
Composition of Motion Description Languages

Wenqi Zhang and Herbert G. Tanner

Mechanical Engineering Department,
University of New Mexico, Albuquerque NM 87131.

Abstract. We introduce a new formalism to define compositions of interact-
ing heterogeneous systems, described by extended motion description languages
(MDLes). The novelty of the formalism is in producing a composed system with
a behavior that could be a superset of the union of the behaviors of its generators.
We prove closedness of MDLes under this composition and we show that in the
class of systems modeled using MDLes, language equivalence can be decidable.
Our approach consists of representing MDLes as normed processes, recursively
defined as a guarded system of recursion equations in restricted Greibach Normal
Form over a basic process algebra. Basic processes have well defined semantics
for composition, which we exploit to establish the properties of our composed
MDLes.

1 Introduction

Motion Description Languages (MDLs) [1] translate collections of control algorithms
into robust and reusable software [2]. MDLes (e standing for “extended”) have been
criticized for not capturing concurrency and interaction between systems. This paper is
an attempt to address this issue, and set a framework in which MDLes can be composed,
verified, and allow automated motion and task planning for collections of heterogeneous
robotic systems.

We identify MDLes as recursive systems in some basic process algebra (BPA) writ-
ten in Greibach Normal Form (Lemma 1). We propose a simple context-free grammar
that generates MDLes and then we use the machinery available for BPAs to formally de-
fine a composition operation for MDLes at the level of grammars. The technical core of
this paper indicates how appropriately defined MDLe grammars can be composed (Def-
inition 8), and language equivalence (whether two such grammars generate the same
finite traces), is decidable up to bisimulation. The main difference of our composition
operation is the appearance in the composed system of events (transitions) not enabled
in the generators: the composed system can behave in ways its generators cannot. In
our approach, one still needs to identify beforehand these events that can be activated
after the composition, but still the proposed definition partially captures the fact that the
whole can be more than the sum of its parts.

A natural question that comes up is why are basic process algebras a good formal-
ism to map hybrid robotic systems to discrete models of computation? This formalism
is one of many possible; we are not sure if any single one is best. The justification for
choosing BPAs comes first from our desire to model robotic systems using MDLes. Sec-
tion 3 attempts a brief and incomplete introduction to MDLes and BPAs; the interested
reader is refered for more information to [3] and [4].

Another modeling formulation is maneuver automata [5], which are finite automata
that produce sequences of predetermined maneuvers for unmanned vehicles. Admissi-
ble motion is expressed as the set of traces the automaton accepts. Maneuver automata,
however, generate regular languages, and MDLes are not [3]. Thus, maneuver automata
appear to have less expressive power than MDLes.

Another popular framework in which concurrent systems are expressed is petri
nets [6]. Petri nets generate context-sensitive languages. They are therefore more ex-
pressive than BPAs but this comes at a cost: bisimulation is undecidable for petri nets [7],
which poses an obstacle for further analysis and abstraction. MDLes, on the other hand,
are context-free [8]. The equality problem for context-free languages and push-down
processes being undecidable notwithstanding [9], we show in this paper that the slightly
finer semantics given to an MDLe expressed in a BPA framework allow decidability for
language equivalence [10, 11]. The tools we use to arrive at this decidability result are
the properties of BPAs introduced in [12–14], and refined in [15].

Although other modeling tools may be available, we feel that BPAs strike a rea-
sonable balance between complexity and expressiveness when it comes to modeling
systems expressed by, and controlled through, MDLes. Showing that under the extended
notion of composition we introduce, the resulting system is an MDLe (Lemma 3), and
that the decidability properties are preserved (Corollary 2), gives us hope that the re-
sulting (big) system can be abstracted to the point that some of the available model
checkers [16–18] can be used to construct admissible motion plans in the form of “coun-
terexamples.”

2 MDLe Preliminaries

MDLe is an extension of the early definitions of motion description languages [19]. It is
a device-independent programming language for hybrid motion control, which allows
one to compose complex, interrupt-driven control laws from a set of simple primitives,
and a number of syntactic rules [2, 3]. Every MDLe string consists of a control part, an
interruption part, and the special symbols “)”, “(”, and “,”. Consider a robotic system,
generically described in the form of the following dynamics

ẋ = f(x, u), y = h(x); x ∈ Rn, u ∈ Rm, y ∈ Rp, (1)

where x is the state of the system, u the control input, and y the measurable output.
Let U be a finite set of feedback control laws (or quarks [8]) u : Rn × R → Rm, for
(1), and B a finite set of boolean functions ξ : Rm × R → {0, 1} of output y and time
t ≤ T ∈ R+ (the interrupt quarks [8]).

The basic element of an MDLe is an atom, denoted (ξ, u), where ξ is the interrupt
selected from set B, and u is a control law selected from U . To evaluate or run an atom
(ξ, u), means to apply the input u to (1) until the interrupt function ξ evaluates true (ξ =
1). An MDLe plan is composed of a sequence of atoms. For example, evaluating the plan
a = ((u1, ξ1), (u2, ξ2)) means that the system state x, flows along ẋ = f(x, u1) until
ξ1 = 1 , and then along ẋ = f(x, u2) until ξ2 = 1. Plans can also be composed to
generate higher order strings, as in b = ((u3, ξ3), a, (u4, ξ4)).

