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Mobile Manipulation of Flexible Objects Under
Deformation Constraints

Herbert G. Tanner, Member, IEEE

Abstract— We develop a velocity field tracking control scheme
with PI force feedback to transport and manipulate deformable
material with a mobile manipulator. We assume that the de-
formable object is a damped underactuated mechanical system.
The input-to-state stability properties of its zero dynamics are
used to derive bounds on the admissible end-effector velocities
and accelerations. It is shown both analytically and in simulation,
that using deformation feedback we can avoid exciting excessive
object deformations.

Index Terms— Mobile Manipulators, Deformable Objects,
Force Control, Nonholonomic Systems

I. INTRODUCTION

To automate the handling of deformable objects, we need
detailed object models and control schemes that enable safe
manipulation. Existing robot controllers for deformable ma-
nipulation typically do not use object state feedback. Their
purpose is to eliminate internal forces and vibrations [1], [2],
[3], [4]. Similarly, in swing-free manipulation the objective is
to eliminate residual oscillation of a suspended object [5], [6].
These methods use an object model [7], [8], [9] in an open
loop fashion. The technology to obtain direct feedback from
deformable objects advances quickly [10], [11].

In this paper the control objective is not to suppress vi-
brations, but rather to keep them bounded using object state
feedback. Some object deformation may be admissible, and
sometimes even desirable [12], to adjust the shape of the
system and navigate in cluttered environments. The limits of
the control inputs are specified based on the stability properties
of the deformable object dynamics. A PI force control loop is
closed around the velocity tracking controller, to ensure that
forces exerted on the object remain within admissible limits
and the effect of model uncertainty is minimized. We develop a
velocity tracking control algorithm [13], which steers the robot
along the gradient of a navigation function [14], and stabilizes
the object to a desired configuration. Based on the velocity
error at each state, we define a desired task space acceleration
vector. Since mobile manipulators are usually kinematically
redundant, and given that dynamic pseudoinverse-based re-
dundancy resolution inevitably introduces instabilities [15],
[16] we directly project task space accelerations to joint space
accelerations, exploiting the kinematic structure of the robot.
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II. SYSTEM DYNAMICS

A. Mobile Manipulator

The mobile manipulator considered is a nonholonomic,
kinematically redundant system. Its mobile base is described
kinematically by the equations of the unicycle:

ẋ = u1 cos θ, ẏ = u1 sin θ, θ̇ = u2,

where (x, y) is the pair of planar position coordinates for the
base, θ is its orientation and u1, u2 are the translational and
rotational velocity, respectively. Let qb ,

[
x y θ

]T
denote

the coordinates for the mobile base. If qa ∈ R6 is the vector
of joint coordinates of the manipulator attached to the base,
then the generalized coordinates and velocity vectors for the
mobile manipulator can be expressed as q ,

[
qT

b qT
a

]T
, and

u ,
[
u1 u2 q̇T

a

]T
. The task space velocities are related to

the joint velocities through the analytic Jacobian:

ẋa = JA u ≡
[
JAb JAa

] [
u1 u2 q̇T

a

]T
. (1)

Since the system is kinematically redundant, JA is non-square
and “fat”. With external forces and torques, F , exerted on the
end-effector, the robot dynamics become

Mr(q) u̇ + Cr(q,u) = T r − JT
AF , (2)

where Mr is the inertia matrix of the robot system, Cr denotes
the vector of Coriolis, centrifugal and gravity terms, and T r

is the vector of generalized forces. This vector includes the
control inputs: the force fb exerted on the base in the direction
of θ, the steering torque αb and the joint torques τ a: T r ,[
fb αb τT

a

]T
. The task space dynamics are:

M(q) ẍa + C(q,u) = T − F , (3)

where

M , (JAM−1
r JT

A)−1, C , MJAM−1
r Cr −MJ̇Au,

J̄A , M−1
r JT

AM, T , J̄T
AT t. (4)

B. Deformable Object

The deformable object is considered as an underactuated
mechanical system [17]. Its actuated degrees of freedom are
the coordinates of the grasp points, assumed to coincide with
the end-effector’s coordinates. The object is described by two
sets of variables: the actuated coordinates, z1 ≡ xa, and the
unactuated coordinates z2, the latter expressing the object’s
“internal” motion. Define the vector of object generalized
coordinates as z , [zT

1 zT
2 ]T . Its dynamics are written as:

