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Abstract— This paper outlines an approach to coordinating
collections of autonomous marine surface vehicles and enable
them to exhibit different group behaviors in a way that
does not necessitate analysis using switched or hybrid system
formulations. Instead, the group behaviors are generated using
reference vector fields which are created through a single
underlying dynamical system that undergoes bifurcations. The
benefits of such an approach can be both theoretical and
practical: on one hand the formulation obviates the need for a
combinatorial or switched system theoretical analysis in order
to reliably predict and guarantee overall system properties, and
on the other it is applicable to multi-robot systems that lack the
capability for direct robot-to-robot sensing or communication.
The ability of such a formulation to generate two key group
behaviors, namely, a cyclic pursuit and a convergence to target,
is validated both numerically as well as experimentally using a
small fleet of Jaiabot micro-AUVs.

I. INTRODUCTION

Environmental monitoring and in-situ measurement in
marine environments, in particular, is becoming increasingly
crucial due to the growing impacts of climate change on
ocean ecosystems, such as rising in sea levels, marine life,
and water quality. Accurate and timely monitoring is essen-
tial for understanding these changes, guiding conservation
efforts, and developing strategies to mitigate environmental
impacts [1], [2]. Traditional observation methods, which
primarily rely on in-situ measurements from stationary plat-
forms, are constrained by high costs and limited spatial
coverage. Suck tasks can be mentally exhausting and error-
prone for humans, leading to decreased productivity and
increased fatigue due to their repetitive nature. This can be
resolved by automating these dull tasks and using one or
multiple autonomous marine vehicles to perform repetitive,
monotonous work with precision and consistency.

The prospect of autonomously deploying swarms of ma-
rine vehicles is appealing from the perspective of scaling
up and accelerating observation, monitoring, and mapping
missions. By now there is a wealth of biologically-inspired
algorithms for robot flocking and swarming, which will
not be attempted to be reviewed and referenced in this
short paper. The beauty of the nearest-neighbor interaction
paradigm on which this body of literature is based is its
simplicity and scalability. Multi-agent systems that converge
to a moving geometric formation around a target have
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Fig. 1: A small fleet of four Jaiabots as they reconfigure themselves to
achieve a group control objective.

predominantly relied on local interactions [3], [4] while often
utilizing strategies that enforce constant inter-agent bearing
[5], [6]. Extensions of these methods include using a fixed
beacon as a reference point [7] to regulate the position
of the circumcenter and the radius of the circular orbit.
Elements of bifurcation theory have also been utilized to
form such patterns [8], [9]; the challenge, however, lies in
its implicit assumption that the robot swarm members can
either communicate with or sense the motion of each other.

None of these two potential assumptions is (cur-
rently) valid for the commercially available Jaiabot micro-
autonomous underwater vehicle (AUV) platform featured in
Fig. 1. This is not a singularity; in fact there are other
instances of robot collectives, at many different scales, which
lack the capacity for these two type of functions [10], [11].
For robot system collectives that are subject to these type
of resource constraints, a scalable multi-robot coordination
solution can be offered in the form of reference vector fields,
which serve as a feedback-based mechanism to suggest to all
robots a desired direction of motion based on each individual
robot’s location. Technologies capable of generating such
artificial (or natural) vector fields that can steer a collection
of robots have been reported in the literature [12]-[14].
Considering the no inter-agent communication, this Eulerian
approach akin to [15] acts as a universal feedback law
broadcast by a central supervisor that can more easily be
tackled with existing design and analysis tools (e.g. [16]),
and with a significant benefit of resilience and robustness.
One limitation, however, is that a vector field of this nature
will typically capture a single collective behavior, and if the
swarm needs to switch to a different behavior then a different
vector field needs to be activated.



This is always possible in the theoretical context of
switched or hybrid systems [17]-[19]. Yet, establishing fun-
damental properties such as existence and uniqueness of
solutions, robustness, stability, and continuity with respect
to initial conditions and parameters is considerably more
complex in a hybrid system compared to a continuous
dynamical system [20] and that complexity increases with
the dimensionality of the multi-agent system.

An alternative route is bifurcation-based vector fields
[21], [22]. These approaches realize the potential of tunable
navigational dynamics to steer a collective of agents while
switching their dynamical behavior using certain types of
bifurcations such as Hopf bifurcation. However, testing and
validation of these approaches have been so far done in
simulation or controlled lab environments, and thus, there
is no evidence of the efficacy of such methods in field
conditions.