3 From MDLes to Basic Process Algebras

3.1 MDLes are context-free

The pumping lemma is utilized in [8] to show that an MDLe is not a regular language;
rather, it is context-free. Context-free languages are generated by context-free grammars
(CFGs), which can always be expressed in Chomsky normal form. A variation of the
Chomsky normal form, is the Greibach normal form.

Definition 1 ([15]). A context-free grammar in which every production rule is of the
form A → aα, where A is a variable, a is a terminal, and α is a possibly empty string
of variables, is said to be in Greibach normal form (GNF). If, moreover, the length of
α (in symbols) does not exceed 2, we say that the context-free grammar is in restricted
Greibach normal form.

It is well known [20], that pushdown automata and context-free languages are equiva-
lent in power.

3.2 The link between BPAs and push-down automata

A BPA is essentially an mathematical structure consisted of set of constants, A =
{a, b, c, . . .}, called atomic actions, a set ΣBPA of two binary operators on these con-
stants (the alternative composition + and the sequential composition ·), and a set of ax-
ioms EBPA that determines the properties of the operations on the atomic actions [15].
When the set of atomic actions A is assumed known, a basic process algebra is de-
noted simply as a couple in the form BPA = (ΣBPA, EBPA). The set ΣBPA is some-
times called signature, while set EBPA equation set (hence the symbols). The theory
associated to a BPA is considered to be parameterized by the set A, which is specified
according to the particular application.

The symbol · denoting sequential composition is typically omitted, and we usually
write xy instead of x ·y. We assume that · binds stronger than +, thus (xy)+z = xy+z
(brackets omitted). The set EBPA consists of five axioms (or equations), appearing in
Table 1. Composing atomic actions according to Table 1, yields more complex pro-

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5

Table 1. The axioms of a BPA.

cesses. Any such process, is an element of some algebra satisfying the axioms of BPA,
and all processes produced in this way make up the set P . The axiom system of Table
1 is the core of a variety of more extensive process axiomatizations:

– x · y is the process that first executes x, and upon completion of x, process y starts.
– x + y is the process that either executes x, or executes y (but not both).

Just as in the case of finite state machines, processes are identified by the set of
action sequences they admit. Some [21] prefer to include a set Atom of atomic pro-
cesses or atoms. The set Proc of processes contains all terms in the free algebra over
Atom generated by sequential composition and disjunction. Then a process algebra is
defined by a finite set Π of productions of the form X

a→ P, where X ∈ Atom, a ∈ A,
and P ∈ Proc. The semantics of the above production is as follows: atomic process
X performs action a and evolves into process P . Let us identify a process with an au-
tomaton, in which a transition denotes the execution of an atomic action. The states of
this automaton are all the processes derived through the set of production rules. Action
relations are presented in Table 2, in which x

a→ y, with x and y being processes and a
an atomic action, means that process x evolves into process y after the atomic action a
is executed.

a
a→
√

R1
a

a→ x′ ⇒ x + y
a→ x′ and y + x

a→ x′ R2
x

a→
√
⇒ x + y

a→
√

and y + x
a→
√

R3
x

a→ x′ ⇒ xy
a→ x′y R4

x
a→
√
⇒ xy

a→ y R5

Table 2. The operational semantics of BPA.

The symbol
√

stands for successful termination. It is said that a relation is true if
and only if it can be derived from the relations of Table 2. Note the distinction between
the relation operator (→) and sequential composition (·): the fact that x

a→ y does not
imply that y = x · a, since a is an action executed as x runs, not after it is completed.
The only thing that can be inferred about action a is that it is an action that process x
can execute.

3.3 Recursive and guarded processes

Let us focus on a special type of BPAs with slightly finer semantics. The additional
properties of this type of systems enable us to define composition more comfortably,
and prove the decidability of language equivalence for the systems produced by means
of composition.

Definition 2 ([10]). A recursive equation over a BPA is an equation of the form X =
s(x), where X is a variable that can take values in P and s(x) is a term over the BPA
containing X , but no other variable.

A set of recursive equations give rise to a specification:

Definition 3 ([10]). A recursive specification E over a BPA is a set of recursion equa-
tions over the BPA.

We thus have a set of variables V = {x0, · · · , xn}, and equations of the form X =
sx(V) with x ∈ V , where sx is a term over the BPA containing variables in V . Set V
contains one distinguished variable called the root variable x0. A variable in V is called
guarded in a given term, if it is preceded by an atomic action:

Definition 4 ([10]). Let s be a term over a BPA, containing variable X .

– An occurrence of X in s is said to be guarded, if s has a sub term of the form
a · t, where a is an atomic action, and t a term containing this occurrence of X;
otherwise this occurrence of X in s is said to be unguarded.

