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Abstract: The paper presents a nonholonomic motion planner for mobile manipulators
moving in outdoor environment amongst trees. The robot is supposed to move
autonomously on flat ground, navigate among the trees and reach a specified target
point on the three dimensional space, starting from an arbitrary initial position. The
approach is based on a discontinuous feedback law under the infuence of a specially
designed potential field. The potential field function coordinates the motion of the
mobile base and the onboard manipulator. Convergence is shown via Lyapunov’s
direct method and validity of the approach is verified through simulation examples.
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1. INTRODUCTION

Robotic manipulators are commonly attached to a
stationary surface, in the close vicinity of the area
where they are supposed to operate. This configu-
ration is only appropriate when the robot’s desired
motion is strictly contained within its workspace.
The operational points have to be close to each
other, a restriction which considerably limits the
range of possible applications. Agricultural tasks,
which normally require operating at many distant
locations are unavoidably excluded. This restric-
tion is lifted by employing mobile manipulators.
Successful employment of mobile manipulators in
agriculture has recently been reported in litera-
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ture (Mandow et al., 1996; Kondo, 1995; Fujiura
et al., 1990; Iida et al., 1996).

One of the main problems concerning the appli-
cation of a mobile manipulator in agriculture is
planning its autonomous motion on the field and
coordinating its two main components, namely,
the mobile base and the manipulator mounted
on top. Due to the kinematic constraints imposed
on the wheels of the base, the mobile manipula-
tor is a nonholonomic system. As a concequence,
no continuous static feedback motion planning
scheme can be applied (Brockett, 1981); it has
to be either open-loop, time varying (Murray
and Sastry, 1990) or discontinuous (de Wit and
Sordalen, 1991). Motion planning for nonholo-
nomic systems has traditionally been divided into
two stages: path planing and trajectory planning.
This decomposition into two separate concequent,



stages inhibits real time implementation. Partic-
ularly for mobile manipulators, motion planning
has generally been treated within the framework
of optimal control. The complete trajectory is
preplanned before execution. On these issues sev-
eral papers have appeared in literature: Desai and
Kumar (Desai and Kumar, 1997) have formulated
the problem as an optimal control problem. Pin
et. al (Pin et al., 1997) performed local opti-
mization at velocity level. Perrier et. al (Perrier
et al., 1998) minimized the total position error
using a linearized model. Huang et. al (Huang
et al., 1998) decoupled the motion of the vehicle
from that of the manipulator and optimized each
one using different criteria. Recently, Tanner and
Kyriakopoulos (Tanner and Kyriakopoulos, 2000)
proposed a closed loop motion planning scheme
that achieves convergence and obstacle avoidance
based on the potential field method.

Besides the two stage decomposition, optimal con-
trol is notoriously known for its computational
requirements that render it impractical in real
time applications. In this paper the approach fol-
lowed is based on the use of fast feedback. The
system is kinematically steered in real time using
position information to navigate itself at each time
step. This is made possible with a discontinu-
ous feedback law and a special kind of potential
field functions. The primary merit of such an ap-
proach is that it merges path planning and motion
planning in a robust and fast feedback scheme.
Furthermore, it is very practical since it can be
combined in a tele-operated scheme where the
end-user gives simple commands while the system
reconfigures itself automatically without colliding
with the environment.

The rest of the paper is organized as follows:
Section 2 presents the basic mathematical tools on
which our approach is founded and gives a formal
problem statement. In section 3 the mathematical
framework is briefly introduced, the proposed
approach is discussed and its stability properties
are established. In section 4 implementation issues
are discussed. Section 5 illustrates the efficiency
of the approach through a number of non trivial
numerical simulations. The authors conclusions
are summarized in section 6.

2. PROBLEM STATEMENT

Consider the autonomous nonlinear system
x = f(x)

with a possibly discontinuous right hand side. f :
R"™ — R™ is measurable and essentially bounded.
The Filipov set, K[f](z), is formed by the images
of the system vector field on a neighborhood of

point z. It is important that we can neglect a set of
measure zero where the vector field is not defined.

