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Abstract—Accidental or deliberate disruption of the coordina-
tion function in a multi-agent system has been discussed and
referred to in the social sciences literature as leader decapitation;
this paper outlines a methodology for making multi-agent net-
works resilient to this type of failure, enabling a timely restoration
of operation normalcy by leveraging machine learning techniques.
The approach involves endowing the agents with a cascade of
independent learning modules that enable them to discover over
time their role in the overall system coordinating strategy, so
that they are able to autonomously implement it when central
coordination seizes to function. Through these machine learning
algorithms, the agents incrementally identify the overall system’s
task specification and simultaneously optimize their strategy to
serve the common goal.

I. INTRODUCTION

The problem of designing resilient multi-agent systems is
pervasive and can be identified in application instances in
manufacturing, building energy management, the smart grid,
and self-driving cars [1], [2], among several others. The need
to develop novel design and control paradigms that go beyond
the traditional notions of robustness, reliability, and stability,
has also been recognized [3].

Figure 1 shows an instance of a robotic-assisted pediatric
rehabilitation study [4] where a team of (heterogeneous) robots
interact socially with an infant who has motor delay, in an
effort to encourage and entice physical activity which is a
catalyst for both motor and cognitive development at this
age. The robots’ social interaction with the human subject
is coordinated through an optimal strategy produced by a
reinforcement learning algorithm, which takes as inputs prior
data for instances of infant reactions to robot actions, and
optimizes for infant engagement and motor response in response
to robot actions.

Here, the robots are centrally coordinated, as none can have
a holistic view of what is happening in the scene in order to
optimize its behavior.

The application study of Fig. 1 is an instance of a general
case where a multi-robot system is coordinated and synchro-
nized via a centralized decision-maker. This coordinator can
also be described as the event-based dynamics of the swarm
that are responsible for managing/coordinating the swarm, and
the agents belong to the time-based dynamics responsible for
the execution of the plan as presented in [5]. A well-recognized
limitation of such a control architecture is the existence of
a single point of failure: if the central decision-maker (the
coordinator) is somehow taken off-line, the system is paralyzed.
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Fig. 1. Snapshot of an infant within the GEAR system socially interacting
with multiple robots.

Although resilience can emerge as a result of judicious design
of interacting agent objectives and incentives, it is argued [3]
that much like any mission-driven organization will fail without
organizational leadership, a supervisory design is still needed
to ensure smooth operation. But when the leader in such a
multi-agent system seizes to function, how can one prevent
the whole system from collapsing and recover normalcy of
operation? To answer this question, the paper considers a class
of supervisory systems, and proposes a novel resilient design
paradigm that incorporates learning modules to enable the
system to recover normalcy of operation following a leader
(coordinator) “decapitation.” It is inspired by how New York
City’s emergency management center was recreated on site by
means of grass-root, spontaneous efforts of citizens, after it had
collapsed with the twin towers [6]. The approach integrates
machine learning modules based on reinforcement learning
combined with formal languages and grammatical inference [7],
within the subordinate control units (the individual robots).

This paper argues that machine learning be utilized to make
such architectures resilient to coordinator decapitation. What
is more, it extends recent results on this problem, and further
promotes resilience by distributing decision-making functions
to the individual agents and enable them to locally optimize
their behaviors in concert with the mechanism they use to
become resilient to coordinator failure.

Technically, the idea promoted here is for the robotic agents
to keep track of the actions they perform in support of the
overall coordination strategy (which is unknown to them) during
normal operation. This is key to being able to understand what
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needs to be done in order to employ a recovery contingency
algorithm which will enable them to infer the strategy and
essentially collaboratively “clone” their supervisory decision-
making module. In this way, the agents cooperate to ensure
the four key elements safeguarding against destabilization after
leader decapitation [8]: (i) information flow, (ii) consensus-
reaching ability, (iii) functional capability, and (iv) information
interpretation. This approach deviates from the one reported
in earlier work [9] along this direction in several key aspects:
first, the agents are far more autonomous as they formulate
(under guidance) their own action plan using reinforcement
learning; second, the agent action plans are now optimal relative
to some performance metric; third, communication with the
system’s coordinator is bidirectional; and finally, security is
enhanced because the (optimal) group action plan is not directly
communicated from the coordinator to the agents. In addition,
the reinforcement learning (RL) methodology implemented
on the agents in this paper is distinct from the realization in
the algorithm’s original debut [10] because here the agents
are neither aware of their reward function nor of their actual
dynamics; this missing information is unveiled progressively
in the form of agent supervision by the overall system’s
coordinating entity. What is perhaps more interesting is that
for the class of target task specification languages considered
in the implementation study of this paper, the RL algorithm
catalyzes a dramatically more efficient solution to an otherwise
difficult problem of language identification.

This paper contributes to the area of resilient multi-robot
systems by uniquely combining distributed reinforcement
learning with grammatical inference to achieve resilience to
targeted attacks. In the approach reported here, (a) agents au-
tonomously learn optimal policies for achieving their collective
objective under the distant guidance of a supervising authority
(Section V-C); (b) use the byproduct of their distributed optimal
control synthesis algorithms to power a different learning
module which practically performs system identification on
their system task specification (Algorithm 1, line 17); and
finally (c) combine their local task specification hypotheses to
recreate their supervising process (Section V-D). Thus, as it
will be shown in Section V-D, robotic agents that identify their
own task specification language based on local information,
can subsequently perform grammatical inference and then
“compare notes” to infer the originally unknown global system
specification language. In this way, should the coordinator goes
offline for any reason, the system will still be able to function
normally, therefore realizing elements of resilience observed
in human collectives [6].

The rest of the paper is organized as follows. Section II
reviews elements of related literature within the domains of
multi-agent system resilience, reinforcement learning, and gram-
matical inference. Some necessary mathematical background
on the latter two topics is presented briefly in Section III and
the problem description is presented in Section IV. Section V
contains the main body of the analysis and results of this paper,
while it also presents in detail a case study that (numerically)
demonstrates the efficacy of the reported methodology, and
provides some additional insights. The paper closes with a
quick overview in Section VI.

II. RELATED LITERATURE

One perspective in the existing literature on how resilience
manifests itself in multi-agent systems is related to the
robustness of the communication network. In the presence
of malicious robots, preserving a formation within a multi-
robot system can be achieved through algorithms that construct
communication graphs with the smallest number of nodes [11].
An essential element to this approach, is a method which
guarantees that a topological network property (specifically,
r-robustness) is kept above a critical resilience threshold [12].
Due to high connectivity often required for such networks, and
delays on receiving information, this can be a challenging task,
and different protocols have been designed for synchronous and
asynchronous time varying communication graphs [13], [14],
[15], [16]. From the input-to-output stability standpoint, the
resilience of consensus networks can be examined through a
non-singular linear transformation that exposes the disturbance
rejection performance of the system [17]. In the context of
resilience for heterogeneous multi-agent systems, some work
has been done studying the case of failure of single agents [18].
It is suggested that the network reconfigures itself to maintain
its original area coverage without increasing its connectivity.
Another approach to render a heterogeneous multi-agent swarm
more resilient to malicious agent actions is by monitoring
the state values of the agents [19], and ignoring input from
neighboring units if it is significantly different.

In swarms, decision-making is completely decentralized
by design, so it comes as no surprise that only a small set
of relatively simple emergent behaviors can be observed. In
different engineering context, however, multi-agent collections
may be required to exhibit much more sophisticated and
adaptive behaviors—examples include applications related to
privacy and security [20]. Such behaviors usually require
some level of centralized decision-making—which motivates
a coordination architecture similar to the one used in the
application of Fig. 1. It is important that these systems are able
to maintain normalcy and restore function following a failure
(or a malicious attack in the context of national/cyber-security).
Making a system resilient to such events is nontrivial due to
the high degree of inter-connectivity among the physical and
software components, and the intricate cyber, cognitive and
human inter-dependencies [21].

Studies on centrally coordinated networked system resilience
after leader decapitation have also been conducted within social
and political sciences, focusing on counter-terrorism tactics [8]
and cyber-security defense [22]. In general, proliferating the
organization’s coordinating plans and strategies throughout all
the agents implementing the strategy (which would otherwise
make sense from a robustness standpoint) creates multiple
security vulnerabilities and is considered detrimental to security
and operational integrity. An attacker would be able to exploit a
vulnerability at any of the distributed agent sites to gain access
and insight into how the whole organization is structured and
controlled. In fact, even in the case of the motivating application
of Fig. 1, distributing the planning capability among the agents
does not necessarily improve resilience, because the actions
of the agents may be interdependent. Then if both robots are
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involved in gameplay with the infant and one robot fails, then
the plan may be at risk.