– A term s is completely guarded if all occurrences of all variables in s are guarded.
A recursive specification E is completely guarded if all right hand sides of all
equations of E are completely guarded terms.

Just as production rules can be thought to be in Greibach normal form, so can equa-
tions over a BPA.

Definition 5 ([10]). If a system E of recursion equations is guarded and without brack-
ets, then each recursion equation is of the form Xi =

∑
j aj ·αj , where αj is a possibly

empty product (sequential composition) of atoms and variables. Now if, in addition, αj

is exclusively a product of variables, E is said to be in Greibach normal form, analo-
gous to the same definition for context-free grammars. If each αj in E has length not
exceeding 2, E is in restricted Greibach normal form.

3.4 Composition of BPAs

BPAs can be equipped with a merge operator, ‖. Process x‖y is the process that exe-
cutes process x and y in parallel. Notice that we do not assert that the first action has
terminated when the second one starts; this can depend on the implementation of a pro-
cess. The left merge operator, T, describes two processes that occur in parallel, in a way
similar to ‖, but with the restriction that the first step must come from the process on the
left of the expression. With the new operators, the BPA axioms are expanded as shown
in Table 3, and the action relations are enriched as shown in Table 4.

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x‖y = xTy + yTx M1
aTx = ax M2
axTy = a(x‖y) M3
(x + y)Tz = xTz + yTz M4

Table 3. The BPA axioms, expanded
with the introduction of merge (‖) and
left merge (T) operators.

a
a→
√

R1
a

a→ x′ ⇒ x + y
a→ x′ and y + x

a→ x′ R2
x

a→
√
⇒ x + y

a→
√

and y + x
a→
√

R3
x

a→ x′ ⇒ xy
a→ x′y R4

x
a→
√
⇒ xy

a→ y R5
x

a→ x′ ⇒ x‖y a→ x′‖y and y‖x a→ y‖x′ R6
x

a→
√
⇒ x‖y a→ y and y‖x a→ y R7

x
a→ x′ ⇒ xTy

a→ x′‖y R8
x

a→
√
⇒ xTy

a→ y R9

Table 4. The action relations of BPA, ex-
panded using the composition operators.

Two BPA processes p1 and p2 are bisimilar, if whenever p1 performs a certain action,
p2 can perform the same action, and vise versa. The following definition of bisimula-
tion equivalence for processes is quoted from [11], and is chosen only because of its
conceptual association to similar definitions of bisimulation for transition systems, that
have appeared in the controls literature [22].

Definition 6 ([11]). A binary relation≈ on the set of processes Proc is a bisimulation,
if the following conditions are satisfied:

– for all p, q, and p′ in Proc, and a ∈ A such that p ≈ q and p
a→ p′, there exists

q′ ∈ Proc such that q
a→ q′ and p′ ≈ q′.

– for all p, q, and q′ in Proc, and a ∈ A such that p ≈ q and q
a→ q′, there exists

p′ ∈ Proc such that p
a→ p′ and q′ ≈ p′.

4 Main Results

4.1 MDLes are a special class of BPAs

The representation of an MDLe as a BPA requires an intermediate step, which is the
expression of the former as a context-free grammar. We define a context-free grammar
G = (V, η,R, S) which generates MDLe L = {(u, ζ) : u ∈ U, ζ ∈ B} as follows:

– V = {u1, u2, u3, . . . , un} is the finite set of variables, one for each controller
ui ∈ U ;

– η = {ν1, ν2, . . . νn} is the finite set of terminals, which are the atoms of L, ν =
(ui, ζj) with ui ∈ V , and ζj ∈ B;

– S is the start symbol in V ;
– R is the rules by which we create the strings of L:

S → U U → UU U → ν U → ∅ (2)

where U can be any element of V , and ν an arbitrary element of η.

We define below the push-down automaton that is equivalent to the context-free
grammar described above, according to [20]. Definition 7 allows us to conveniently
switch between representations.

Definition 7. Consider a context-free grammar G defined in (2). The push-down au-
tomaton P = (V, η,Σ, Γ, δ, S, Z0) where

– V = {u1, u2, u3, . . . , un} is the set of states, identified with the variables in G;
– η = {ν1, ν2, . . . νn} is the set of enabled events, identified as the terminals in G

and associated with possible transitions in P ;
– Σ = V ∪ η is the stack alphabet;
– Γ : V → Γ (V) is the event activation function that determines which enabled

events can generate transitions at each state;
– δ : V × η → V is the transition function such that δ(x, ν) 7→ R(x, ν) = y ∈ V ;
– S ∈ V is the start state in G;
– Z0 is the start symbol in stack;

The range of Γ defines all active events, the ones that correspond to transitions the
automaton can autonomously take. Note the distinction between η and Γ (V): this is
what enables us to capture actions the system cannot execute autonomously, but poten-
tially can in collaboration with another system. We allow Γ (V) 6⊆ η, but the transitions

which the automaton can autonomously take are in Γ (V) ∩ η. Informally, we think of
the transitions associated with events in η as ones that the system has the “potential” of
taking (but may not know how), and the transitions associated with events in Γ (V) as
jumps that the system “knows” how to perform but may or may not have the capability
of making. The next Lemma confines MDLes to set of languages generated by a special
class of context-free grammars (CFGs).