For nonsmooth functions V, the gradient oV is
defined as a set of vectors (Shevitz and Paden,
1994). The time derivative of a Lyapunov function
for the system can be defined as:
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Then LV (z) exists almost everywhere and
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Lyapunov’s direct method and LaSalle’s invari-
ant principle have been extended (Shevitz and
Paden, 1994) to the case where either f(x) is
discontinuous, V' (x) nonsmooth or both. These
extentions facilitate the stability analysis of the
discontinuous closed loop system by providing
the necessary mathematical tools. They allow the
system to be treated in the usual fashion in
the framework of Lyapunov’s direct method and
LaSalle’s invariant principle.

The problem at hand is to plan the motion of
a mobile manipulator between any two arbitrary
configurations, coordinating the mobile robot and
the attached manipulator. The robot approaches
a particular point in a tree environment, without
colliding with the surrounding trees. The mobile
manipulator is assumed to move on a flat surface,
although this assumption can be relieved once spe-
cific information on the ground surface is available
to allow its modeling. Both the mobile base and
the manipulator are modeled kinematically. In
such a framework, the mobile base is modeled as
a unicycle while the manipulator will be trivially
described as a parallel series of integrators. A joint
configurations space description of the manipula-
tor can accomodate obstacles.

An additional desired feature for the planning
scheme is feedback. This would enable the rejec-
tion of disturbances and/or noise and the reduc-
tion of computational burden which is typical of
optimal control methodologies.

The problem can be formally stated as follows:
Define z £ [z y 6 q]T where z,y denote the
position of the mobile platform on the plane on
which it is moving, 6 is its orientation, and q =
[ql qm]T are the manipulator joint position
vector. Then consider the system:

& =wvcosf (1a)
gy =wvsinf (1b)
f=w (1c)
q=u (1d)

Given an obstacle free configuration space, C, and
two arbitrary points zg, zy lying in the same con-



nected component of C, define a feedback scheme
U:q~ [v w u] such that the resulting trajec-
tory r : [0,T] — C, satisfies r(0) = zo, r(T) = zy.

The configuration space of the system is the man-
ifold 2 x S™*!. The obstacle free configuration
space, C, is formed by removing from the config-
uration space the obstacle regions.

3. APPROACH TO SOLUTION
3.1 Dipolar Navigation Functions

For obstacle and singularity avoidance potential
fields provide a conceptually appealing option.
Navigation functions are positive definite smooth
functions, attaining a maximum at the bound-
ary of the free configuration space, and vanishing
only at the origin. Their gradient does not vanish
except for the origin and perhaps a countable
set of isolated points -therefore no local minima
are created. Navigation functions serve as nat-
ural Lyapunov function candidates. The mathe-
matical requirements for the existence of navi-
gation functions are not extremely strict: every
smooth connected and compact manifold with
boundary admits a navigation function (Rimon
and Koditschek, 1992).

Potential-based motion planning methods assume
that the system can be described as a single point
in the configuration space. Real robots however
are generally multilink mechanisms consisted of
rigid bodies. In order to shrink the robot to a point
we have to account for its volume and increase the
obstacles’ volume accordingly (Latombe, 1991).

Contrary to a previous approach of the authors
(Tanner and Kyriakopoulos, 2000), this proce-
dure is now facilitated by the use of appropri-
ate contraction mapping transformations. Both
the robot and the obstacles are reduced to sin-
gle points in the interior or at the boundary
of the configuration space, respectively. A chain
of elipsoid-shaped volumes is first transformed
to a sphere through consequitive purging trans-
formations. Each elipsoid-shaped volume in the
chain is ‘absorbed’ into its “parent” link until the
whole chain is reduced to a sphere. In this spher-
ical space (Rimon and Koditschek, 1992) where
the robot and the obstacles ares represented by
spheres, the motion planning problem for a non-
zero volume robot can be reduced to an equiv-
alent problem where the robot is reduced to a
point and the obstacles are enlarged by the robot
radius. The obstacle-free configuration spaces are
homeomorphic. In this way the construction of the
‘grown’ obstacles is greatly facilitated.