Alternatively, the strategy algorithm can be maintained in a
single, remote, and secured physical device. Such distributed
architectures that include physically separate and private com-
munication channels between unsecured and trusted processes,
are the hallmark of separation kernels used in cryptography
and secure system design [23], and have become more
increasingly more prevalent given the trend for miniaturization
of communication devices. Moreover, it has been argued that
they facilitate formal verification especially in cases of isolated
channels with different security levels [24].

Along this direction one approach to making supervisory
multi-agent systems more resilient to targeted attacks or
centralized failures [9] suggests that in order to avoid system-
level failure after leader decapitation, all agents need to learn
how they to behave in the context of the (unknown to them)
strategy their coordinator is trying to implement. In that
approach, the strategy itself was given (or centrally devised) and
the agents were passive executors. The paper at hand departs
from this line of thought by decentralizing strategy formation
to some extent, and by shifting some decision-making down
to the level of the agents, which learn optimal policies for
contributing toward the system-level task specification.

One proven approach to learn and form strategies under
uncertainty is reinforcement learning (RL) [25]. While several
RL algorithms may apply to a learning problem, few can
guarantee convergence rates as a function of the amount of
training data. Among the ones that do, are those which are
classified as probably asymptotically correct (PAC). Existing
PAC algorithms can be broadly divided into two groups: model-
based algorithms like [26], [27], [28], [29], and model-free
algorithms [30], [31]. Each group has its advantages and
disadvantages. Model-based RL is usually more efficient when
the state-space size of the system is not relatively large, while
the efficiency of model-free RL is much more in systems with
huge state-space size [32].

Neurophysiologically-inspired hypotheses [33] have sug-
gested that the brain approaches complex learning tasks either
in a model-free (trial and error), or model-based (deliberate
planning and computation) fashion, or even combination of
both, depending on the amount and reliability of the available
information. This combination is postulated to contribute to
making the process efficient and fast [34]. A fast learning
process is particularly important in the motivating application
of Section I (Fig. 1), since learning data on infant behavior as
they interact socially with robots are sparse and can rarely be
aggregated [35]. Taking the aforementioned considerations into
account, this paper reports on the development of a new hybrid
PAC algorithm called Dyna-Delayed Q-learning (DDQ) [10],
which judiciously combines two PAC algorithms: model-based
R-max and model-free Delayed Q-learning. It can be shown
that DDQ not only inherits the best of the both worlds, but also
outperforms its constituent technologies in most cases [10].

This paper is not the first where reinforcement learning is
adopted to achieve resilience on a multi-agent system; off-
policy reinforcement learning has been applied to learn the
optimal solution to the synchronization problem in the presence

of attacks and system uncertainties [36]. In this approach,
similarly to ours, the knowledge of the agent’s dynamics is
not required. Another instance where learning is utilized to
promote resilience in a multi-agent system is a work where the
problem is formulated as a cooperative-competitive game [37],
in which the protagonists represent the target agents, and the
antagonists, the failures of the system. The approach in the
present paper, however, is unique in the sense that learning is
not merely a component of the solution; it is the solution.

III. TECHNICAL PRELIMINARIES

A brief description of learning techniques for formal lan-
guages, the systems, and the class of languages we consider
in this work follows next. The introduced terminology is then
used to describe technically the problem tackled here.

A. Formal languages

An alphabet is a finite set of symbols; here, alphabets are
referred to with capital Greek letters (Σ or ∆). A string is a
finite concatenation of symbols, σ, taken from an alphabet Σ.
In this sense, strings are “words,” formed as combinations of
“letters,” within a finite alphabet. A string u is of the form

u = σ0 σ1 σ2 · · ·σn such that each σi ∈ Σ .

For a string w let |w| denote its length. The empty string λ
is the string of length 0. For two strings u, v, uv denotes their
concatenation. Let Σ∗ denote the set of all strings (including
λ) over alphabet Σ, and Σn all strings of length n over Σ. For
strings v, w ∈ Σ∗, v is a substring of w if there exist some
u1, u2 ∈ Σ∗ such that u1vu2 = w. The k-factors of a string
w, denoted fk(w), are its substrings of length k. Formally,

fk(w) =

{
{u ∈ Σk| u is a substring of w}, if |w| ≥ k
{w}, otherwise

.

Subsets of Σ∗ are called stringsets, or languages. By default,
all languages considered here are assumed to contain λ. A
grammar is a finite representation of a (potentially infinite)
language. For a grammar G, let L(G) denote the language
generated by G. A class of languages L is a set of languages,
e.g., the set of languages describable by a particular type of
grammar.

In its application example, this paper will make use of the
Locally k-Testable class of languages [38], [39]. A language L
is Locally k-Testable if there is some k such that, for any two
strings w, v ∈ Σ∗, if fk(w) = fk(v) then either both w and v
are in L or neither are. Thus a Locally k-Testable language is
one for which membership in that language is decided entirely
by substrings of length k.

For example, let Σ = {a, b} and Lbb be the set of strings
over Σ which contain at least one bb substring. In other words,

Lbb = {bb, abb, bba, bbb, aabb, abba, abbb, . . .} .

Language Lbb is Locally 2-Testable because for any w ∈ Σ∗,
whether or not w is a member of Lbb can be determined by
seeing if f2(w) contains bb. In fact, Lbb belongs to a subclass
of the Locally k-Testable languages for which any language in
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the subclass can be described by a grammar G which contains
a single required k-factor; i.e., L(G) = {w|G ∈ fk(w)}. In
this case, Lbb is L(G) for G = {bb}. This particular subclass
is used here in the context of application examples, since its
member languages can be learned from positive data in a
straightforward way, as described below.

B. Language identification in the limit
The learning paradigm used in this work is that of identifica-

tion in the limit from positive data [40]. The particular definition
here is adapted from earlier work (cf. [41]): given a language
L, a presentation φ of L is a function φ : N→ L ∪#, where
# is a symbol not in Σ and is used just to mark a location
in the presentation with no data—these locations mark the
beginning or end of words in the text. Then φ is a positive
presentation of L if for all w ∈ L, there exists n ∈ N such
that φ(n) = w.

Let φ[i] denote the sequence φ(0), φ(1), ..., φ(i). A learner
or grammatical inference module (GIM) is an algorithm which
takes such a sequence as an input and outputs a grammar. A
learner is said to converge on a presentation φ if there is some
n ∈ N that for all m > n, GIM(φ[n]) = GIM(φ[m]).

A learning GIM is said to identify a class L of languages in
the limit from positive data if and only if for all L ∈ L, for
all positive presentations φ of L, there is some point n ∈ N at
which GIM converges and L(GIM(φ[n])) = L. Intuitively, given
any language in L, GIM can learn from some finite sequence of
examples of strings in L a grammar that represents L. This idea
of learning is very general, and there are many classes of formal
languages for which such learning results exist. For reviews of
some of these classes, see [7], [42]. Thus, while demonstrated
with a particular subclass of the Locally k-Testable languages,
the results in this paper are independent of the particular class
from which the specification languages of the agents are drawn,
as long as the class is identifiable in the limit from positive
data.

C. Reinforcement Learning
A finite Markov decision process (MDP) M is a tuple

{S,A,R, T, γ} where S is finite set of states, A is finite set of
available actions in each state, R(s, σ) ∈ [0, 1] is the reward
assigned to performing action σ in state s, T (s, σ, s′) is the
probability of transition from state s to state s′ by performing
action σ, and γ ∈ [0, 1] is a discount factor. A policy π is a map
that assigns actions to states i.e. π : S → A. In other words,
the policy determines which action is to be executed in each
state. The value of state s under policy π is denoted vπM (s) and
is defined as the expected sum of discounted rewards, when
the π is executed, expressed as

vπM (s) = EM

{
R
(
s, π(s)

)
+

∞∑
t=1

γtR
(
st, π(st)

)}
,

where the discount factor γ reflects the preference of immediate
rewards over future ones. Similarly defined is the value of state-
action pair (s, σ) under policy π:

QπM (s, σ) = EM

{
R(s, σ) +

∞∑
t=1

γtR
(
st, π(st)

)}
.

A policy is said to be optimal if it maximizes the value of all
states. The optimal policy is denoted π∗ and the maximum value
of each state is denoted v∗M (s). The corresponding optimal
state-action pair value is also denoted Q∗M (s, σ), and we have
that v∗M (s) = maxσ Q

∗
M (s, σ). One restricts the reward to take

values in [0, 1] without loss of generality; an equivalent MDP
with R(s, σ) ∈ [0, 1] can be built from any MDP with arbitrary
reward range [43].