Mo(z)z̈ + Co(z, ż) + Doż + Koz = T o(z), (5)
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where Mo is the object’s inertia matrix, Co is the vector of
Coriolis, centrifugal and gravity terms, Do is a positive definite
diagonal matrix, and Ko is the object’s stiffness matrix. The
vector T o is the generalized force exerted on the object. By
rearranging the elements in z, we partition (5) as:

mo11 z̈1 + mo12 z̈2 + co1 + do1 ż + ko1z + to1 = fo (6a)
mo12 z̈1 + mo22 z̈2 + co2 + do2 ż + ko2z + to2 = 0 (6b)

C. Combined Dynamics

Note that fo = F . Combining (6a)-(6b) with (2):

Mr u̇ + Cr + JT
A[mo11 z̈1 + mo12 z̈2 + co1

+ do1 ż + ko1z + to1 ] = T r

mo12 z̈1 + mo22 z̈2 + co2 + do2 ż + ko2z + to2 = 0.

The above can be arranged in the form:Mbb Mba Mbo

MT
ba Maa Mao

MT
bo MT

ao Moo

 q̈b

q̈a

z̈2

 +

Crb

Cra

Co

 =

τ b

τ a

0

 , (7)

renaming [fb, αb]T , τ b. Using equation (3) the combined
actuated task space dynamics become:

[M+ mo11 −mo12(mo22)
−1mo12 ]ẍa + N = T (8)

where N , −mo12(mo22)
−1(co2 + do2 ż + ko2z + to2)C +

co1 + do1 ż + ko1z + to1 .

III. DEFORMABLE OBJECT MANIPULATION

In this section we show how to determine the necessary
end effector accelerations that will move the system along a
desired direction while respecting constraints on the object’s
admissible deformation of the form:

‖z2‖∞ ≤ σ (9)

Using (6b), and with mo22 invertible, we solve for z̈2:

z̈2 = −(mo22)
−1[(mo12)

T z̈1 + co2 + do2 ż + ko2z + to2 ]

If we define now the following terms:

m̃o11(z) , mo11(z)−mo12(z) [mo22(z)]−1 [mo12(z)]T ,

c̃o1(z, ż) , co1(z, ż)−mo12(z) [mo22(z)]−1 co2(z, ż),

d̃o1(z) , do1 −mo12(z) [mo22(z)]−1 do2

k̃o1(z) , ko1 −mo12(z) [mo22(z)]−1 ko2 ,

to1(z) , to1(z)−mo12(z) [mo22(z)]−1 to2(z)

and apply to the object the feedback linearizing force:

F = c̃o1 + d̃o1 ż + k̃o1z + t̃o1 + m̃o11uo, (10)

equations (6a)-(6b) become:

z̈1 = uo (11a)

z̈2 = −m−1
o22

[mT
o12

z̈1 + co2 + do2 ż + ko2z + to2 ] (11b)

Define the output of (11b) as z1−z1d, where z1d is the desired
position of the grasp point. In velocity field tracking, ż1−ż1d,
and z1 − z1d ≡ 0. The zero dynamics of (11b) is

mo22 z̈2 = −co2

∣∣∣
ż1=0

−do22 ż2−ko22z2−ko21z1d−to2 , (12)

with do2 =
[
do21 do22

]
, and ko2 =

[
ko21 ko22

]
. This system

equilibrates at z∗2 given by ko22z
∗
2 + to2 + ko21z1d = 0. We

can show that the zero dynamics are GAS:

Lemma III.1 Equation (11b), restricted in the set where ż1 =
0, is globally asymptotically stable around z∗2 defined by:
ko2z + to2 = 0.

Proof: Consider the following storage function: V ,
1
2 żT Moż + 1

2zT Ko z +U, where U is the potential energy of
the object due to gravity. Differentiating V and restricting it
on z̈1 = uo, z̈1 = ż1 = 0:

V̇ = (ż2)T mo22 z̈2 +
1
2
(ż2)T ṁo22 ż2 + (ż2)T ko2z + to2 ż2.

With matrix Ṁo − 2Co being skew-symmetric, the principal
submatrix ṁo22 − 2co22 , is too. Using (12), V̇ = −żT

2 do22 ż2,
where do22 is positive definite. The internal dynamics system
is strictly passive with respect to the output ż2 on the zero
dynamics manifold, if ż1 = 0. In addition, V̇ = 0 ⇒ ż2 =
0

(6b)⇒ z2 = z∗2, which means that the equilibrium point of the
zero dynamics is globally asymptotically stable.
With η ,

[
(z2 − z∗2)

T (ż2)T
]T

, (6b) is rewritten:

η̇ = ξ(η,ν), (13)

where, given that z1 − z1d ≡ 0,

ν ,
[
0 (ż1)T (z̈1)T

]T
. (14)

By Lemma III.1, (6b) is locally input-to-state stable [18]:

‖η‖∞ ≤ β(‖η(0)‖∞ , 0) + γ

(
sup

0≤τ≤t
‖ν‖∞

)
. (15)

To obtain an estimate of the function γ, we linearize the zero
dynamics near the origin z2 = z∗2 = 0, ż2 = 0:

η̇ = Auη + Buν, (16)

where Au = ∂ξ
∂η

∣∣∣
η=0,ν=0

, Bu = ∂ξ
∂ν

∣∣∣
η=0,ν=0

. We will assume

that (Au,Bu) is controllable pair.