The general form of the navigation function used
is (Rimon and Koditschek, 1992):

Iz —zsl°
Iz — zal** + B(=)]'/*
where 3(z) is an obstacle dependent function and
k is a tuning parameter.

V(z) =

In (Tanner and Kyriakopoulos, 2000) a new type
of navigation function was introduced: the dipolar
navigation function. Dipolar navigation functions
are constructed such that the flows of their poten-
tial field are tangent to the z axis at the origin.
Stabilization of the mobile robot’s orientation is
achieved implicitely, by aligning the robot’s tra-
jectories with the potential flows.

It must be noted that it is always possible to
generate a smooth dipolar potential field (e.g. by
artificially increasing the potential along y axis.)
A possible candidate could be:

1z — 7|

Vi(z) =
" = =2 + @ + p@
where € a very small positive constant and Z is
defined as z 2 (z,y,q)".

3.2 Motion Planning Scheme

Given a navigation function describing the robot
workspace, we propose the following discontinuous
feedback law:

v = —sgn (8_V cosf + 8—Vsin0> .
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where V is the navigation function, k,, k. and
kg are positive control gains. In particular, a
large value for k., keeps v from vanishing in
configurations away from the origin where %—‘; =
% = 0. On the other hand, k, amplifies the
influence of the potential field on the system

evolution. 64 is defined as:
64 2 arctan 2(sgn(m)({;—‘y/, sgn(a:)aa—‘;)

while the sign function is defined as

A |1 ,2>0
sen(z) = -1 ,2<0

Stability for the system can be obtained via Lya-
punov’s direct method, utilizing features from
nonsmooth analysis.



Proposition 1. Under the control law (2), the sys-
tem (1) converges asymptotically to the origin.

PROOF. Consider a smooth navigation function
as a Lyapunov candidate. It is positive definite by
construction.

Then

and since V' is smooth,
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Then, by LaSalle’s invariant principle (Shevitz
and Paden, 1994), every trajectory converges to
the largest invariant set which is included in .S =

{2|0 € V}. V vanishes only when:

%—‘; cos 6+

%—‘; sinf = 0, %—‘9/ =0,

or and or , %—‘é =0

oV _ oV _ _
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z=y=0

In an invariant set inside S it is also required
ov. oV
=0, and — =—=2x=9y=0
d ox Jy Y

In this case, §; = 0 so § = 0 and the invariant
set reduces to the origin, where the closed loop
system trajectories must converge. 0O

If conventional potential functions are used, then
04 will be discontinuous at the origin. This implies
that the system would approach the set {z|z = 0}
with arbitrary orientation and reorient itself once
being there. This is mathematically acceptable for
a unicycle, but it is quite difficult for mobile robots
with other steering mechanisms. With the use of

dipolar navigation functions, however, 8; — 0 as
(z,y) — (0,0). Following the flow lines of the
potential field, the system converges uniformly to
the origin.

4. IMPLEMENTATION ISSUES

Typical to discontinuous control laws is the ap-
pearance of chattering. Chattering is character-
ized by a high frequency switching in the control
signals. Under law (2) chattering occurs primarily
due to the change in the sign of v when the
platform velocity is almost tangent to an isopo-
tential surface. In particular, chattering will occur
at positions where:

86_‘;0050+?)_Z5in0:0 or %_IB/:
Chattering can have an impact on convergence
time and common techniques for alleviating the
effect are employed hysteritic switching (Slotine
and Sastry, 1983). It should be noted however
that chattering trigering configurations are non-
attractive under (2) and the phenomenon appears
in relatively difficult circumstances. In fact, it can
be shown that aligning 6 with 6; makes % cosf+

% sinf # 0, for every (z,y,6,q) # 0.