A RL algorithm [25] is expected to converge to the optimal
policy for an MDP, when the actual transition probabilities
and/or reward function are not known. The procedure involves
exploration of the MDP model. An RL algorithm usually main-
tains a table of state-action pair value estimates Q(s, σ) that are
updated based on the exploration data. Reinforcement learning
algorithms have been classified as model-based or model-free.
Although the characterization is debatable, the meaning of
classifying an RL algorithm as “model-based,” is that T and/or
R are estimated based on online observations (exploration
data), and the resulting estimated model subsequently informs
the computation of the the optimal policy. A model-free RL
algorithm, on the other hand, would skip the construction of
an estimated MDP model, and search directly for an optimal
policy over the policy space.

The probably approximately correct (PAC) analysis of RL
algorithms deals with the question of how fast an RL algorithm
converges to a near-optimal policy, relative to the number of
input data points it operates on. An RL algorithm is PAC if
there exists a probabilistic bound on the number of exploration
steps (where input data come from) that the algorithm can take
before converging to a near-optimal policy.

Definition 1. Consider that an RL algorithm A is executing
on MDP M . Let st be the visited state at time step t and At

denotes the (non-stationary) policy that the A executes at t.
For a given ε > 0 and β > 0, A is a PAC RL algorithm if

there is an N > 0 such that with probability at least 1 − β
and for all but N time steps,

vAt

M (st) ≥ v∗M (st)− ε . (1)

Equation (1) is known as the ε-optimality condition and
N as the sample complexity of A, which is a function of(
|S|, |A|, 1

ε ,
1
β ,

1
1−γ

)
.

IV. PROBLEM FORMULATION

Consider a system consisting of a high-level coordinator
(leader), indexed 0, which is networked to κ ∈ N+ sub-
ordinate agents. The system operates in discrete time, with
each step being completed once subordinate agents perform
(synchronously) their action. The index of an agent belongs in
a set K , {1, . . . , κ}.

Agents model themselves and their environment in the
form of finite transition systems. Each agent i has is own
set (alphabet) of actions, denoted Σi, and all the states in
which the agents’ environment can be at are collected in
a finite set ∆. In the rehabilitation study referred to in
Section I, the humanoid robot’s actions could be, for ex-
ample, {walk toward child, walk away from child, waive hand,
make sound, push button}; the wheeled robot’s action set could
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be something like {run to child, run from child, climb ramp,
make sound, flash lights}; simplified environment states may in-
clude the infant making {progress toward goal, not responding,
looking at robot}. The agents’ common environment imposes
conditional effects upon which actions can be executed at a
given environment state. The dependence between agent actions
and environment states is assumed Markovian: the actions that
are available to each agent depend only on the current world
state, while the next environment state depends entirely on
how the agents act at the current state.

The systems’ acceptable behavior (system specification)
is understood as a formal language A, consisting of finite
sequences of agent action profiles A, which for algorithmic
expediency reasons will be assumed to belong in some well-
characterized family of sub-regular languages [7]. Words
belonging in the specification language represent admissible
system action plans. Projecting an action profile sequence, or
trajectory, A on a given dimension i ∈ {1, . . . , κ} yields the
action input sequence followed by agent i and is denoted A〈i〉.

During normal operation, the agent controllers select an
action to perform at a given world state and query the
coordinator if the particular action is licensed (permissible)
under the system specification. Formally speaking, an action
σ is licensed, if it the concatenation of all previous actions,
including σ, forms a prefix of a word in the specification
language. If the action is licensed, the coordinator allows the
agent’s controller to execute it, and will offer the agent a reward
if the action brings the system closer to satisfying its objective.
If the action is not permitted, the agent controller is notified
to exclude it from the set of available actions at that that state.

The goal is to design an algorithmic mechanism that enables
the agents to (i) discover autonomously (with the minimal
query-like input from their coordinator) how to satisfy their
system specification, and (ii) reach a state where they can
not only maintain normal operation in the absence of the
coordinator, but also recover the system specification A that
dictates the whole set of acceptable system behaviors.

V. RESILIENCE VIA LEARNING

The general technical strategy is to employ a new, computa-
tionally efficient reinforcement learning method to address
objective (i), and uniquely combine it with grammatical
inference methods to achieve objective (ii). The computational
architecture suggested is illustrated in Fig. 2. The figure
depicts the flow of information between the distributed DDQ
reinforcement learning agent controllers, the GIM running on
each agent, and the system’s coordinator.

This paper shows that under the minimal guidance of the
system coordinator (allowing actions and giving rewards),
individual agents can learn optimal policies for satisfying the
unknown (to them) system specification, and in the process
decode (some of) the rules that constrain the system’s overall
acceptable behavior. Thus in the event that the coordinator
goes offline, and as long as the agents’ learning algorithms
have sufficiently converged, the agents will be able to continue
to operate on their own—assuming they can still synchronize
their actions as they were doing before. In fact, the learning

algorithms implemented as part of the reported solution provide
convergence guarantees under reasonable assumptions on data
collected. Specifically, the agent controller suggested is PAC:
there are guarantees on how close its computed policy is to
being optimal, as a function of the algorithm’s exploration
steps. The agent’s GIM, on the other hand, is known to be
computationally efficient (it can update its hypothesis based on
the previous one and current data point in polynomial time),
consistent, conservative, and strongly monotonic [44].

One of the key technical challenges addressed in this paper
is the ability of the agents to reconstruct their specification
language from locally learned knowledge. This is a question
of significance in a number of different contexts [45], and
which in the framework of the present discussion finds an
affirmative answer. The mathematical proof of this latter claim
is constructive. The key to developing this proof is practically
in the structure of the object types defined, and in the operations
between the objects in these types.

A. Formal Models for Agent Dynamics and Specifications

Consider κ ∈ N≥0 agents indexed by i ∈ {1, . . . , κ} = K.
Agent dynamics are modeled as transition systems denoted Ti.

Definition 2. A transition system is a tuple T =
(
Q, Σ, →

)
with

Q a finite set of states
Σ a finite set of actions
→: Q× Σ→ Q the transition function.

A run in T of length n is an interlaced sequence of states
and actions q0σ1q1 . . . σnqn in which for every 1 < i ≤ n
∃σ ∈ Σ such that (qi, σ, qi+1) ∈→. A trace is the sequence of
action symbols used to generate a run; e.g., the trace associated
with a run q0 σ1 q1 σ2 q2 σ3 q3 is σ1 σ2 σ3. Traces will also be
referred to as input words. A path is the sequence of states
encountered along a run; e.g., the path associated with run
q0 σ1 q1 σ2 q2 σ3 q3 is q0 q1 q2 q3. The collection of all runs that
can be generated by a transition system is referred to as its
behavior. In view of this, the transition system that generates
every run that an agent can produce (i.e., can reproduce its
behavior) is referred to as the capacity of agent i:

Definition 3. The capacity of agent i is a transition system
Ti =

(
∆, Σi, →i

)
with

∆ a finite set of ( world ) states
Σi a finite set of actions
→i : ∆× Σi →i ∆ the transition function.

Symbols in ∆ are understood as (world) states in transition
system Ti, in other words, they express the state of the world in
which the agent is operating. Agents are operating in a common
workspace and are therefore assumed to share alphabet ∆.

Generally speaking, transition systems are accepting whole
families of languages. However, once initial states ∆I ⊆ ∆ and
final states ∆F ⊆ ∆ are marked on T , the transition system
becomes an automaton T that accepts a specific (regular)
language L. Let Ti be the automaton derived from Ti when all
states are marked as both initial and final, i.e., ∆ = ∆I = ∆F .

In the context of this paper, the process of marking particular
initial and final states is thought of as a product operation [46]
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Fig. 2. Conceptual diagram of the architecture, information flow, and learning functions that enable a form of learning-based resilience in multi-agent
supervisory systems.

between the transition system, and a language specification
automaton TLi = 〈Gi, GIi , GFi , Σi, →Li〉.

Definition 4. The specification of agent i is an automaton
TLi =

(
Gi, G

I
i , G

F
i , Σi, →Li

)
with

Gi a finite set of ( internal ) states
GIi ⊆ Gi a finite set of initial states
GFi ⊆ Gi a finite set of final states
Σi a finite set of actions
→Li : Gi × Σi →Li Gi the transition function.