Lemma 1. An MDLe is produced by a CFG in Greibach normal form.

Proof. We rewrite (2) in Chomsky normal form, an intermediate stage before we ar-
riving at the Greibach normal form. Rewriting (2) in Chomsky normal form involves a
sequence of steps, in which a transformation rule is applied to the set of rules written on
the left to result in the rule set depicted on the right. Let us first combine rules (2) into
a single one, using the disjunction operator |, for compactness. On the right we give the
resulting set of rules after each transformation.

U → UU
U → ν
U → ∅

U → UU |ν|∅.

Step 1: Define a new start symbol S0 to replace S.

S → U
U → UU |ν|∅

S0 → S
S → U
U → UU |ν|∅

Step 2: Remove ∅ from the rules that involve variable U .

S0 → S
S → U |∅
U → UU |ν

S0 → S|∅
S → U
U → UU |ν

Step 3: Eliminate the original start variable S.

S0 → S|∅
S → U
U → UU |ν

S0 → ∅
S0 → UU |ν
U → UU |ν

(3)

Then we translate (3) into Greibach normal form, by first eliminating left-recursion.

Step 1: Add a new rule B → V |V B to eliminate left-recursion V → V V .

S0 → ∅
S0 → UU |ν
U → UU |ν

S0 → ∅
S0 → UU |ν
B → U |UB
U → ν|νB

Step 2: The final step is to use the rule V → ν|νB to make all the other rules start
with a terminal.

S0 → ∅
S0 → UU |ν
B → U |UB
U → ν|νB

S0 → νU |νBU |ν|∅
U → ν|νB
B → νB|νBB|ν

(4)

The rule set (4) is now in Greibach normal form. ut

The next Lemma states that an MDLe can be translated into a BPA in Greibach
normal form [10].

Lemma 2. The terms of an MDLe are a finite trace set of a normed process p, re-
cursively defined by means of a guarded system of recursion equations in restricted
Greibach normal form over a BPA.

Proof. Lemma 1 allows us to express an MDLe as a CFG in Greibach normal form,
which in addition satisfies the conditions of Notation 4.5 of [10]. We apply Notation
4.5 in conjunction with Proposition 5.2 of [10] to write the CFG of (4) as a BPA as
follows. According to [10],

– If E is the system represented as a CFG in Greibach normal form, let E′ denote the
system represented in BPA by replacing | by +, and → by = .

– Let E′ be in restricted Greibach normal form over the BPA, with unique solution p.
Then ftr(p) (the set of finite traces of p) is just the context-free language generated
by E.

Applying the change of notation suggested,

S0 → νU |νBU |ν|∅
U → ν|νB
B → νB|νBB|ν

S0 = ∅
S0 = νU + νBU + ν
U = ν + νB
B = νB + νBB + ν

(5)

and thus we have a BPA in restricted Greibach normal form. Note that according to
Definition 5, each variable string in the right hand side of (5) has length of at most
two. By applying Proposition 5.2 of [10], to remove the parts of the system that do
not contribute to the generation of the finite traces, we conclude that the BPA of (5)
generates the strings of the original MDLe. ut

4.2 Composition of MDLes

In the preceding section we distinguished between events associated to transitions a
push-down automaton representing an MDLe can take autonomously, and events that
cannot initiate transitions. Among the latter, there can be events that when synchronized
with some of another push-down automaton (synchronization here implies a common
interrupt function), become active and do initiate transitions. Given two push-down
automata P1 and P2 defined according to Definition 7, we define the set H ⊆ η1 ∪ η2

as the collection of events on which P1 and P2 should be synchronized. Set H includes
those events that become active as a result of the composition of P1 with P2. Set H is
composed of three components:

1. (Γ2∪η1)\ (Γ2∪η2)\ (Γ1∪η1), (part I in Figure 1), which contains enabled events
of P1 that P1 can now activate because of (with “knowledge” provided by) P2;

2. (Γ1∪η2)\(Γ2∪η2)\(Γ1∪η1), (part III in Figure1), which contains enabled events
of P2 that now become active because of (with “knowledge” provided by) P1; and

��������������
�������
�������

���
������
���
������

����������
�����
�����

�������
�������
��������������

�������
��������������
������� 	�		�	

�

�

���

���
���
�
���������
���

B

BI

II

III

A A

Γ1

Γ2 η2

η1

Fig. 1. Enabled, active and common events. Set A includes private active events of P1;
set B contains private active events of P2; sets I , II , and III represent the common
active events of the composed system, the ones that make up H .

3. (Γ1 ∪ η2) ∩ (Γ2 ∪ η1), (part II in Figure 1), which includes common active events
in both systems.

Note that the components of H defined in 1 and 2 do not appear in the set of (active)
events of the composed system under the conventional definition of composition [23].
Our definition of composition is stated as follows.