Lemma III.2 The matrix Au of (16) has eigenvalues on the
closed left half plane.

Proof: By contradiction, using III.1, and assuming that
Au has eigenvalues with positive real parts.

If Au is Hurwitz, a Lyapunov matrix is computed as:
P(t) Au(t)+AT

u (t)P(t) = −I. If Au is not Hurwitz, given that
(Au,Bu) is controllable, we design a control law ν = H η
with ‖H η‖ ≤ µ so that (Au + Bu H) is Hurwitz [19]. The
Lyapunov matrix is then computed as: P(t) (Au + Bu H) +
(Au + Bu H)T P(t) = −I, and γ is then estimated as

γ(ρ) , 4
√

2(n−m)3λM (P)

√
λM (P)
λm (P)

ρ, (17)



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AS A SHORT PAPER 3

where λM (P) , λm (P) are the maximum and minimum eigen-
value of P(t), respectively. Suppose the reference velocities
are such that (14) is upper bounded by

νmax ,
σ − sup ‖z∗2‖∞

8(n−m)2λM (P) λM (Bu)

√
λm (P)
λM (P)

, (18)

where λM (Bu) =
√

λmaxBuBT
u . Then, note that (15) yields

lim sup ‖η‖∞ ≤ γ(sup ‖Buν‖). Given that η , [(z2 −
z∗2)

T , żT
2 ]T ⇒ ‖η‖∞ + sup ‖z∗2‖∞ ≥ ‖z2‖∞, we have

‖z2‖∞ < σ if: ‖η‖∞ + sup ‖z∗2‖∞ < σ ⇔ ‖η‖∞ <
σ − sup ‖z∗2‖∞ . Using (17) we see that the above holds if
sup ‖ν‖∞ < νmax. By putting an upper bound on the norm
of the grasp point velocities, and by requiring this bound to
be smaller than νmax, the system does not move fast enough
to excite unacceptable deformations on the object:

Proposition III.3 Consider (11a)-(13), and let (16) be the
linearization of (13) in a region N of (ż1,η) = (0,0). If
(Au,Bu) is controllable, (Au+Bu H) with ‖Hη‖ ≤ µ ∀ η ∈
N is Hurwitz (if Au is Hurwitz, µ can be set to zero), and the
following inequality holds:

νmax − sup ‖ż1‖∞ − µ ≥ s > 0, (19)

where νmax is given by (18), then there exists a control law:

uo = Lėz1 = L(ż1 − ż1d) (20)

that ensures tracking of the reference end-effector velocity,
ż1d, while ‖z2‖∞ ≤ σ.

Proof: If Au is Hurwitz, the solution of the Lyapunov
equation provides P(t); γ, νmax are computed from (17) and
(18), respectively. Since (11b) is locally input-to-state stable,
(17) implies:

‖η‖∞ ≤ 4
√

2(n−m)3λM (P)

√
λM (P)
λm (P)

‖Bu ν‖∞ . (21)

From the definition of η = [(z2 − z∗2)
T , (ż)T

2 ]T , it follows
‖η‖∞+sup ‖z∗2‖∞ ≥ ‖z2‖∞ . This, in turns, implies ‖η‖∞+
sup ‖z∗2‖∞ ≤ σ ⇒ ‖z2‖∞ ≤ σ. Therefore, in order for
‖z2‖∞ ≤ σ it suffices that

‖η‖∞ ≤ σ − sup ‖z∗2‖∞ . (22)

Equating the right hand sides of (21) and (22), we have

sup ‖ν‖∞ ≤
σ − sup ‖z∗2‖∞

8(n−m)2λM (P) λM (Bu)

√
λm (P)
λM (P)

, (23)

where λM (Bu)2 is the maximum eigenvalue of BT
u Bu.

Given ν =
[
(ż)T

1 (uo)T
]T

, we have: sup ‖ν‖∞ ≤
sup ‖ż1‖∞ + sup ‖uo‖ . From (23), follows sup ‖uo‖ ≤
νmax − sup ‖ż1‖∞ ⇒ ‖z2‖∞ ≤ σ. If νmax − sup ‖ż1‖∞ >
s > 0, we achieve ‖z2‖∞ ≤ σ by making sup ‖uo‖∞ ≤ s.
For bounded ėz1(0), we can design [19] a semi-globally
stabilizing control law ‖Lėz1‖ < s which respects (9).

