux, uy)
T its

acceleration inputs. Let the relative position vector between agents i and j be denoted rij = ri−rj .

Agent i is steered via its acceleration input ui which consists of two components, αi and ai.

Component αi in (1) aims at aligning the velocity vectors of all the agents. Component ai is

a vector in the direction of the negated gradient of an artificial potential function, Vi, and is

used for collision avoidance and cohesion in the group. Let R be the sensing radius of agent i.

Agents beyond this range are assumed not to affect ai.

A collision is assumed to have occurred when the coordinates of two agents coincide. The

problem is to design the control input (1) so that if connectivity is maintained in the group,

agent velocities are synchronized, collisions are avoided, and pair-wise distances between agents

that sense each other are stabilized to steady state values within a given range.

III. PRELIMINARY DEFINITIONS AND THE CASE OF FIXED COMMUNICATION TOPOLOGY

For the sake of completeness, let us first consider the case where the communication network is

time-invariant. We represent the communication network by means of a graph, which determines

how velocity information propagates in the group.

Definition 1 (Velocity graph) The velocity graph, Gc = {V, Ec}, is an undirected graph con-

sisting of:

• a set of vertices (nodes), V = {1, . . . , N} ⊂ N, indexed by the agents in the group, and

• a set of edges, Ec = {(i, j) ∈ V × V | i ∼ j}, (∼ denotes adjacency) containing unordered

pairs of nodes that represent communication links.
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The velocity graph neighbors of agent i are assumed to belong to a set Nc(i) , {j | (i, j) ∈
Ec} ⊆ V \ {i}.

Agents within distances smaller than R are interacting through artificial potential “forces.”

Each such interaction is associated with a link in the sensing network of the group, which, being

position dependent, is represented by the position graph defined as follows:

Definition 2 (Position graph) The position graph, Gs = {V, Es}, is an undirected graph con-

sisting of:

• a set of vertices (nodes), V = {1, . . . , N} ⊂ N, indexed by the agents in the group, and

• a set of edges, Es = {(i, j) ∈ V ×V | ‖ri − rj‖ ≤ R}, containing unordered pairs of nodes

that represent sensing links.

Similarly, position graph neighbors of agent i define a set Ns(i) , {j | (i, j) ∈ Es} ⊆ V \ {i}.

Contrary to the velocity graph, the position graph is time-varying, depending on the agents’

relative positions.

Consider a function Vij that depends on the distance between position neighbors:

Definition 3 (Potential function) Potential Vij is a differentiable, nonnegative, function of the

distance ‖rij‖ between agents i and j, such that

1) Vij(‖rij‖) → +∞ as ‖rij‖ → 0,

2) Vij attains its unique minimum when agents i and j are located at a desired distance, and

3) d
d‖rij‖

Vij = 0, if ‖rij‖ > R.

Definition 3 ensures that minimization of the inter-agent potential functions implies cohesion

and separation in the group. By defining Vij according to Definition 3 we attempt to regulate

distances between agents in Gs within the range (0, R).

The total potential of agent i is:

Vi =
∑

j∈Ns(i)

Vij(‖rij‖), (2)

and the control input for agent i is defined as

ui = −
∑

j∈Nc(i)

(vi − vj)

︸ ︷︷ ︸

αi

−
N∑

i

∇ri
Vi

︸ ︷︷ ︸

ai

. (3)
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Let us define the dynamical system derived from (1) by stacking the position and velocity

vectors. This system has (r̄, v) as its state, where r̄ = (BKN
⊗ I)r is the stack vector of all

relative positions between agents, r is the stack vector of agent positions, v is the stack vector

of all agent velocities, ⊗ denotes the Kronecker matrix product, BKN
is the oriented incidence

matrix of the complete graph with N vertices, KN (for an arbitrary orientation), and I is the

identity matrix of appropriate dimension. This dynamics is expressed as

˙̄r = (BKN
⊗ I2)v (4a)

v̇ = u, (4b)

where u is the stack vector of all agent inputs, defined in (1). The convergence properties of (4)

can be analyzed using standard invariance arguments [1], [17], [21]. Due to space limitations,

in this note we focus on the case of switching communication topology, which is discussed in

Section IV.

IV. COORDINATION WITH SWITCHING COMMUNICATION TOPOLOGY

A. Switching without dwell time

In this section we assume that the topology of the communication network can switch ar-

bitrarily fast. In this case, the velocity graph of Definition 1is time-varying. Since αi in (3)

now depends on the time-varying Nc(i), topology switches will introduce discontinuities to the

right hand side of (3). The stability of the discontinuous dynamics is analyzed using differential

inclusions [30] and nonsmooth analysis [31]. Since the control signal u is switching, (4) is

expressed in terms of differential inclusions:

˙̄r = (BKN
⊗ I2)v (5a)

v̇ ∈a.e K[u], (5b)

where BKN
is the incidence matrix of the complete graph with N vertices, KN , K[·] is a differ-

ential inclusion [32], and a.e stands for “almost everywhere.” We do not make any assumption

on the uniqueness of the solutions of (5).