Agent i behaving in a way consistent with its specification is
understood as having the words (traces) of Ti belonging in Li.
The capacity of the agent, as constrained by its specification,
is encoded in the product automaton TCi = Ti × TLi , where
× denotes the standard product operation on automata [46],
referred to as the constrained agent dynamics:

Definition 5. The constrained dynamics of agent i satisfying
specification TLi is an automaton

TCi =
(
∆×Gi, ∆×GIi , ∆×GFi , Σi, →Ci

)
(2)

having as components
∆×Gi a finite set of states
∆×GIi a finite set of initial states
∆×GFi a finite set of final states
Σi a finite set of actions
→Ci : ∆×Gi × Σi →Ci ∆×Gi the transition function.a

a for δ, δ′ ∈ ∆, g, g′ ∈ Gi, and σ ∈ Σi, one has δ σ→i

δ′ ∧ g
σ→Li g

′ =⇒ (δ, g)
σ→Ci (δ′, g′).

B. Formal Model for the Coordinator

The closed-loop (controlled) behavior of agent i is supposed
to satisfy specification TLi . The closed-loop system, which is
consistent with the specification, is TCi . However, since agents
are not supposed to have knowledge of Li (or, equivalently,
TLi ), the product operation yielding TCi cannot be performed
locally by each agent. Instead, the agents get permission to
execute their actions by a coordinator (Fig. 2), which can
be envisioned in the form of an automaton T0 that generates
all traces of admissible action profiles (acceptable behavior)
that the combined system can exhibit. Automaton T0 can be

constructed as an outcome of a special product operation ⊗ in
the form

T0 = TC1 ⊗ · · · ⊗ TCκ ,

which will be referred to as synchronized product. This
operation is new in the sense that it is not identical to the
standard automata product operation (cf. [46]). Here, the
operation enforces synchronization on a component of the
state of the factors, rather than their actions.

To define the synchronized product operation, consider first
just two agent constrained dynamics TC1 and TC2 , that share
the same space Q as the first component of their state space.
Recall the standard Trim operation on automata [46], which
simplifies the system by retaining only its accessible1 and co-
accessible2 states and define the synchronized product of TL1

and TL2
as follows.

Definition 6. The synchronized product ⊗ of automata TC1

and TC2 is the automaton

TC1⊗2
, TC1

⊗ TC2

, Trim
(
(Q×G1 ×G2, Q×GI1 ×GI2,
Q×GF1 ×GF2 , Σ1 × Σ2, →C1⊗2

)
)
, (3)

where the map

→C1⊗2
: Q×G1 ×G2 × Σ1 × Σ2 → Q×G1 ×G2

associates (q, g1, g2) to (q′, g′1, g
′
2) given input (σ1, σ2), an

event denoted (q, g1, g2)
(σ1,σ2)−−−−→C1⊗2

= (q′, g′1, g
′
2), if for q ∈

Q, g1 ∈ G1 3 g′1, g2 ∈ G2 3 g′2, σ1 ∈ Σ1, and σ2 ∈ Σ2,
the two automata TC1 and TC2 satisfy (q, g1)

σ1−→C1 (q′, g′1)
and (q, g2)

σ2−→C2
(q′, g′2), respectively.

The operation is extended inductively to more factors:

TC1 ⊗ TC2 ⊗ TC3 ⊗ · · · ⊗ TCn
:= (· · · ((TC1 ⊗ TC2)⊗ TC3)⊗ · · · ⊗ TCn) .

With that definition in place, the automaton T0 realizing the
coordinator can be defined as follows.

1Accessible states are all states that are reachable from initial states.
2Co-accessible states are states from which there exists a path to a final

state.
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Definition 7. The coordinator is an automaton

T0 =
(
∆×G1 × · · · ×Gκ, ∆×GI1 × · · · ×GIκ,

∆×GF1 × · · · ×GFκ , Σ1 × · · · × Σκ, →
)

with components
∆×G1 × · · · ×Gκ a finite set of states
∆×GI1 × · · · ×GIκ a finite set of initial states a

∆×GF1 × · · · ×GFκ a finite set of final states b

Σ1 × · · · × Σκ a finite set of action profiles c

→ : ∆×G1 × · · · ×Gκ×
×Σ1 × · · · × Σκ×
×∆×G1 × · · · ×Gκ the transition function.d

a GIi ⊆ Gi.
b GFi ⊆ Gi.
c An action profile is a tuple of symbols from agents’

alphabets.
d For δi, δj ∈ ∆, a transition δi

(σ1,...,σκ)−−−−−−→ δj occurs if
(δi, σk) ∈→k for all k ∈ K.

The function of the coordinator is to hold and communicate
the rules of behavior for the whole system. The coordinator
approves and licenses the sequence of action profiles of its
subordinate agents, as they attempt to optimize their behavior
through the RL algorithm described in the following section.
Specifically, the coordinator collects all proposed actions from
its subordinate agents, attempts to run the proposed action
profile on T0, and if it can, it allows the agents to execute
them. If not, the agent with the non-compliant proposed action
has to substitute it with an alternative. The coordinator does
not reveal to the agents which actions are allowed at each state;
it only approves the actions that can be executed, rewards those
with which the system makes progress toward its objective,
and notifies agents who may be repeatedly visiting a world
state of whether q ∈ Q they have visited a different version
of q in their (unknown to them) constrained dynamics TCi ,
depending on the unobservable gi ∈ Gi component of their
constrained dynamics state. As it will be illustrated shortly,
the information the coordinator communicates to the agents,
namely (a) the approval of actions, (b) the distinctions between
world states, and (c) the reward on progress toward the system
objective, are key not only for the RL to construct the optimal
policy, but also for the efficient identification of the overall
system behavior rules.

C. PAC Learning for Running Optimally

This section illustrates how a new sample-efficient RL algo-
rithm named DDQ (Algorithm 1) [10] is modified appropriately
here for application in the present context.

Strictly speaking, an RL algorithm like DDQ is designed to
operate on MDPs, whereas the agent models of Section V-A
and the languages they generate are purely deterministic. The
agent dynamics are hereby expressed by transition systems,
which can be thought of as MDPs where transition probabilities
are one. Obvious, albeit nontrivial, extensions to probabilistic
automata and stochastic languages can be contemplated; these
extensions, however, remain to this point beyond the scope of
this paper.

In general, DDQ integrates model-based R-max, and model-
free Delayed Q-learning, while preserving the desirable features
of both. The DDQ algorithm, as modified for supervisory multi-
agent resilience applications, is summarized in the pseudocode
of Algorithm 1. This algorithm maintains state-action value
estimates of the Q matrix, initially set to their maximum
possible value vmax = 1

1−γ . The assignment in line 36 of
Algorithm 1 is termed a type-1 update, while the one appearing
in line 51 is referred to as a type-2 update. A type-1 update
uses the m1 most recent experiences of a state-action pair (s, σ)
to update the pair’s value, while a type-2 update is realized
through a value iteration algorithm (function VI in line 47) for
those state-action pairs that were experienced at least m2 times
based on the maximum likelihood estimation of transition and
reward functions T̂ and R̂ (e.g. if n(s, σ, s′) is the number
of times that a transition from s to s′ occurs by performing
action σ in s, and n(s, σ) is the total number of times that σ is
performed in s, then ˆT (s, σ, s′) = n(s,σ,s′)

n(s,σ) ). The result of this
latter value iteration at timestep t is denoted Qvl

t (s, σ). The
value iteration is set to run for ln (1/(ε2(1−γ)))

(1−γ) iterations, with
tunable parameter ε2 which guarantees the desired accuracy on
the resulting estimate (see [32, Proposition 4]). A type-1 update
is successful only if the condition on line 35 of the algorithm
holds. The condition is set in a way that all successful type-1
updates necessarily decrease the value estimate at least by
ε1 = 3ε2. Similarly, a type-2 update is successful only if the
condition on line 50 of the algorithm holds. The Boolean flag
learn(s, σ) regulates type-1 updates for pair (s, σ), allowing
them to occur only if learn(s, σ) = true. The flag is set to true
initially, and is reset to true whenever either some state-action
pair is updated or experienced m2 times. The flag flips to false
when no updates occur within a time window in which (s, σ)
is experienced m1 times but the pair’s subsequent attempted
update fails. The DDQ algorithm is also tunable via its m1

and m2 parameters, and is practically reduced to Delayed
Q-learning for m2 =∞, and R-max for m1 =∞. It can be
shown [10] that by selecting appropriate values for m1 and m2,
DDQ is not only PAC but also possesses the minimum sample
complexity between R-max and Delayed Q-learning in the
worst case—often, it outperforms both (see [10, Theorem 2]).