If Au is not Hurwitz, then we design a control law ν = H η
so that ‖H η‖ ≤ µ and (Au+Bu H) is Hurwitz. The conditions

for the existence of such a control law are guaranteed by
Lemma III.2. Through ν we could stabilize (13):

ν = H η =
[
êT

z1
ˆ̇zT

1 ûT
o

]T
(24)

But ν is determined by (11a):

ν =
[
0 żT

1 uT
o

]T
(25)

For (16), the difference between (24) and (25) is a disturbance
δν =

[
−êT

z1
(ż1d − ˆ̇z1)T (uo − ûo)T

]T
. Then,

sup ‖δν‖∞ ≤ sup ‖ż1‖∞ + µ + sup ‖uo‖ , (26)

and the solution of P(t) (Au+Bu H)+(Au+Bu H)T P(t) = −I
provides matrix P(t) for which:

‖η‖∞ ≤ 4
√

2(n−m)3λM (Po)

√
λM (P)
λm (P)

‖Buν‖∞ .

For ‖z2‖∞ ≤ σ, we should have: sup ‖δν‖∞ ≤ νmax, and
given that νmax − sup ‖ż1‖∞ − µ ≥ s > 0, (26), gives
sup ‖uo‖∞ ≤ s. Based on [19], we design a control law uo =
Lėz1 that semiglobally stabilizes (11a), with ‖ Lėz1‖ < s.

IV. ROBOT FORCE CONTROL

To realize the desired acceleration input, Lėz1 , we close a
force feedback loop around our current velocity feedback. If
f̃ is the force exerted on the object, the acceleration error will
be ∆uo = (m̃o11)

−1(f̃ − f). The end-effector dynamics are:

z̈1 = Lėz1 + ∆uo. (27)

Considering (8), we see that the task space control input:

T = [M+ mo11 −mo12(mo22)
−1mo12 ](w −N) (28)

feedback linearizes the actuated task space dynamics z̈1 ≡
ẍa = w. The new input, w will now be defined as:

w = Lėz1 − k1∆uo − k2

∫ t

0

∆uods, (29)

where k1, k2 > 0 are control gains. Substituting for w
using (29) in (28) and T of (28) in (8), ∆ẍa = −k1∆uo −
k2

∫ t

0
∆uods, where

∆ẍa , ẍa − Lėz1 = z̈1 − Lėz1 . (30)

Remark IV.1 In view of (29), one can enforce the bounded
task velocity condition (19), by scaling the gain matrix L and
gains k1, k2 by a function of the type 1 − tanh(νmax − µ −
sup ‖ż1‖∞).

A. Task Space Potential Field Velocity Tracking

The desired velocity at each point in the task space is
given as ż1d = −k∇ϕ(xa), with k > 0 a constant. The
condition for stabilizability of Proposition III.3, (19), follows
from the saturated linear input construction of [19]. Parameter
s in (19) is the upper bound of the allowable task space
acceleration input, Lėz1 < νmax−sup ‖ż1‖∞−µ. From (19),
‖Lėz1‖ ≤ ‖L‖ ‖ėz1‖ = ‖L‖ ‖ż1 − ż1d‖ ≤ ‖L‖ (‖ż1‖ +
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‖ż1d‖) ≤ ‖L‖ (sup ‖ż1‖∞ + k ‖∇ϕ‖). Thus the constraint
Leo

y < vs − ho − µ is respected if

k ‖∇ϕ‖ <
(
vs − µ− (1 + ‖L‖)ho

)
‖L‖−1

. (31)

There are two ways to satisfy inequality (31) [19]: either by
decreasing k or by decreasing ε.

B. Redundancy Resolution

Realizing (28) through T r requires resolution of the robot’s
kinematic redundancy at the dynamic level. It is well known
that Jacobian pseudoinversion inevitably [16] generates in-
stabilities [20]. We resolve the kinematic redundancy by
assigning the desired accelerations to the mobile base and
the manipulator, separately. Given (1), we define the pro-
jection matrices Sb and Sa so that range[Sb] = range[JT

Ab
],

and range[Sa] = kernel[JAb
] = range[JT

Ab
]⊥. The desired

accelerations for the base and the manipulator will then be:

q̈bd = Sbw + k3(q̇b + kSb∇ϕ),

q̈ad = (JASa)−1
(
w − J̇ASaq̇a

)
,

where k3 is a positive control gain. Substituting q̈bd and q̈ad

for q̈b and q̈a in (7), yields the required joint-space control.