In an attempt to narrow this gap, this work explores the
application of bifurcation theory to develop multi-behavioral
autonomous surface vehicles (ASVs). We propose a frame-
work that leverages the theoretical insights of bifurcation
theory to enhance the coordination and collective behavior of
ASVs without necessitating direct communication between
agents. Such a framework can enable two types of behav-
iors without modifying the underlying system dynamics: a
repetitive task or limit cycle behavior and a convergence-to-
point behavior. Limit cycle behaviors are useful in patrolling
or coverage missions, whereas point convergence is useful
for rallying the vehicles, e.g., for recovery. There are various
types of autonomous marine vehicles well-suited for such ap-
plications, each equipped with different payloads and sensors
[23]-[26], however, there is still room for improvement in
multi-robot coordination and control in marine environments.

The rest of the paper is organized as follows. Initially,
a brief overview of the system architecture is provided in
Section II followed by Section III, which introduces the
mathematical description of the vehicle kinematics along
with the main technical results of the paper. In Section IV,
the performance of the proposed method is evaluated nu-
merically and through simulations, and after laying out the
hardware and software tools employed for this integration,
the section closes with the preliminary field testing results.
Finally, Section V provides a brief summary of the paper and
emphasizes the potential impact of the proposed approach on
the marine robotics industry.

II. OVERVIEW OF THE SYSTEM

The proposed framework was tested in the real world
using the Jaiabot, a micro ASV specifically designed for
environmental monitoring (see Fig. 2) [27], [28]. The Jaiabot,
approximately one meter long and weighing 3 kg, features a
torpedo-like design and is capable of reaching speeds up to 5
m/s with a range of 11 km. In addition to its primary role as
an ASV, the Jaiabot can perform vertical dives, is propelled
by a single propeller, and is steered using a rudder. Equipped
with sensors for measuring salinity, temperature, and depth,
and rated for operations at depths of up to 30 m, the Jaiabot

represents a versatile tool for environmental monitoring.
The platform can be controlled manually or autonomously
using the Jaia Command and Control graphical user inter-
face (GUI), however, the system currently lacks inter-agent
communication capabilities, highlighting the need for further
advancements in swarm coordination methodologies.
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Fig. 2: The Jaiabot micro ASV, by Jaia Robotics can serve as an autonomous
platform for environmental monitoring.

An overview of the system is illustrated in Fig. 3. The
colored-coded boxes indicate different subsystems of the
system architecture, and the arrows show the information
flow between them. The onboard processes and hardware
are within the orange block, while the nodes inside the green
block indicate the processes that occur on the central coordi-
nating computer on shore. The communication between the
onboard and on-shore parts of the system is established using
a radio antenna with a range of up to 11km in direct view.

The GPS sensor of the system is located on the nose of the
vehicle and provides a geolocation position while transiting
on the surface that is shared through radio to the GUI and
the on-shore computer. Based on the desired task/behavior
selected, the path planner module will compute the desired
artificial vector field, and given the position information of
the vehicle, it will return the desired forward speed and
heading to the low-level controller. Finally, the low-level
control will translate the speed and heading into the desired
RPMs for the thruster and the desired direction for the rudder.
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Fig. 3: Block diagram of the system architecture. /n Orange: The onboard
elements of the system which provide the location of the vehicle and
translate the desired state of the vehicle into hardware commands. In Green:
The GUI runs on a ground station desktop on-shore and runs the path
planning design for the vehicles.

III. MULTI-BEHAVIORAL DYNAMICS

A. Vehicle Kinematics

In this work, we consider an ASV with kinematics in
three degrees of freedoms (DOFs), surge, sway, and yaw.
The generalized positions and velocities can, then, be defined
as m = [=w.v]T and v = [wv.r]T, respectively. Thus, the



matrix-vector representation of the craft’s kinematics [29]
can take the form
_ cosY —siny 0
'r’ =

siny cosy 0| v (1)
0 0 1

R(¢)(4)

The objective of this paper is to design a feedback law that
can alter the system’s resulting behavior without changing
the underlying dynamics but simply changing the value of a
scalar parameter.

B. General Formulation

Let w = (z,y) € D C R2, and consider planar vector
fields F;(w) : D — TD, fori € I C N, and TD represent
the tangent bundle of the manifold D. Each vector field has
an associated (Lyapunov) function f; : D — R for which
it is known that fl = VT7f; F; < 0. (Equality on the right
holds at the equilibria of F;.)

Let m; and mgy be scalar variables in [0, 1] representing
the degree to which the dynamical behavior captured by F;
manifests itself in the system. These two variables define the
motivation state of the system; they can have dynamics of
their own and thus evolve over time.

The scalar variables v;, referred to as values, encode
the importance of each dynamical behavior F;. The value
of a component vector field F; increases as the urgency
of the task/behavior encoded in F; increases. As with the
motivation state, the value state has its own dynamics that
will be introduced shortly.