Definition 8. Consider two MDLes, expressed as context-free grammars G1 = (V1, η1, R, S01)
and G2 = (V2, η2, R, S02), both with rule sets R of the form (2). Let E1 and E2 be their
corresponding representations as a system of guarded recursive equations, in restricted
Greibach normal form over a BPA. The composition of G1 and G2 is defined as the
context-free grammar G = (V, η,R, S0), where (with reference to Figure 1)

– V := V1 × V2;
– η := η1 ∪ η2, is the set of enabled events (also denoted η(1‖2));
– S0 := S01 × S02;

– R(V × η) = R((V1, V2)× η) :=

(R(V1, η), R(V2, η)) if η ∈ H,

(R(V1, η), V2) if η ∈ A,

(V1, R(V2, η)) if η ∈ B

undefined, otherwise.

The transitions of the composed system still respect the grammar rules (2), however,
the composition restricts the domain of R. The push-down automaton representing the
composed system can be defined as follows:

Definition 9. The automaton resulting from the composition of push-down automata
P1 and P2 that accept the strings of two different MDLes is the automaton P1‖P2 =
(V, η(1‖2), Σ, Γ(1‖2), δ, V0, Z0), where (with reference to Figure 1)

– V = V1 × V2 is the set of states;
– η = η(1‖2) = η1 ∪ η2 is the input alphabet;
– Σ = (V1 × V2) ∪ η(1‖2) is the stack alphabet;
– Γ(1‖2)((u1, u2)) = Γ1(u1) ∪ Γ2(u2) is the set of inputs that may generate transi-

tions at state (u1, u2),

– δ(V × η) = R((V1, V2)× η) :=

(R(V1, η), R(V2, η)) if η ∈ H,

(R(V1, η), V2) if η ∈ A,

(V1, R(V2, η)) if η ∈ B

undefined, otherwise
– V0 = (V01 × V02) is the set of initial (start) states;
– Z0 = (Z01 × Z02) is the start symbol of the stack.

For the composition of Definition 8 to be well defined, we need to make sure that
when we compose variables and terminals of two systems in (guarded) Greibach normal
form over a BPA, the result is a term that conforms to the same rules. This is the goal of
the next section.

4.3 MDLes are closed under composition

The next result establishes that operation T is closed.

Lemma 3. An MDLe written as a system of guarded recursive equations in restricted
Greibach normal form is closed under the left merge T operator.

Proof. Assume that G is written as a system of guarded recursive equations in restricted
Greibach form, according to (4). We prove the claim by taking all merge combinations
of variables in this representation, and showing that the result is a system of equations
that are also guarded in restricted Greibach normal form. According to Table 3,

UTB = (ν + νB)TB
M4,M2

= νB + (νB)TB
M3= νB + ν(B‖B)

A3,M1
= νB + ν(BTB)

UTS0 = (ν + νB)TS0
M4,M2

= νS0 + (νB)TS0
M3= νS0 + ν(B‖S0)

M1= νS0 + ν(BTS0 + S0TB)

BTS0 = (ν + νBB + νB)TS0
M4,M2

= νS0 + (νB)TS0 + (νBB)TS0

M3,A5
= νS0 + ν(BTS0 + S0TB) + ν(BB)TS0

M3= νS0 + ν(BTS0 + S0TB) + ν(BBTS0 + S0TBB)

Note that reversing the order of variables in the above merge operations yields the same
type of expressions encountered above:

BTU = (νB + νBB + ν)TU = νU + ν(BBTU + UTBB) + ν(BTU + UTB)
S0TU = (νU + νBU + ν)TU = νU + ν(UTU) + ν(BUTU + UTBU)
S0TB = (νU + νBU + ν)TB = νB + ν(UTB + BTU) + ν(BUTB + BTBU)

All expressions above are guarded recursive equations in restricted Greibach normal
form. All variable occurrences are guarded by ν and variable products do not exceed
three in length. Since the left-merge operation T is closed, it follows from M1 in Table
3 that ‖ is closed too. ut

4.4 MDLe equivalence is decidable

Systems of guarded recursive equations enjoy nice properties in the sense that verifying
the bisimulation equivalence is decidable [10].

Theorem 1 ([10]). Let E1, E2 be normed systems of guarded recursion equations
(over basic process algebras) in restricted Greibach normal form. Then the bisimulation
relation ≈, that is whether E1 ≈ E1, is decidable.

Theorem 1 allows us to conclude that

Corollary 1. If MDLes are written in the form of a system of guarded recursive equa-
tions in Greibach normal form over a BPA, the bisimulation relation is decidable.

Proof. Using Lemma 1, each MDLe is written as a context-free language in Greibach
Normal Form. Lemma 2 translates this representation into a system of guarded recur-
sive equations in restricted Greibach normal form over a BPA. By Theorem 1 of [10],
language equivalence for systems in (guarded) restricted Greibach normal form such as
the MDLes translated using Lemma 2, is decidable up to bisimilarity. ut

A natural question that arises next, is whether the composition operator preserves
bisimilarity: do we loose this property when we expand the basic process algebra system
by including the operators ‖ and T to arrive at the system the semantics of which are
described in Tables 3 and 4? The following section ensures us that we do not.