Theorem 1 (Flocking in networks with arbitrary switching) Consider a system of N mobile

agents with dynamics (5), each steered by control law (3). Let both the position and velocity
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graphs be time-varying, but always connected. Then all pairwise velocity differences converge

asymptotically to zero, collisions between the agents are avoided, and the system approaches a

local extremum of agent potentials (2).

Proof: Consider the Lyapunov-like function

W (r̄, v) =
1

2

N∑

i=1

(Vi + vT
i vi). (6)

The position graph is time-varying, but the associated topology changes do not introduce discon-

tinuities, since the potential function is differentiable at the transition point. Since the position

graph is assumed to be always connected, by definition there is a path (in the position graph)

from every vertex to every other vertex. The graph’s diameter, therefore, cannot be larger than

N−1. This implies that the largest distance between any two agents in the graph, (by the triangle

inequality) is smaller than (N − 1)R. As a result,
∑

(i,j)∈V×V‖rij‖ ≤ N(N−1)2R

2
. Thus, r̄ always

evolves in a closed and bounded set. Similarly, the level sets of W define compact sets in the

space of agent velocities: W ≤ c ⇒ ∑

i v
2
i ≤ c ⇒ ‖vi‖2 ≤ c. Consequently, the set {r̄, v} such

that W ≤ c, for c > 0 is closed by continuity. Boundedness follows from connectivity: from

W ≤ c we have that Vij ≤ c. Connectivity ensures that a path connecting nodes i and j has

length at most N − 1. Thus ‖rij‖ ≤ V −1
ij

(
c(N − 1)

)
. Similarly, vT

i vi ≤ c yielding ‖v‖i ≤
√

c.

Therefore, the set

Ω = {(r̄, v) |
√

‖r̄‖2 + ‖v‖2 ≤ √
c +

N(N − 1)2R

2
} (7)

is compact. The invariant properties of Ω will be established in the sequel once W is shown to

be non-increasing.

Function W is differentiable, but its derivative along the system’s trajectories is not a quantity

that can be evaluated at the switching instants, for we do not know the value of v̇. We can only

ensure that v̇ ∈a.e. K[u]. The right hand side of (5) can be expanded as follows:

˙̄r = (BKN
⊗ I2)v

v̇ ∈a.e K[−(Lc ⊗ I2)v] −
(

∇r1V1

...
∇rN

VN

)

.
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Let φv be an arbitrary element of K[−(Lc ⊗ I2)v]. The generalized derivative of W , along a

vector φ belonging in the set given by the right hand side of (5), is expressed as

W ◦(r̄, v; φ) =
1

2

N∑

i=1

V̇i + vT φv −
N∑

i=1

vT
i ∇ri

Vi.

Based on the fact that ∇rij
Vij = ∇ri

Vij = −∇rj
Vij , we have

1

2

N∑

i=1

V̇i =
1

2
2

N∑

i=1

ṙT
i

∑

(i,j)∈Es

∇rij
Vij =

N∑

i=1

ṙT
i ∇ri

Vi. (8)

Thus W ◦(r̄, v; φ), using (8), becomes

W ◦(r̄, v; φ) =
N∑

i=1

vT
i ∇ri

Vi + vT φv −
N∑

i=1

vT
i ∇ri

Vi = vT φv. (9)

The invariance principle in [33] examines the worst case for the rate of change of W , which

evaluates to m(r, v) = maxφv∈K[−(Lc⊗I2)v]{vT φv}. Theorem 1 of [32] enables us to write:

vT K[−(Lc ⊗ I2)v] = K[−vT (Lc ⊗ I2)v], From the definition of the differential inclusion, it

follows that m(r, v) = max co{−vT (Lc ⊗ I2)v}. For a connected velocity graph Gc, Lc is

positive semi-definite and therefore all quadratic forms of the type −vT (Lc⊗I2)v are nonpositive,

regardless of the topology of the graph. Convex hulls of nonpositive numbers are nonpositive

intervals, and thus m(r, v) cannot be positive. The largest value it can have is zero. Rewriting

vT as: vT = (v1x, v1y, v2x, v2y, · · · , vNx, vNy), we have that −vT (L ⊗ I2)v = vT
x Lcvx + vT

y Lcvy,

which implies that m(r, v) = 0 iff vx = cx1N and vy = cy1N , where cx, cy ∈ R. Applying the

invariance principle of [33] to the system described by the (set valued) vector field ( ˙̄r, v̇), it

follows that for initial conditions in Ω, the Filippov solutions of the system converge to a subset

of {v | vx, vy ∈ span{1}}. If vx and vy are aligned with 1, then, for any two agents i and j,

ṙij = vi − vj = 0. In {v | vx, vy ∈ span{1}}, the acceleration dynamics reduces to

v̇ = (Bs ⊗ I2) [ ··· (∇rij
Vij)T ··· ]T , (10)

which implies that both v̇x and v̇y belong to the range of the oriented incidence matrix Bs of

the position graph Gs (for an arbitrary orientation). For a connected velocity graph, range(Bc) =

span{1}⊥ and therefore

v̇x, v̇y ∈ span{1} ∩ span{1}⊥ ≡ {0}. (11)

Thus, the right hand side of (10) is zero at steady state, implying that Vi is locally minimized.