We assume that all agents independently implement a DDQ
algorithm in a synchronized manner to optimize their local
behavior without knowing their actual constrained dynamics,
under the supervision of the coordinator. The modifications
that involve the interaction of each DDQ implementation with
the coordinator are contained in lines 15− 21 of Algorithm 1.
Before an agent tries out an action that is suggested by the DDQ
algorithm, it checks with the coordinator to see if a particular
action is allowed at that state (lines 15− 18). If an action is
not allowed, the corresponding Q-value is set to 0 to make
sure that it will never be chosen again there. To ensure that
agent action profiles keep the system synchronized on world
states, the coordinator allows one agent at a time (taking turns)
to implement its greedy action choice, and forces all other
agents to choose allowable actions that are compatible with
the greedy agent’s successor world state (lines 19− 21).
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Algorithm 1 The DDQ algorithm
1: Inputs: S,A, γ,m1,m2, ε1, ε2
2: for all s, σ, s′ do
3: Q(s, σ)← vmax . initialize Q values to its maximum
4: U(s, σ)← 0 . used for attempted updates of type-1
5: l(s, σ)← 0 . counters
6: b(s, σ)← 0 . beginning timestep of attempted update type-1
7: learn(s, σ)← true . learn flags
8: n(s, σ)← 0 . number of times (s, σ) is tried
9: r(s, σ)← 0 . accumulated reward by execution of σ in s

10: end for
11: t∗ ← 0 . time of the most recent successful timestep
12: for t = 1, 2, 3, ... do
13: let s denotes the state at time t
14: choose action σ = arg maxσ′∈AQ(s, σ′)
15: while a /∈ {allowed actions of s} do
16: Q(s, σ) = 0
17: σ = arg maxσ′∈AQ(s, σ′)
18: end while
19: if not greedy turn and joint action not allowed then
20: coordinator licenses a different consistent action σ
21: end if
22: observe immediate reward r and next state s′

23: n(s, σ) = n(s, σ) + 1 and
24: r(s, σ) = r(s, σ) + r
25: if b(s, σ) ≤ t∗ then
26: learn(s, σ)← true
27: end if
28: if learn(s, σ) = true then
29: if l(s, σ) = 0 then
30: b(s, σ)← t
31: end if
32: l(s, σ)← l(s, σ) + 1
33: U(s, σ)← U(s, σ) + r + γmaxσ′ Q(s′, σ′)
34: if l(s, σ) = m1 then
35: if Q(s, σ)− U(s, σ)/m1 ≥ 2ε1 then
36: Q(s, σ)← U(s, σ)/m1 + ε1 and t∗ ← t
37: t∗ ← t
38: else if b(s, σ) > t∗ then
39: learn(s, σ)← false
40: end if
41: U(s, σ)← 0 and l(s, σ)← 0
42: end if
43: end if
44: if n(s, σ) = m2 or t = t∗ then
45: t∗ ← t
46: for all (s, σ) with n(s, σ) ≥ m2 do
47: Qvl(s, σ)← VI(Q, T̂ , R̂)
48: end for
49: for all (s, σ) do
50: if Qvl(s, σ) ≤ Q(s, σ) then
51: Q(s, σ)← Qvl(s, σ)
52: end if
53: end for
54: end if
55: end for

D. Reconstructing the Coordinator’s Language

For computational expedience, the paper assumes that TLi
generates a language Li that belongs to a particular subset
of Locally k-Testable class of languages (see Section III). In
this subclass, each string contains a specific k-factor. In other
words, if z is the required k-factor, then any string w accepted
by TLi can be written as w = uzv where u, v ∈ Σ∗.

If φi is a positive presentation of Li, and φi[m] is the
sequence of the images of 1, . . . ,m under φi, then the set of
factors in the string φi(r) associated with r ∈ {1, . . . ,m} with
|φ(r)| ≥ k is

fk
(
φi(r)

)
=
{
z ∈ Σki | ∃u, v ∈ Σ∗i : φ(r) = uzv

}
. (4)

The learner that identifies Li in the limit can be compactly
denoted as

GIM
(
φ[m]

)
=

m⋂
r=1

fk
(
φ(r)

)
. (5)

The learner has converged when it has identified all k-factors
that the strings in the target language are supposed to have. For
example, knowing that there is only one k-factor that needs to
be found in all strings of Li, one can directly determine that the
learner has converged for some m ∈ N when |GIM

(
φ[m]

)
| = 1.

Let a symbol vector v of length κ, be defined as an ordered
collection of symbols arranged in a column format, where at
location i ∈ K symbol σi ∈ Σi. To save space, v may be
written in row form as: v = (σ1, σ2, . . . , σκ). A concatenation
of symbol vectors of the same length makes an array. The array
has the same number of rows as the length of any vector in this
concatenation. Every distinct vector been concatenated forms a
column in this array. A vector is a (trivial) array with only one
column. A row in an array is understood as a string. Thus an
array can be thought of being formed, either by concatenating
vectors horizontally, or by stacking (appending) strings of the
same length vertically.3

Define the class AK×n of symbol arrays with |K| rows and
2n ∈ N≥0, columns over the set of symbols ∆∪Q∪Σ. More
specifically, constrain AK×n to contain arrays produced as
(horizontal) concatenations of smaller arrays of the form [ab]n,
n <∞ where

a = (δ q1, δ q2, . . . , δ qκ), δ ∈ ∆, qi ∈ Q
b = (σ1, σ2, . . . , σκ) ∈ Σκ .

The set K will be called the support set of the class. The
support set of a class is used to index the rows of the arrays
belonging in the class. To keep track of those indices, the
arrays from a particular class are annotated with the support
set of this class. For example, with K = {1, 2, . . . , κ}, an array
AK×n ∈ AK×n is written as

AK =

 δ0q1,0 σ1,1 δ1q1,1 σ1,2 ··· δn−1q1,n−1 σ1,n

δ0q2,0 σ2,1 δ1q2,1 σ2,2 ··· δn−1q2,n−1 σ2,n

...
...

...
...

. . .
...

...
δ0qκ,0 σκ,1 δ1qκ,1 σκ,2 ··· δn−1qκ,n−1 σκ,n


K

. (6)

3This notation distinguishes vectors from arrays and strings; strings are
(horizontal) sequences of symbols without delimiters, but when writing a vector
in row format, its elements are separated with a comma and are enclosed in
parentheses, while an array is denoted with square brackets.
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In general, elements in K need not necessarily be consecutive
integers as in the example above; it is assumed, however, that
they are arranged in increasing order.

Each class AK×n is assumed to contain the empty array Λ,
which is a trivial array with no columns. To ground the concept
of an array AK×n in the context of transition systems, assume
for instance that all agents share the same state set Q and set
∆ = Q. Then row i of AK×n may be a trace for agent Ti,
while every second column is an action profile for the agents
in the support set K, which has to be executed synchronously
by all agents.

A run on a synchronized product is a sequence of state-action
pairs of the form (q, g1, g2)(σ1, σ2). We will call folding the
(invertible) operation f that rearranges a tuple of this type and
maps it in the form of a 2× 2 array:

(q, g1, g2)(σ1, σ2)
f7−→
[
qg1 σ1

qg2 σ2

]
.

The folding operation is naturally extended to runs, so that
a run on TC1

⊗ TC2
involving m transitions maps under f

uniquely to a 2× 2m array:

(q0, g1,0, g2,0)(σ1,1, σ2,1) · · · (σ1,m, σ2,m)(qm, g1,m, g2,m)

f7−→
[
q0 g1,0 σ1,1 · · · qm−1 g1,m−1 σ1,m

q0 g2,0 σ2,1 · · · qm−1 g2,m−1 σ2,m

]
.

(The final state is dropped but can readily be recovered
through →C1⊗2 , or equivalently from →C1 and →C2 .) Thus,
the sequence of action profiles is rearranged as a concatenation
of column vectors, interlaced by columns that have as elements
the states of the factors associated to each action.

With the aid of the folding operation, the effect of the
synchronized product on the behavior of its two factors is
revealed under a new light: the synchronized product is a type
of parallel composition that synchronizes the two automata on
their world (sub)state in ∆. This may already be obvious
from Definition 6, but the folding operation also allows
an equivalent algebraic characterization of the synchronized
product operation.

The synchronized product operation essentially merges a run
from each automaton (where states are synchronized relative
to their word substate component) into a two-row array. The
mechanics of this merging operation on arrays are formalized
in terms of two primitive unitary operations, one on strings
and another on arrays.

A string u formed with symbols in an alphabet Σ can be
projected to Σ′ ⊂ Σ, by “deleting” all symbols in the string
that do not belong in Σ′. The projection to Σ′ operation is
denoted $Σ′ : Σ∗ → Σ′∗, and defined inductively through the
following mechanism described here for a 2-factor u = s a:

u
πΣ′7−−→


λ, u = λ

$Σ′(s), u = s a, a 6∈ Σ′

$Σ′(s)a, u = s a, a ∈ Σ′
.