4.5 MDLe composition preserves bisimilarity

Proposition 1. The composition operator ‖ preserves bisimilarity. That is, if P ≈ Q,
then P‖R ≈ Q‖R.

Proof. Consider a relationR over the set of processes, such that P‖R and Q‖R belong
to R whenever P ≈ Q. We show that R is a bisimulation.

Case 1. Process P (or Q) executes action a. If P ≈ Q, then (P‖R,Q‖R) ∈ R.
Assume that P

a→ P ′. Then by action relation R6 in Table 4, we have P
a→ P ′ ⇒

P‖R a→ P ′‖R. Since P ≈ Q, there exists Q′ such that Q
a→ Q′, and P ′ ≈ Q′.

By definition, (P ′‖R,Q′‖R) ∈ R. Similarly, it can be shown that if Q
a→ Q′, then

there exists a P ′, with P ′ ≈ Q′ and (P ′‖R,Q′‖R) ∈ R.
Case 2. Process R executes action a. Since bisimulation is reflexive, this case reduces

to the previous one, and (P‖R,P‖R) ∈ R.

Case 3. Process P terminates after executing action a (P a→
√

). Relation R7 of
Table 4 implies that P

a→
√
⇒ P‖R a→ R. Since P ≈ Q, we need to have

Q
a→
√

. Thus, by R7 of Table 4, Q‖R a→ R. By definition, R ≈ R and thus
the processes derived with the a-transition belong R. The case where Q terminates
after executing a is identical.

Case 4. Process R terminates after executing a (R a→
√

). By R7 of Table 4, R
a→√

⇒ P‖R a→ P. Similarly, R
a→
√
⇒ Q‖R a→ Q. Given that P ≈ Q, the

processes derived from P‖R and Q‖R when R executes a, belong to R.
Case 5. Processes P and R are synchronously execute action a. In this case, we resort

to axiom M1 of Table 3, and treat the transitions of P and R separately according
to cases 1 and 2 above. The case where Q executes a synchronously with R is
identical.

Case 6. Processes P and R terminate synchronously by executing action a. Axiom
M1 of Table 3 allows us to treat the synchronous transition to termination as an
asynchronous one. In this case, we proceed according to cases 3 and 4.

Thus, for all combinations of possible transitions for P‖R and Q‖R, we have that
P‖R ≈ Q‖R if P ≈ Q. The conditions of Definition 6 are satisfied and therefore R is
a bisimulation relation. ut

From Proposition 1 it follows that

Corollary 2. The composition of MDLes is decidable up to bisimulation equivalence.

Proof. The operation ′‖′ is closed (Lemma 3) and also preserve bisimilarity (Lemma 1),
which means the composition of MDLes can also be written as a system of guarded
recursive equations in restricted Greibach normal form over a BPA. By Theorem 1, this
composition is decidable. ut

5 A Case Study: the Sliding Block Puzzle

Representing an instance of the sliding block puzzle as a multi-robot hybrid system
serves as a reality check, to ensure that our formulation captures the possible interaction
between heterogeneous robot systems. In a general sliding puzzle puzzle, the challenge
is to slide blocks on a flat surface with the purpose of achieving a desired configuration.
No block can be removed from the board. Quoting Gardiner [24]

These puzzles are very much in what of a theory. Short of trial and error, no
one knows how to determine if a given state is to obtainable from another given
state, and if it is obtainable, no one knows how to find the minimum chain of
moves for achieving the desired state.

It has been shown that in general, sliding-block puzzles are PSPACE-complete [25, 26].
However, under certain simplifying assumptions and for cases of such puzzles like the
one we consider here (Figure 2), a polynomial algorithm can be constructed to move a
single block from any initial position to any final position [26].

Fig. 2. Realization of a sliding block
puzzle. Square blocks (tiles) cover all
but one cell of a 4 × 4 grid. A robot
(round object) is moving along the
rows and columns of the grid reconfig-
uring the blocks. Blocks and robot are
modeled as agents moving according to
their own MDLe.

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

Fig. 3. Enumeration of agent positions
for the agents in the sliding block puz-
zle. Positions 1 through 16 can be occu-
pied by blocks. (In Figure 2, position 2
is not occupied.) Positions 17 through
81 represent possible positions for the
robot agent.

In the simple instance of the sliding block puzzle depicted in Figure 2, the goal is for
the robot (initially at position 26) to move the block at position 1 to location 6. Robot
and blocks are thought to be autonomous agents, each with its own MDLe. A block can
do nothing by itself; any transitions within the block’s MDLe may only be activated
after composition with the robot agent, which can push a block to a different location.
However, these potential transitions in the block’s configuration need to be encoded in
its enabled event set η.