Configurations corresponding to such local minima may not be isolated; however, (11) ensures
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that the system is stable there, so d
dt
‖rij‖ = 0, ∀i, j ∈ E . However, if Vij happens to be locally

convex in the (0, R) range, then Vi will have a unique extremum and inter-agent distances

between agents connected in Gs are stabilized to their desired points. Collision avoidance is

ensured by the definition of Vij and the fact that W is decreasing.

Maintaining connectivity in the group while the network topology is switching based on

the distance between the agents is a major issue. In the present analysis, this assumption

is instrumental in showing the stability of the flocking motion of the group. The nonsmooth

invariance theorem of Ryan [33], does not require Ω to be compact, however the compactness

and invariance of Ω implies the necessary precompactness of the solutions. If connectivity is

lost, one cannot guarantee that rij ∈ Ω and thus stability may not be guaranteed.

B. Switching with dwell time

Although, a detailed stability analysis of this case is beyond the scope of this note, we wish

to highlight an alternative methodology should the stronger condition that requires a dwell time

between switches of the velocity graph is made, in addition to network connectivity. The approach

described here is different from the one followed in [34], where all control signals are continuous,

and in [17], where single integrator dynamics with no potential agent interaction is considered.

Here, the stability analysis can be based on recent results for switched nonlinear systems [29].

System (5) – (3) can be thought of as a switched nonlinear system ẋ = fσ(x), σ : [0,∞) → P ,

where P is a finite index set. The dwell time assumption implies that there are always intervals

of some length τ > 0 between the consecutive discontinuities of the switching signal σ. For

each p ∈ P , (i) the right hand side of (5)–(3) (denoted here fp) is locally Lipschitz, (ii) Wp (the

Lyapunov function (6) when dynamics p is activated) is positive definite and radially unbounded,

(iii) Wp is continuous (thus Wp(ti) ≤ Wp(tj) whenever tj < ti and σ(ti) = σ(tj) = p), and

(iv) −∇(r̄,v)Wpfp is positive semi-definite. These conditions are sufficient to ensure that the

“auxiliary output” (BQ ⊗ I2)vQ → 0 [29], where Q is the union of time intervals when σ = p,

and BQ, vQ denote the incidence matrix and velocity vector during t ∈ Q, respectively. Note

in reference [29] that the dwell time assumption is instrumental in constructing Q, on which

−∇(r̄,v)Wpfp is integrable. Since the auxiliary output convergences for an arbitrary p among the

finite set P , we will eventually have (B ⊗ I2)v → 0.
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V. NUMERICAL SIMULATIONS

A group of ten mobile agents with dynamics (1) is initialized with random initial (x, y)

positions in a rectangular area of 6.25 m2 centered at the origin. Velocities were also randomly

selected with magnitudes in the (0, 1) m/s range, and with arbitrary directions. Randomly

generated adjacency matrices defined connected position and velocity graphs. Each call to the

dynamic equation MATLAB function that implements (1)-(3), by the numerical integration func-

tion (ode45) can initiate a random switch to a completely different connected communication

graph. Such switching happens with a given probability, but it is not otherwise restricted (for

instance, in terms of dwell time). Figure 2 describes the evolution of a group of ten agents,

where the velocity graph topology is switching in the aforementioned manner. We depict the

velocity graph edges in solid (green) line segments and the position graph edges in dotted (blue)

segments. Each snapshot shows a different velocity graph, although the topology could have

undergone several changes between these two time instants. Figure 1 gives the time history of

agent velocities. Convergence is fast, probably because with the network neighbors changing, an

agent can have access to the velocities of a large set of its groupmates, rather than a restricted set

of constant neighbors. Frequent topology switchings produce transients, but stability and overall

convergence trend is evident.
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Fig. 1. Convergence of agent speeds. The agents communicate their velocities over a network that changes randomly at every

simulation step, with a given probability. Network topology switches introduce discontinuities.
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Fig. 2. Successive simulation time snapshots of flocking with dynamic interconnection topology. The top left figure shows the

initial condition; bottom right gives the position after 100 simulation seconds. The time stamp of each snapshot is shown on

top of the corresponding figure.
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VI. CONCLUDING REMARKS

We show that the multi-agent behavior induced by our control law is robust to arbitrary

changes in the sensing and communication networks, as long as these remain connected during

the motion. We prove that agent potential functions are locally minimized and velocity vectors

converge asymptotically to a common vector, by exploiting the algebraic connectivity of the

underlying sensing and communication graphs.
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