Based on F; and m;, the navigation dynamics is defined
as a dynamical system formed by the convex combination of
F;, using the motivation state variables m; as weights:

The value dynamics is defined as

=x(fi—v), 3)

where \; is a scale parameter. Define now the undecided
motivation state my = 1 — >, m;, and let o € R, be the
bifurcation parameter, and v; is a positive real gain. Then the
motivation dynamics of the system inspired by the decision-
making behavior in honeybee swarms ( [30]) is defined as

m; = vjv;my — mz[ L vfvimyto(l—m;— my)] . 4

With this dynamical system setup in place, define the set
of mean-difference coordinates

F=BdhWw) AR = Fy(w) - Fy(w)  (5a)
= M Af = fi(w) — fo(w) (5b)
= M Am = mq(t) — ma(t) (e
p = e Av = v (t) —va(t) , (5d)

which can be combined into a stack vector

q = (z,y,m, Am,v,Av)T . (6)

C. PFarticular Instantiation

Now assume, for clarity of presentation, that we have just
two planar vector fields of the form:

T=7(y —yei) — (x

y=—r(x—x4)—
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(Y — Yei) [(JZ - xci)z + (y — yci)2 . TQ]

which each produces a circular attractive limit cycle centered

at (¢, Ye;) and with radius r > 0.

Without loss of generality, we can simplify the analysis
assuming: (¢, Ye,) = (0,0), ye, = 0, and ., 2 xqis > 0,
which reduces the expressions of the vector fields to the
form:
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from which we can define associated Lyapunov functions
fi(z,y) as follows:

f 1 (:E ) y) =

f 2 ({E ) y) =

The dynamics of the mean-difference coordinates induced
by (2)-(4) after substituting (7) and (8) can be expressed

as—with a slight abuse of notation where we use (&,y) to
express the components of the blended vector field w in (2):
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setting v{ = v5 = v*,A\1 = A2 = A. The navigation

dynamics after solving this system [21] are
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where the pair (w;,ws) corresponds to the (x,y) dynamics.

D. Vector Field Transformation

In order to transfer this mathematical analysis into the real
world, some adjustments were necessary. More specifically,
we performed a scale transformation and a translation to the
mathematically resulting trajectories based on the point of
interest (deadlock), the area we would like to patrol, and
the turning radius of the robotic platform. Our final system
evolves around the deadlock, which can be moved to the
origin without loss of generality and then, transformed the
coordinates of the trajectory from Cartesian (z,y) to polar
coordinates (p, 6).

T =x—124 Polar p:\/m
{y’:y—yd ccordinates 0 — tan—1 ¥ (11a)
z
% pl=1p (11b)
by term T 0 =0
i [a =2’ .
coordinates y’/ — Ty/

IV. VALIDATION

The performance validation below considers combining
two vector fields admitting circular limit cycles and param-
eterized with xg;s = 2.5 and » = 1.4. Then, there should
be a deadlock located at wg = (1.25,0)7; after substituting
(ais, ) = (2.5,1.4), in the analytical form for o, the critical
bifurcation parameter is found to be o. = 0.0434 [21].

A. Numerical Validation

Before translating the resulting dynamics into the corre-
sponding software for the robotic platforms, we verified them
via numerical simulations shown in Fig. 4 and Fig. 5. In this
numerical example, we identify the point of interest as (2, 1)
and the area of interest as spanning the range = € [—3,7]
and y € [—9, 11]. This requirement implies that our deadlock
should be translated to (2, 1) and scale up the resulting limit
cycle around it in the defined range by a scaling parameter
7 = 50 while maintaining the behavioral characteristics of
the system. By setting the bifurcation parameter above the
critical value (Fig. 4), the system will evolve in a periodic
orbit around the desired point of interest (2, 1) and within the
desired area shown with dashed lines. On the other end, when
we set the bifurcation parameter below the critical value then

the system will converge to the point of interest and settle
there for the remaining evolution time (Fig. 5).
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Fig. 4: Numerical time evolution of the x and y dynamics when the
bifurcation parameter is set above the critical value o = 0.1 > o¢r.

B. Simulation

To transfer the mathematical analysis into the ASV kine-
matics, we use the Jaia Command and Control Interface
developed by Jaia Robotics (Fig. 6). That is the GUI used
for the simulation analysis and the field testing. In this
example, we include four jaiabots in the simulation envi-
ronment operating in the University of Delaware Marine
Operation facilities in Lewes, DE. The square area in Fig. 6
indicates the operationally safe area of interest the agents
need to patrol. First, the agents are instructed to patrol the
area by setting the bifurcation value above the critical value
(o0 = 0.1 > o,,) for 300 seconds. The geolocation of each
agent is provided by the GPS antenna at the front part of
the platform and translated into the system coordinates, with
the origin of that system being the location of the central
coordinator on shore (HUB). To demonstrate the different
behaviors in an easily comparable way and without loss of
generality, we plot the trajectories around the origin instead.