For a block to be able to make a transition (which is synchronized with a cor-
responding on in the robot’s event set), the destination location must be unoccupied;
thus blocks need to keep track of whether nearby locations are occupied. We therefore
model the state of the block as a triplet, consisting of the state of motion (the analo-
gous of the controller in a robotic system), its position, and the availability of an empty
location in the immediate neighborhood. The block automaton is B = (Vb, ηb, Vb ∪
ηb, Γb, δb, V0b, Z0b), where

1. Vb := {Vb1, Vb2, Vb3} is the set of states, where
– Vb1 ∈ {u1, . . . , u5} is a motion state: u1 (be pushed east), u2 (be pushed west),

u3 (be pushed north), u4 (be pushed south), u5 (stay at location);
– Vb2 ∈ {1, . . . , 16} is the position of the block; and
– Vb3 ∈ {b1, . . . , b5} are possible empty nearby locations: b1 (east), b2 (west), b3

(north), b4 (south), b5 (none);
2. ηb = {νb | νb = ((ui, j, bk), ξ)}, with i and k in {1, . . . 5}, and j in {1, . . . , 16},

includes all events (MDLe atoms; ξb is the block’s interrupt function) ;
3. Γb : Vb → 2ηb is the event activation function (initially mapping to ∅);

4. δb : Vb×ηb → Vb is the transition function, also mapping to ∅ since the range of Γb

is empty, suggesting that the block automaton can make no transitions on its own
(except for the case of u5).

Symbols V0b and Z0b correspond to the initial state and stack symbol, respectively.
For the robot, an atom consists of the state of motion (controller running) and its

position. The robot can move along the rows and columns of the grid, and push against
a block in order to move it. The automaton for the robot is a tuple R = (Vr, ηr, Vr ∪
ηr, Γr, δr, V0r, Z0r), where

1. Vr = {(Vr1, Vr2)} is the set of states, where
– Vr1 ∈ {w1, . . . , w9} are the available controllers for the robot: w1 (push east)

w2 (push west), w3 (push north), w4 (push south), w5 (stay at location), w6

(move east), w7 (move west), w8 (move north), w9 (move south); and
– Vr2 ∈ {17, . . . , 81} are the possible positions for the robot;

2. ηr = {νr | νr = ((wi, j), ξr)}, where i is in {1, . . . , 9}, j in {17, . . . , 81}, and
ξr is the robot’s interrupt function, includes all the events associated with possible
robot transitions;

3. Γr : Vr → 2ηr is the activation function determining which events are active at
each robot state; and

4. δr : Vr × ηr → Vr is the transition function.

Similarly, V0r and Z0r are the initial state and the start stack symbol for the robot
automaton, respectively.

The system expressing all possible transitions in the sliding block puzzle is gen-
erated by composing the robot with the fifteen blocks. Note that traditional notions of
(parallel) composition [23] produce a system where nothing can happen (the puzzle
configuration cannot change). However, by identifying “pushing” events in both sys-
tems as common: ui = wi, for i = 1, . . . , 5 and including them in H = {u1, . . . , u5},
the composed system can take synchronised transitions on these events. Therefore, to
move a block from position 1 to position 6, starting from the configuration shown in
Figure 2 we give the composed system the following input string:

((5,27,1,1,1,1,26),2)((8,27,5,2,2,5,27),1)((8,32,2,2,2,8,27),1)((8,41,2,2,2,8,32),1)((8,46,2,2,2,8,41),1)

((5,46,2,2,2,8,46),1)((7,46,2,2,2,5,46),1)((7,50,2,2,2,7,46),1)((5,50,2,2,2,7,50),1)((8,50,2,2,2,5,50),1)

((4,50,4,5,4,5,50),2)((5,36,4,5,4,4,50),1)((6,36,5,1,3,5,36),1)((6,32,3,1,3,6,36),1)((6,37,3,1,3,6,32),1)

((6,33,3,1,3,6,37),1)((5,33,3,1,3,6,33),1)((8,33,3,1,3,5,33),1)((8,42,3,1,3,8,33),1)((5,42,3,1,3,8,42),2)

((7,42,3,1,3,5,42),1)((2,42,2,6,2,5,42),1)((5,41,2,6,2,2,42),1)((9,41,5,5,1,5,41),2)((9,32,1,5,1,9,41),1)

((9,27,1,5,1,9,32),1)((9,18,1,5,1,9,27),1)((5,18,1,5,1,9,18),1)((6,18,1,5,1,5,18),1)((6,23,1,5,1,6,18),1)

((5,23,1,5,1,6,23),1)((8,23,1,5,1,6,23),1)((3,23,3,2,3,5,23),2)((5,37,3,2,3,3,23),1)((8,37,5,6,4,5,37),1)

where due to space restrictions, we have abbreviated the composed atoms, and included
only the components corresponding to the block (distinguished by its position) that
physically interacts with the robot. The physical outcome of this plan is shown in Fig-
ure 4.

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

Step 5 Step 7 Step 8

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

73 78 74 79 75

1368 69 7014

59 64 60 65 61

954 55 5610

45 50 46 51 47

80 76 81 77

15 71 7216

66 62 67 63

11 57 5812

52 48 53 49

540 41 426

31 36 32 37 33

126 27 282

17 22 18 23 19

7 43 448

38 34 39 35

3 29 304

24 20 25 21

Step 1 Step 2 Step 3 Step 4

Step 6

Fig. 4. Successive snapshots of the solution to the sliding puzzle problem. The robot (?)
moves a block (©) from position 1 to position 6.