The extraction operation on a (nonempty) symbol array AK×1

over ∆∪Q∪Σ, is defined as a mapping AK×1 → ∆×Q×Σ
from symbol arrays of dimension κ× 2 to strings of length 3.

To this end, let τ : K → {1, . . . , κ} be a one-to-one and onto
mapping4 for κ = |K|. Then for

AK×2 =

δq1,0 σ1

...
...

δqκ,0 σκ

 ,

define
AK×2〈nj〉 , δ qτ(nj),0 στ(nj) . (7)

If AK×1 = λ (the empty string), then AK×1〈j〉 , λ, ∀ j ∈ N.
The extraction operation on array AK×n is now defined

recursively based on (7) as follows.

AK×n〈nj〉 ,


λ, AK×n = Λ

λ, nj /∈ K
BK×(n−1)〈nj〉b〈nj〉, AK×n = [BK×(n−1) b] .

Consider two array classes, AI×n and AJ×n, that have the
same row length 2n, and non-intersecting support sets I∩J =
∅. Let τ : I ∪ J → {1, . . . , |I ∪ J |} be a monotonicity-
preserving mapping, in the sense that τ(i) < τ(j) ⇐⇒ i < j.
An algebraic equivalent of the synchronized automata operation
⊗ on arrays now takes the form of the merge operation ⊕. The
(binary) merge operation AI×n ⊕ AJ×n yields a third array
AI∪J ×n which is empty if ∃ (i, j) ∈ I ×J : π∆

(
AI×n〈i〉

)
6=

π∆

(
AJ×n〈j〉

)
, and otherwise satisfies{

AI∪J ×n〈k〉 = AI×n〈k〉, k ∈ I
AI∪J ×n〈k〉 = AJ×n〈k〉, k ∈ J .

If I ∩ J 6= ∅, the merge operation defaults to Λ.
Assume now that TC1

, . . . ,TCκ execute synchronously n
transitions, producing the following runs

r1 = δ0 g1,0 σ1,1 δ1 g1,1 σ1,2 δ2 g1,2 · · ·σ1,n δn g1,n (8a)
r2 = δ0 g2,0 σ2,1 δ1 g2,1 σ2,2 δ2 g2,2 · · ·σ2,n δn g2,n (8b)

... (8c)
rκ = δ0 gκ,0 σκ,1 δ1 gκ,1 σκ,2 δ2 gκ,2 · · ·σκ,n δn gκ,n , (8d)

which are reflected on run r0 on T0:

r0 = δ0 g1,0 · · · gκ,0 σ1,1 · · ·σκ,1 δ1 g1,1 · · · gκ,1 σ1,2 · · ·
· · ·σκ,2 δ2 g1,2 · · · gκ,n−1 σ1,n · · ·σκ,n δn g1,n · · · gκ,n . (9)

The folding operation on r0 would result in

f(r) =

 δ0 g1,0 σ1,1 δ1 g1,1 σ1,2 ··· δn−1 g1,n−1 σ1,n

δ0 g2,0 σ2,1 δ1 g2,1 σ2,2 ··· δn−1 g2,n−1 σ2,n

...
...

...
...

. . .
...

...
δ0 gκ,0 σκ,1 δ1 gκ,1 σκ,2 ··· δn−1 gκ,n−1 σκ,n

 .

On the other hand,

f(r1) = [ δ0g1,0 σ1,1 δ1g1,1 σ1,2 δ2g1,2 ··· σ1,n ]

f(r2) = [ δ0g2,0 σ2,1 δ1g2,1 σ2,2 δ2g2,2 ··· σ2,n ]

...
f(rκ) = [ δ0gκ,0 σκ,1 δ1gκ,1 σκ,2 δ2gκ,2 ··· σκ,n ]

4Recall that K may not necessarily contain consecutive integers.
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and with with K = {1, . . . , κ} and τ being the identity for
simplicity, the merging operation yields

f(r1)⊕ f(r2)⊕ · · · ⊕ f(rκ)

=

 δ0 g1,0 σ1,1 δ1 g1,1 σ1,2 ··· δn−1 g1,n−1 σ1,n

δ0 g2,0 σ2,1 δ1 g2,1 σ2,2 ··· δn−1 g2,n−1 σ2,n

...
...

...
...

. . .
...

...
δ0 gκ,0 σκ,1 δ1 gκ,1 σκ,2 ··· δn−1 gκ,n−1 σκ,n

 ,

since $∆

(
f(ri)

)
= $∆

(
f(rj)

)
= δ0δ1δ2 · · · δn−1 for i, j ∈ K.

The subclass of AK×n in which every array A satisfies
$Σk (AK×n〈k〉) ∈ Lk for a family of formal languages
parameterized by k ∈M ⊆ K, is denoted AK×n

(
{Li}i∈M

)
.

Assume now that every Li belongs to a lattice class of
formal languages [44]. Then a GIM can be constructed for
every agent i ∈ K to identify Li in the limit from positive
data. Each agent trace licensed by the coordinator constitutes
a positive datum, and if enough5 data are presented to GIMi,
the learner will converge to Li in finite time.

Imagine a moment in time when the hypothesis (output)
of every GIM has converged to its hypothesis L̂i about its
specification language Li, and L̂i ≡ Li. Without loss of
generality and for clarity of exposition reasons, we will assume
that all agent specification languages Li belong in the same
language class, in which case all agents can run separate
instantiations of the same GIM,6 so that we can simplify
notation by not differentiating between grammatical inference
modules on different agents.

The question now is: can the agents, having knowledge of
their own specification, reconstruct T0 by communicating? The
sequence of mathematical statements that follow provide an
affirmative answer to this question.

Consider a sequence of runs like those in (8), produced
by the repeated (synchronized) execution of DDQ algorithms
on each agent i ∈ K = {1, . . . , κ}, over m ∈ N different
episodes. For agent i ∈ K, the sequence of runs would be
denoted {ri}mj=1 , {ri[1], ri[2], . . . , ri[m]}. Then the GIM of
agent i will be presented with the positive data presentation

φi = {$Σi(ri[1]), $Σi(ri[2]), . . . $Σi(ri[m])} ,

denoting φi[j] , $Σi(ri[j]). The convergence assumption now
translates to L

(
GIM(φi[m])

)
= Li.

At this point, and without any additional information
about its teammates, agent i generically hypothesizes that
the system behavior as encoded in the coordinator consists
of f−1

(
AK×n

(
{Li}

))
, i.e., runs associated with a κ × 2n

(with n arbitrarily large but finite) array class, where row i
contains runs with traces in the hypothesized L̂i (and due to
L̂i = Li, therefore accepted by TCi) and any other row j
features elements of (∆×Qj ×Σj)

n with projections onto ∆
that agree with the projection of row i.

The following lemma ensures that if two disjoint subsets of
agents intersect the array classes they each hypothesize as the
coordinator’s language, they obtain exactly what they would
have learned if they had been observing each other’s actions
and running a combined GIM.

5For the particular language subclass, a handful of positive examples
generally suffice.

6This assumption can be directly lifted without impacting the analysis.

Lemma 1 ([9]). AI∪J×n
(
{Li}i∈I

)
∩AI∪J×n

(
{Lj}j∈J

)
=

AI∪J×n
(
{Lk}k∈I∪J

)
.

A direct next logical step is to ask whether it is the case that
when all κ agents intersect their hypotheses obtained on which
their individual learners have converged, the resulting array
class would be identical to the one that a single hypothetical
GIM would produce if it had access to all action profiles. The
following lemma confirms that the answer to this question is
affirmative.

Lemma 2 ([9]).
⋂
i∈KAK×n(Li) = AK×n

(
{Li}i∈K

)
.

In light of Lemma 2, once all agent GIM have converged,
agents can communicate sharing their specification language
hypotheses and reproduce the specification for the whole
system. This information sharing is not particularly taxing;
the languages considered are regular, which means that
transmitting merely a single regular expression is sufficient to
convey the specification of their target language. Any agent
with knowledge of the regular expressions generated by its
teammates is capable of reconstructing the combined system
specification AK×n ({Li}i∈K). The theorem that follows com-
bines Lemmas 1 and 2 and codifies the statement above.

Proposition 1 ([9]). Assume that for each i ∈ K, a gram-
matical inference module running on inputs $Σi(A[m]〈i〉) for
A ∈ A has converged on a language Li for large enough m ∈
N, and denote AK×n(Li) the hypothesized target language of
agent i. Then AK×n ({Li}i∈K) =

⋂
i∈KAK×n(Li) = A .