0

Another issue is the need for 6 to converge fast
to #4. Successfull implementation depends on the
ability of the system to track to flow lines of the
potential field. The convergence rate for 6 can be
adjusted by tuning the control gain ky.

5. SIMULATIONS

The simulation setup considered consists of three
tree-shaped obstacles and a six degree of freedom
mobile manipulator. The mobile manipulator has
five main components as depicted in Figure 1. Its
mobile base can translate horizontally and rotate
around the vertical axis by means of steering. The
onboard manipulator has three rotational joints.
The first two links of the manipulator rotate
around horizontal axes while the end effector
rotates on a plane normal to the link on which
it is mounted.

The tree environment is implemented in the form
of a plane on which three tree-shaped obstacles
reside (Figure 2). The mobile manipulator ma-
neuvers amongst the trees and reaches a desired
point on tree with a specified orientation. The
number of the system degrees of freedom allows
only a finite number of configurations that realize
the desired grasp. In systems with more degrees of
freedom some form of redundancy resolution must
be employed for the determination of the goal
configuration. During the motion, the proposed



Fig. 1. The mobile manipulator

scheme is capable of resolving redundancy so that
additional objective requirements can be satisfied
(Tanner and Kyriakopoulos, 2000).

The simulation environment is depicted in Fig.
2. The objective for the robot end effector is to
reach a specific point on the tree in the mid-
dle. This configuration corresponds to the po-
sition (z,y,0) = (0,0,0) for the mobile base
and (q1,¢2,93) = (35°,63°,0°) for the ma-
nipulator. The robot is initially positioned at
($7y797q17q27q3) = (1078700700700700) (Flg 2)

Fig. 2. Initial position

Screenshots of the motion of the robot are shown
in Fig. 3-6. In Fig. 3 the mobile base starts to
move trying to reorient itself in order to be able
to approach the middle tree. The manipulator
links do not move significantly yet since this would
hindered the motion of the robot.

The robot maneuvers to fix the position and
orientation of its mobile base Fig. 4. During this
time the manipulator links move very slowly.

At the next screen shot (Fig. 5), the robot has
sufficiently approached the desired position for
its mobile base and begins to reorienting the
manipulator links.

Finally, Fig. 6 shows the mobile manipulator at
the desired final configuration. Small maneuvers
for the mobile base take place while the manipu-
lator is fine tuning its position.

Fig. 3. Beginning of motion (at 20 iteratations)
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Fig. 5. Moving the manipulator (at 360 iterata-
tions)

6. CONCLUSION

In this paper the motion planning problem for a
nonholonomic mobile manipulator navigating in
an outdoor tree environment is investigated. The
proposed motion planning scheme is based on a
full state discontinuous feedback law which guar-
antees convergence the to desired final position
and collision avoidance. All information about the



Fig. 6. Final configuration

robot and the environment geometry, constraints
and objectives is integrated into a potential field
function through which motion planning and co-
ordination is achieved. The scheme merges path
planning and trajectory generation and is suitable
for real time implementation. The method can
easily be combined with a tele-operated scheme
allowing the user to specify only high-level tasks.

One of the intrinsic limitations of the potential-
field approach is the requirement for a topolog-
ical model of the robot’s geometry and its envi-
ronment. At this issue, however, potential-based
methods are superior to classical findpath algo-
rithms since the symbolic mathematical represen-
tation of the workspace theoretically allows a com-
putationally cheap adaptation of the navigation
function parameters as new (or revised) informa-
tion comes along (Rimon and Koditschek, 1992).

Research is continued on the construction of
new kind of dipolar navigation functions allow-
ing faster convergence and easier grown obstacle
representation. The method seems promising for
coordinating the simultaneous motion of multiple
robots under several configuration dependent con-
straints.
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