V. STABILITY OF THE CLOSED LOOP SYSTEM

Differentiating (30) with respect to time,

1
k2

∆u̇o = − 1
k1

∆uo −
1

k1k2
(∆xa)(3), (32)

where (∆xa)(3) is the third-order time derivative of ∆xa.
Letting z̈1d = 0, (27) can be combined with (32) as follows:

ëz1 =L ėz1 + ∆uo (33a)

ε ∆u̇o =− 1
k1

∆uo −
ε

k1
∆x(3)

a (33b)

where k2 is chosen so that ε , 1
k2

is very small. Comparing
(30) with (27) after differentiating both with respect to time,
we have (∆xa)(3) = ∆u̇o. Then, (33b) becomes

ε∆u̇o = − 1
k1 + 1

∆uo (34)

Proposition V.1 (System Stability) Consider the system
(33a) – (34) and let Pe be the solution of the Lyapunov
equation for (33a). If k2 > k∗2 , λM (Pe)2, where λM (Pe) is
the maximum eigenvalue of Pe, then the origin of the system
(33a) – (34) is exponentially stable.

Proof: Setting ε = 0 in (34) and substituting in (33a):

ëz1 = L ėz1 (35)

We can compute a Lyapunov function for (35): W1(ėz1) =
(ėz1)

T Pe ėz1 Setting τ = t−t0
ε and ε = 0 in (34)

yields: d∆uo

dτ = − 1
k1+1∆uo, and with Pu = k1+1

2 I, a
Lyapunov function for this system is defined: W2(∆uo) =

(∆uo)T Pu ∆uo. For (33a)-(34), the Lyapunov function can-
didate W3(ėz1 ,∆uo) , W1(ėz1) + W2(∆uo) yields

Ẇ3 = −‖ėz1‖
2 − k2 ‖∆uo‖2 + 2(ėz1)

T Pe ∆uo

≤ −‖ėz1‖
2 − k2 ‖∆uo‖2 + 2λM (Pe) ‖ėz1‖ ‖∆uo‖ .

For k2 > λM (Pe)2, the above reduces to: Ẇ3 ≤ −(‖ėz1‖ −
‖∆uo‖)2−

(
1− λM (Pu)2

k2

)
‖ėz1‖

2
< 0 for all ėz1 , ∆uo 6= 0.

VI. SIMULATIONS

Consider a nonholonomic mobile manipulator carry-
ing a suspended beam (Fig. 1). We want to move the
beam from (x, y, θ, q1, q2, φ) = (−8.5, 5.5, 0, π

3 ,−π
2 , 0) to

(0, 0, 0, π
2 ,−π

2 , 0) with a bounded swing |φ| ≤ π
6 . The

motion of the end-effector is nonholonomic, because the arm
cannot rotate around the vertical axis. The velocity field is

��������������������������������������
�������������������������������������� ��������������������������������������

��������������������������������������

`o

xy

θ

φ

(mv, Jv)

(m1, J1)

m2, J2)
q2

q1

(mo, Jo)

`1

a1
ao

a2

`2

Fig. 1. The mobile manipulator model used in simulations.

generated by the dipolar potential function [21]: ϕ(xa) =
p2

x+p2
y

[p2
x+p2

y]2+p2
x]1/2 + (pz − 1)2. Assuming an internal damping

coefficient d = 1, parameter νmax is 1.089 · 10−3. With
sup ‖z1‖∞ = νmax

2 , we choose ε = 1.089 ·10−4. To illustrate
the robustness of the approach to parameter uncertainty in the
object model, in the simulations we used an internal damping
coefficient of d = 0.1 instead, and we increased ε by an
order of magnitude. We simulated noise as a high frequency
force disturbance 0.005 sin t, and parameter uncertainty in the
robot model as a force bias, 0.05[N ]. Figure 5 depicts the
evolution of the (simulated) force error, ∆uo. Figure 2 shows
the evolution of the configuration of the system over time.
The swing angle of the suspended beam is given separately
in Figure 3, from which it can be verified that the observed
deformations are below the admissible limit. Figure 4 shows
the evolution with time of the task space position errors,
indicating asymptotic convergence to zero.

VII. CONCLUSIONS

We developed a velocity field tracking control scheme with
PI force feedback, which enables the transport of deformable
objects without them exhibiting excessive deformations. Ve-
locity field tracking allows the methodology to be applicable
to nonholonomic systems and providing the possibility for
extensions to obstacle avoidance and navigation.
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