E. Implementation Study

To see how the resilient learners are expected to work on
a concrete example, assume that every agent specification
language Li 3 $Σi(AK〈i〉) belongs to a subclass of Locally
2-Testable languages, having grammars Gi that consist of a
single 2-factor, i.e., Gi = {{σmσk}} for σm, σk ∈ Σi. This is
a very specific learning target class, chosen here for expedience
of presentation—in principle, the reported approach applies to
many formal language classes in the family of lattice-structured
hypotheses spaces, which have been demonstrated to admit
well-characterized VC-dimensions [44]. It is assumed that the
class of languages in which the target specification language
belongs to, is common knowledge.

The particular specification languages considered here,
contain strings that include a single particular substring (2-
factor) anywhere in the symbol sequence. The objective of a
GIM targetting languages within this class is to identify that
particular 2-factor: knowledge of this factor theoretically allows
the generation of any string in the language. With knowledge
that the specification language of agent i is essentially generated
by a regular expression of the form ∗σmσk∗ for σm, σk ∈ Σi,
the agent’s GIM tries to infer the 2-factor σm, σk. The inference
strategy is different depending on the target language class; for
Locally 2-Testable languages, for instance, the learner would
break each string presented to it as positive data into its 2-
factors, and intersect the 2-factor sets from all presented strings
to find the common elements. If a sufficiently diverse set of
strings is presented to the learner, the intersection would contain



11

only the 2-factors in the grammar Gi, thus identifying the target
language; the learning algorithm would have converged. In the
particular case considered here, we know that the grammar Gi
has only one 2-factor, so when the aforementioned intersection
has cardinality one, we know that our GIM has converged.

Consider therefore two agents, with capacities T1 and T2;
the transition systems of the capacities of the two agents are
shown in Fig. 3. The two agents share the same (discrete)
world state set ∆ = {δ0, δ1, δ2}. Agent 1 has alphabet
Σ1 = {s10, s11, s12}, while agent 2 has alphabet Σ2 =
{s20, s21, s22}. Both agents are supervised by coordinator T0,
which determines the desired behavior of its subordinates.

δ2

δ1

δ0

s12

s10

s11

s12

s10

s10

s12 s11

(a) T1: capacity of agent 1

δ2

δ1

δ0

s21

s22

s20

s21

s22

s20

s20

s21

(b) T2: capacity of agent 2

Fig. 3. The capacity of agents T1 (a), and T2 (b). Since in a transition system
all states can be thought of as both initial and final, they are marked in the
figures using circles drawn with double thick line.

The desired behavior for an agent is its language speci-
fication, and is encoded as an automaton: TL1

for agent 1,
and TL2

for agent 2, and shown in Fig. 4. The labels on
each specification automaton’s states are (almost) arbitrary
integers: the only consideration in the assignment is so that
the states of the two automata can be distinguished. Here, let
G1 = {g11, g12, g13} ≡ {1, 2, 0} and G2 = {g21, g22, g23} ≡
{4, 5, 3}. The languages generated by TL1

and TL2
belong

to the specific subclass of Locally 2-Testable languages
considered: the specification language for agent 1 contains
all strings that have s12 s11 as a substring, while that for agent
2 includes all strings that have the factor s22 s21.

Taking the product of the agent’s capacity Ti with its
specification TLi produces the constrained dynamics of the
agent, TCi . (Of course, neither TLi nor TCi are known to
agent i.) The result of the product operation for the systems

1 2 0

s10

s11

s12

s12

s10

s11

s10

s11

s12

(a) Specification automaton TL1

4 5 3

s20

s21

s22

s22

s20

s21

s20

s21

s22

(b) Specification automaton TL2

Fig. 4. Automata TL1
(a), and TL2

(b), encode the specifications for agents
1 and 2, respectively. Thick single circles denote initial states; double circles
denote final states. Input strings for agent 1 belong to the specification language
if they contain the 2-factor s12s11. Input strings for agent 2 are consistent
with that agent’s specification if they contain the 2-factor s22s21.

depicted in Figs. 3 and 4 is shown in Fig. 5.

It is worth noting that the product operation between the
agent’s capacity and its specification creates unique perspectives
of a world state, from the point of view of the individual
agent: for example, not only does world state δ1 have different
semantics for agent 1 compared to agent 2, for the two agents
are trying to achieve different things, but there can be different
instantiations of δ1 for the same agent depending on what stage
in its path to satisfying its specification the agent visits that
same δ1 state at. Since the agents are called to optimize their
behavior through the DDQ algorithm without actually knowing
their constrained dynamics, it is necessary for the coordinator
to communicate with the agents and provide the information
needed to disambiguate between their different world state
instantiations. The coordinator T0 is formed by taking the
synchronized product of TC1

and TC2
, shown in Fig. 6.

During the learning phase, when the coordinator is still
operational, at each step an agent requests permission from
the coordinator to implement an action σ, and the coordinator
licenses it by offering a reward if that action contributes to sat-
isfying the agent’s specification, or rejects it if it is inconsistent
with the agent’s specification. Without originally knowing their
specifications, agents may attempt longer sequence of actions
toward their goals, but as time evolves and they learn from the
rewards passed down by their coordinator, they progressively
reach their goal over shorter and shorter paths.

A run in the coordinator is an action profile sequence that
constitutes a plan of action for the subordinate agents. After
translating tuple labels into strings (dropping parentheses and
commas), this plan takes the form (9). One example is:

r{1,2} = δ1 1 4 s10s20 δ1 1 4 s12s22 δ0 2 5 s11s21 δ0 0 3 ,
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(δ0, 2)

(δ2, 1)

(δ1, 1)

(δ0, 1)

(δ2, 2)

(δ1, 2)

(δ2, 0)(δ1, 0)(δ0, 0)

s10

s12

s11

s12

s10

s11 s10

s12

s11

s12

s10

s12

s10

s11

s12

s10

s12

s10

s10

s11s12

s11

s12

s10

(a) Constrained dynamics TC1

(δ0, 5) (δ1, 4) (δ2, 4)

(δ0, 4)

(δ1, 5)

(δ2, 3)

(δ1, 3)(δ0, 3)

s20

s21

s22

s21

s20

s22

s20

s21

s20

s21

s21

s20

s22

s20

s22

s21

s20

s21

s21

s22

s20

(b) Constrained dynamics TC2

Fig. 5. The constrained dynamics of agents 1 and 2. (a): TC1 = T1 × TL1 ;
(b): TC2

= T2 × TL2
.

which in tabulated form (as in (6)) looks like

A{1,2} =

[
δ1 1 4 s10 δ1 1 4 s12 δ0 2 5 s11

δ1 1 4 s20 δ1 1 4 s22 δ0 2 5 s21

]
.

In practice, the action profiles are produced in a distributed
fashion by the DDQ algorithms running on the agents. In one
example combined execution of the learning algorithms, the
very first run attempted (one can trace it in Fig. 8) was

A{1,2}(0) =
[
δ014 s11 δ014 s10 δ114 s10 δ114 s10 δ114 s11

δ014 s21 δ014 s20 δ114 s20 δ114 s20 δ114 s21

δ214 s10 δ014 s10 δ114 s10 δ114 s12 δ025 s11

δ214 s20 δ014 s20 δ114 s20 δ114 s22 δ025 s21

]
. (10)

It should come as no surprise that the action profiles includes
actions with matching indices: it is the same exact DDQ

(δ1, 1, 4) (δ1, 2, 5)

(δ2, 1, 4)

(δ0, 1, 4)

(δ0, 2, 5)

(δ0, 0, 3) (δ1, 0, 3) (δ2, 0, 3)

(s11, s21)

(s10, s20)

(s12, s23)

(s12, s22)

(s10, s20)

(s10, s20)

(s11, s21)

(s12, s22)

(s11, s21)

(s10, s20)

(s10, s20)

(s11, s21)
(s10, s20)

(s11, s21)

(s10, s20)

(s11, s21)

(s12, s22)

(s10, s20)

(s12, s22)

Fig. 6. The automaton T0 of the coordinator. It is produced as T0 = TC1⊗2
=

TC1 ⊗ TC2 .

algorithm running on both agents, and although drawn a little
differently, the automata of Figs. 5(a) and 5(b) are very similar
in structure. The particular execution involved 105 accepting
runs through the automaton of Fig. 6 before the DDQ algorithms
converged to their optimal policies. During this learning phase,
the DDQ algorithms produce positive data (each accepting trace
is one positive sample) for the GIM running on each agent. It
typically requires a fraction of the presentation produced by the
DDQ algorithm for the GIM to identify the agent’s specification.
Different runs that agents can generate after coordinator failure
are marked with different line types in Fig. 8, starting from
initial states (thick single circles) and following shortest paths
to final states (double circles).