6 Conclusion

Our approach to composition of MDLes and cooperative behavior between heteroge-
neous systems is based on allowing systems to have additional cooperative transitions,
that become active only when the systems are composed with appropriate others. We
engineered the mechanics of this interaction by identifying these related, or interdepen-
dent, transitions between systems and placing them in a set H that affects how the tran-
sitions of the composed system are synchronized. By mapping MDLes to a specific type
of basic process algebras we obtained well defined semantics to such compositions, and
established computability properties (at least when it comes to language equivalence)
for these processes and their compositions. Further steps include the construction of a
bisimulation algorithm to allow us to abstract the discrete (but big) systems resulting
from such compositions, and the subsequent use of available model checkers for motion
and task planning by negating reachability predicates and using counterexamples.

Acknowledgement This work is supported by NSF IIS grant # 0447898.

References

1. Brockett, R.: Formal languages for motion description and map making. In Bailleul, J.,
Brockett, R., Donald, B., eds.: Robotics. Volume 41. ACM (1990) 181–193

2. Manikonda, V., Krishnaprasad, P., Hendler, J.: Languages, behaviors, hybrid architectures
and motion control. In Baillieul, J., Willems, J.C., eds.: Mathematical Control Theory.
Springer-Verlag (1998) 200–226

3. Hristu, D., Krishnaprasad, P., Anderson, S., Zhang, F., L.D’Anna, Sodre, P.: The MDLe
engine: A software tool for hybrid motion control. Technical Report 2000-54, Institute for
Systems Research, University of Maryland (2000)

4. Baeten, J.: A brief history of process algebra. Technical Report CSR 04-02, Vakgroep
Informatica, Technische Universiteit Eindhoven (2004)

5. Frazzoli, E., Dahleh, M.A., , Feron, E.: Maneuver-based motion planning for nonlinear
systems with symmetries. IEEE Trans. on Robotics 21 (December 2005) 1077–1091

6. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77
(1989) 541–580

7. Jancar, P.: Undecidability of bisimilarity for petri nets and some related problems. Theoret-
ical Computer Science 148 (1995) 281–301

8. Hristu-Varsakelis, D., Egerstedt, M., Krishnaparsad, P.: On the structural complexity of
the motion description language MDLe. In: Proceedings of the 42nd IEEE Conference on
Descision and Control. (2003) 3360–3365

9. Burkart, O., Steffen, B.: Composition, decomposition and model checking of pushdown
processes. Nordic Journal of Computing 158 (1995) 89–125

10. Baeten, J., Bergstra, J., J.W.Klop: Decidability of bisimulation equivalence for process gen-
erating context-free languages. Journal of the ACM 40 (1993) 653–683

11. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation
equivalence of normed basic parallel process. Theoretical Computer Science 158 (1996)
143–159

12. Milner, R.: A Calculus of Communicating Systems. Volume 42 of Lecture Notes in Com-
puter Sciences. Springer-Verlag (1980)

13. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
14. Hoare, C.: Communicating Sequential Processes. Lecture Notes in Computer Sciences.

Prentice-Hall (1985)
15. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Volume 18 of Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press (1991)
16. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for

automatic verification of real-time systems. In: DIMACS Workshop on Verification and
Control of Hybrid Systems. Springer Verlag (1995)

17. Henzinger, T., Ho, P.H., Wong-Toi, H.: A user guide to HYTECH. In Brinksma, E., Cleave-
land, W., Larsen, K., Margaria, T., Steffen, B., eds.: TACAS 95: Tools and Algorithms for the
Construction and Analysis of Systems. Volume 1019 of Lecture Notes in Computer Science
1019. Springer-Verlag (1995) 41–71

18. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Hybrid Systems III.
Volume 1066 of Lecture Notes in Computer Science. Springer-Verlag (1996) 208–219

19. Brockett, R.W.: On the computer control of movement. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. (1988) 534–540

20. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company (1997)
21. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra.

Technical Report ECS-LFCS-98-386, School of Informatics at the University of Edinburgh
(1998)

22. Pappas, G.J.: Bisimilar linear systems. Automatica 39 (2003) 2035–2047
23. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic

(2001)
24. Gardner, M.: The hypnotic fascination of sliding-block puzzles. Scientific American 210

(1964) 122–130
25. Hopcroft, J., Schwarz, J., Sharir., M.: On the complexity of motion planning for multiple

independent objects:pspace-hardness of the ’warehouseman’s problem. International Journal
of Robotics Tesearch 3 (1984) 76–88

26. Robert A. Hearn, E.D.D.: Pspace-completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of computation. Theoretical Computer
Science 343 (October 2005) 72–96

	Composition of Motion Description Languages
	Wenqi Zhang and Herbert G. Tanner