Similar to the numerical validation, we present how the
trajectories of the four agents evolve over time with different
values of the bifurcation parameter. To cover the desired area,
we set the scaling parameter 7 = 20. In Fig. 7, we set the
bifurcation parameter above the critical value (¢ = 0.1), and
the four agents perform a limit cycle with the x evolving
between [—5, 5] and y evolving between [—7,7]. Then, the
bifurcation parameter is set below the critical value (0 =
0.01), and the four agents converge to a tighter circle where
the x evolves between [—4, 4] and y evolves between [—3, 3]
as shown in Fig. 8. Note that an attractive deadlock is a focus,
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Fig. 5: Numerical time evolution of the x and y dynamics when the
bifurcation parameter is set below the critical value o = 0.01 < o¢r.

which means that the vector field flow lines that converge
to it will spiral in. However, the Jaiabot being steered via a
thruster and a rudder, has a minimum turning radius. For that
reason, as it follows this vector field, it will end up circling
around the deadlock. The radius of this circle is noticeably
smaller than that of the limit cycle, thus distinguishing the
two collective behaviors.

Fig. 6: Screenshot of Jaia Robotics graphical user interface simulating the
Marine Operation boat basin of University of Delaware in Lewes, DE, USA.
The square area represents the area of interest where the four robots patrol.

C. Field Testing

The preliminary field testing was conducted at the Uni-
versity of Delaware Marine Operations’ boat basin in Lewes,
DE, using four Jaiabot micro-ASVs. The scenario tested was
the same as the simulation scenario. The safe area of interest
for the platforms to cover was a square area of 400 m?. For

Time (seconds)

Time (seconds)

Fig. 7: Evolution of the simulated = and y trajectories of four agents when
the bifurcation parameter is above the critical value o = 0.15 > o¢r.

that reason, the scaling parameter for the field testing was
set at 7 = 50.

After placing the four Jaiabot ASVs in the water, we
directed them to follow a periodic orbit (limit cycle) and
patrol the boundary of the area for 300 seconds via setting
the bifurcation parameter above the critical value (Fig. 9).
After they complete their first task, the bifurcation parameter
was set below the critical value which instructed the group
to perform a convergent task around a point of interest
(convergence to a point) for another 300 seconds (Fig. 10).
As in the simulation example, the trajectories have been
translated around the origin to make the comparison between
the two tasks more apparent.

The recorded trajectories are admittedly noisy; this is due
not only to the lag of communication between the central
computer and the platforms but primarily so because of
the measurement error of the GPS sensor. Nevertheless, the
periodicity of the steady-state behaviors is visible. Similar
to the simulation results, the difference between the two
behaviors is highlighted by noticing the difference in the
radius of the trajectories. In the case of the patrolling task, the
x and y trajectories approximately span between [—15, 15],
while in the second case, they span between [—6, 6], with the
latter being due to turning radius constraint of the vehicles
as explained above. Through these results, we can verify the
applicability of bifurcation based multi-behavioral dynamics
in a non-sterile field environment.

V. CONCLUSION

This work demonstrates the feasibility of the development
and deployment of an alternative multi-behavioral path plan-
ning design. This approach utilizes elements from bifurcation
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Fig. 8: Evolution of the simulated = and y trajectories of four agents when
the bifurcation parameter is set below the critical value o = 0.01 < o¢r.

Time (seconds)

Time (seconds)

Fig. 9: Evolution of the x and y trajectories of the four Jaiabots performing
a limit cycle during the field implementation with bifurcation parameter set
above the critical value o = 0.1 > o¢p.

theory and can provide different artificial vector fields that
can steer a collective of ASVs to different behaviors. The
underlying dynamics of the system remain throughout and
the different behaviors are the result of the shift of the
bifurcation parameter to values above and below the critical
threshold. Numerical and simulation testing confirmed the
performance of the system, while preliminary field testing

Time (seconds)
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Fig. 10: Evolution of the x and y trajectories of the four Jaiabots converging
to their deadlock point during the field implementation with bifurcation
parameter set below the critical value o = 0.01 < o¢p.

was conducted to showcase the different behaviors.

The applicability of this approach is now expanded. After
identifying the location of the bifurcation deadlock in the
physical world and the size of the safe area for the robots to
operate, we provide a method to adjust the resulting system
that can exhibit different behaviors around the point of inter-
est while covering the safe area. This new direction expands
the capabilities of multi-behavioral multi-agent systems with
no inter-agent communications and paves the way for a
variety of applications. The proposed results can be applied
to any group of homogeneous or heterogeneous platforms
that should perform any repetitive behavior, such as sampling
and patrolling, or any location-convergent tasks, such as
inspecting a point of interest or gathering for recovery.
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