An example of this inference process is illustrated in Fig. 7.
Referring back to (10), the first data sample presented to the
GIM of agent 1 was

φ1(0) = s11 s10 s10 s10 s11 s10 s10 s10 s12 s11 ,

which can also be written as $Σ1

(
A{1,2}(0)〈1〉

)
.

The 2-factors of string φ1(0) are

f2

(
φ1(0)

)
= {s11s10, s10s10, s10s11, s10s12, s12s11} ,

which can be seen in the leftmost box in Fig. 7. At this stage,
from the viewpoint of the agent’s GIM, there can be a set of
possible specification languages, each generated by one of the
following regular expressions: ∗s11s10∗, ∗s10s10∗, ∗s10s11∗,
∗s10s12∗, ∗s12s11∗. There were thus five different hypotheses
for the specification language of agent 1. The next accepting
trace that DDQ running on agent 1 produced was

φ1(1) = s11 s10 s11 s10 s11 s10 s11 s12 s12 s11 ,
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1
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4
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6

7
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inference

consistency

inference
consistency

s12s11

inference

φ[i]
11

hypothesized grammar cardinality

presentation

s10s12
s12s11

s10s10
s10s11
s10s12
s11s10
s11s12
s12s10
s12s11

s10s11
s11s10
s11s11
s11s12
s12s11

s10s11
s11s12
s12s11

s10s11
s12s11

s10s10
s10s11
s11s12
s12s11
s12s12

s10s10
s10s11
s10s12
s11s10
s12s10
s12s11

s10s11
s10s12
s11s10
s11s11
s12s10
s12s11

s10s10
s10s11
s11s10
s11s11
s11s12
s12s11
s12s12

s10s10
s10s11
s10s12
s11s10
s11s12
s12s10
s12s11

s10s10
s10s11
s10s12
s11s10
s11s11
s11s12
s12s10
s12s11

s10s10
s10s11
s10s12
s11s10
s12s11

s10s11
s11s10
s11s12
s12s11
s12s12

s10s11
s11s10
s12s11

1 32 4 5 6 7 8 9 100

Fig. 7. The inference path that the GIM of agent 1 follows to identify the
agent’s specification. The GIM of the agent receives the samples in a temporal
order as arranged in the graph from left to right, and whenever the new
sample carries additional information about the identity of the 2-factors that
generate the target language, it makes an updated hypothesis (inference). The
depth in the graph of each hypothesis corresponds to the cardinality of its
associated grammar G. When the grammar’s cardinality reduces to one, the
GIM converges. The inference path for the GIM of agent 2 is almost identical.

that generated a new set of 2-factors

f2

(
φ1(1)

)
= {s11s10, s10s11, s11s12, s12s12, s12s11} ,

which are included in the box in Fig. 7 immediately to the
right of the leftmost one. Now the set of possible specification
languages is narrowed down: since the right language is one
that is consistent with both the existing hypotheses (from φ1(0)
and the new ones, the possibilities reduce to the ones generated
based on the common factors: {s10s11, s11s10, s12s11}. The
GIM performs an inference step to extract those common
factors, and updates its hypothesis about the target specification
language: it is one of the following: ∗s11s10∗, ∗s10s11∗, and
∗s12s11∗.

This process is repeated with each new sample. However,
the inference step is not performed on each new sample since
the sample may not give GIM any additional information; in
this case it merely confirms the existing hypothesis. In the case
illustrated here, the GIM converged on the presentation offered
by DDQ within 12 samples, at the end of which there was
only one possibility left: ∗s12s11∗ (see Fig. 7, bottom right).

One immediately confirms that this is indeed the specification
language of agent 1 (see Fig. 4(a)). At this time, agent 1 does
not need the coordinator any more to tell it what it can or
cannot do; it can compute TL1

and pursue the satisfaction of
the system’s specification independently.

(δ1, 1, 4) (δ1, 2, 5)

(δ2, 1, 4)

(δ0, 1, 4)

(δ0, 2, 5)

(δ0, 0, 3) (δ1, 0, 3) (δ2, 0, 3)

(s11, s21)

(s10, s20)

(s12, s23)

(s12, s22)

(s10, s20)

(s10, s20)

(s11, s21)

(s12, s22)

(s12, s22)

(s11, s21)

(s10, s20)

(s10, s20)

(s11, s21)

(s11, s21)

(s10, s20)

(s11, s21)

(s10, s20)

(s11, s21)

(s12, s22)

(s10, s20)

(s12, s22)

Fig. 8. The automaton T0 of the coordinator. Lines of different type indicate
the runs that the agents can produce on their own once they have learned their
specification languages, after losing their coordinator. The paths they follow
implement the fastest ways to satisfy their task specifications.

F. Discussion and Outlook

At first sight, the automata product operations involved in
the analysis above might appear to contribute to an increase
in computational complexity with the number of agents κ,
or the size of the agents’ automata. In truth, the product
operations are utilized for mathematical analysis—not for
system implementation. Computational complexity challenges
may persist in relation to the realization of the coordinator
automaton T0. Still, at least partially, these problems can be
ameliorated through a process of (automata) factoring [47],
that circumvents the need for actually building the coordinator
automaton T0. Besides this component, in the approach of this
paper (cf. [9]), learning (of both policies and specifications)
is conducted in a distributed manner and should not present
particular computational complexity challenges. In fact, even
the sub-regular (specification) language identification realized
at the level of individual agents has been formally proven to
be feasible in factored form [42].

What was found to be intriguing and worthy of further
investigation is the synergy between RL and GIM observed
during our numerical implementation and testing of different
scenarios within the framework of our case study. Specifically,
once RL is set up to penalize unproductive (in terms of
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satisfying the agent’s specification) actions, the DDQ algorithm
will naturally gravitate to exploring shorter paths to final states.
In doing so, it inevitably highlights those factors (in the case of
Locally Testable languages) or subsequences [47] (in the case
of Locally Piecewise languages) that generate the unknown
target language. In some sense, RL is unwittingly performing
grammatical inference, and this may partially explain the rapid
rate of convergence exhibited by the agents’ GIM: the samples
provided to them by the DDQ algorithm allowed them to hone
in very quickly on the target language. This is shown more
clearly in Fig. 9. The figure shows the rate of convergence of
the GIM algorithm with and without DDQ. In the latter case,
the GIM module is attempting to identify the specification used
in Section V-E while presented with 100 positive data samples
drawn uniformly from the target language. In the former case,
a body of data of the same size is instead fed to the GIM
algorithm directly from DDQ, as it is done in Section V-E.
This comparison is repeated 50 times. The average number of
grammar factors the GIM suspects as generators of the target
language (we know that only one of them is correct) is plotted
in Fig. 9 against the number of positive data presented so far.
The figure thus indicates that when coupled with and fed by a
RL algorithm, a GIM may converge up to five times faster.

number of positive data presented

n
u
m
b
er

of
h
y
p
ot
h
es
iz
ed

fa
ct
or
s

GIM + DDQ

GIM with uniform sampling

Fig. 9. Convergence curves to the (single) target grammar factor in the case
study of Section V-E when the GIM is driven by DDQ (red) compared to the
case where the data provided to GIM are drawn uniformly from the target
language (blue). Confidence areas at 95% level are drawn around the empirical
averages over 50 independent runs.

While it is not anticipated that this synergy is exhibited
in the process of identification in the limit of other classes
of sub-regular languages, it may turn out to be a feature to
be exploited in problem instantiations that combine language
identification and control policy synthesis.

VI. CONCLUSION

Distributed multi-agent systems, in which individual agents
are coordinated by a central control authority, and the dynamics
of all entities is captured in the form of transition systems, can
be made resilient to leader decapitation by means of learning.
Specifically, under the supervision of a coordinating automaton
that allows or blocks intended agent actions, local RL algorithms
can optimize their agent action sequences, and in the process
dramatically boost the performance of grammatical inference
algorithms tasked with progressively identifying the agents’
(unknown) behavior specifications. The synergy between RL
and grammatical inference allows the expedient and efficient

identification of the global specification, which will eventually
permit the system to operate even without its coordinating
algorithm. This type of result can contribute to theory that
supports the design of resilient multi-agent supervisory control
systems, but also be utilized from the opposite direction as
a means of decoding the mechanism that generates a bundle
of signals communicated over a number of different, isolated,
channels. As a byproduct, the methods in this paper also hint at
the possibility of developing alternative methods of performing
language identification in the limit, within the classical context
of reinforcement learning.
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