L eader-to-Formation Stability

Herbert G. Tanner

Abstract—The paper investigates the stability properties of mo-
bile agent formations which are based on leader-following. We
derive nonlinear gain estimates that capture how leader behav-
ior affects the interconnection errors observed in the formation.
L eader toformation stability (L FS) gainsquantify error amplifca-
tion, relate interconnection topology to stability and performance
and offer safety bounds for different formation topologies. Anal-
ysis based on the LFS gains provides insight to error propagation
and suggests ways to improve the safety, robustness and perfor-
mance characteristics of a formation.

|. INTRODUCTION

Interconnected systems have lately received considerable at-
tention, motivated by recent advancesin computation and com-
munication, which provide the enabling technology for appli-
cations such as automated highway systems [1], cooperative
robot reconnaissance [2], [3] and manipulation [4], [5], for-
mation right control [6], [7], satellite clustering [8] and con-
trol of groups of unmanned vehicles[9], [10], [6]. Advantages
of interconnected multi-agent systems over conventional sys-
tems include reduced cost, increased ef£ciency, performance,
recon£gurability and robustness, and new capabilities. A space
radar based on satellite clusters [11] is estimated to cost three
times less than currently available systems, increase geoloca-
tion accuracy by afactor of 500, offer two orders of magnitude
smaller propulsion requirement and be able to track moving tar-
gets through formation zight.

Formations have been represented by means of virtual struc-
tures or templates [12], [7]. Graphs have aso been used to
capture the interconnection topology in a formation [13], [14]
and recect control structure [15], constraint feasibility [16], in-
formation mow [17] and error propagation [18]. These graphs
can have undirected edges, when the latter model position
constraints [13], [14], or directed for the case of information
oow [17] or leader-following inter-agent control speci£cations
[29], [20], [21].

Formation control and interconnected systems stability have
been analyzed recently from many different perspectives. In
behavior-based approaches [2] the group behavior emerges as
a combination of group member behaviors, selected among a
set of primitive actions. Lyapunov based techniques have been
used extensively to establish asymptotic stability in multi-agent
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formations. Formation control specifcations are usually en-
coded in a formation constraint function [22] or in some arti-
£cial potential functions[23], [13] that usually play the role of
Lyapunov function candidates. Another approach that applies
to linear spatially interconnected systems is a distributed con-
trol scheme [24] that is based on £2-norm performance mea-
sures. Local coordination control schemes that aim at stabiliz-
ing agents around some desired confEgurations have also been
successfully applied [7], [19], [25]. String stability has proved
to be an important tool in analyzing the stability of platoons of
vehicles[26], [27], [28], [29]. System cascading is made stable
by ensuring that the error attenuates as it propagates from one
system to the next downstream. The string stability property is
given an elegant state space formulation and it was shown to
be robust with respect to structural perturbations[1]. Mesh sta-
bility, which can be thought of as a generalization to multiple
dimensions [30], also enjoys similar properties.

In the new generation of interconnected systems that are now
being devel oped, safety, robustness and performance are going
to be critical properties, and distinguish such systems from all
their predecessors. Most previous approachesto formation con-
trol aim at establishing convergence propertiesfor formation er-
rors, which is necessary to make such a system operational. To
address issues related to safety and performance, we need new
tools[31] that allow asto quantify, bound and estimate the error
amplitudesin the worst case.

In this paper we introduce Leader-to-Formation Sability
(LFS inan effort to addresstheseissues. Thenotionisbased on
input-to-state stability [32] and its invariance properties under
cascading [33], [34]. LFS quanti£es error ampli£cation during
signa propagation in leader-following formations. We estab-
lish nonlinear gain estimates between the errors of the forma-
tion leaders and the interconnection errors observed inside the
formation. In this way, we can characterize how leader inputs
and disturbances affect the stability of the group. We are also
able to assess the stability of particular subgroups inside the
formation and thus guide analysis. In the case where the gain
estimates can be expressed as linear functions of the formation
errors, then gain propagation can be done effciently through
an algorithm based on algebraic matrix formulas, in which the
interconnection topology of the formation appears explicitly in
the form of the adjacency matrix of the underlying graph.

Il. DEFINITIONS AND PRELIMINARY REMARKS

In the context of this paper, a formation is defned as a net-
work of vehicles interconnected via their controller speci£ca-
tions. These speci£cations dictate that each agent must main-
tain a certain relative state vector with respect to its leaders.
Agent interconnections are modeled as edges in a directed (for-
mation) graph [35], labeled by the respective control specifca-



tions. This section introduces the material needed for describ-
ing formally the formation, and defnes the stability notionsthat
are going to be used in the subsequent analysis.

A. Graph Theory Preliminaries

A directed graph consists of a vertex set V(X)) and an di-
rected edge set F(X), where adirected edge is an ordered pair
of distinct vertices. An edge (x, y) in adirected graph is said to
be incoming with respect to y and outcoming with respect to
2. Such an edge has vertex = as atail and vertex y as a head.
The indegree of a vertex in a directed graph is defned as the
number of edges that have this vertex as ahead. If (z,y) isan
edge, then = and y are adjacent. A subgraph of agraph X is
agraphY suchthat V(Y) C V(X) and E(Y) C E(X). A
subgraph Y of X is an induced subgraph when any two adja-
cent verticesin V(Y') areaso adjacent in X. A path of length
r in a directed graph is a sequence vy, .. ., v, of distinct ver-
tices such that for every i € [1,r], (vi,viy1) € E. A weak
path isasequence vy, . . ., v, of r + 1 distinct vertices such that
for each i € [1,r] either (v;,viy1) OF (vit1,v;) iISan edgein
E. A directed graph is weakly connected or simply connected
if any two vertices can be joined with a weak path. The dis-
tance between two vertices x and y in agraph X is the length
of the shortest path from x to yy. The diameter of agraphisthe
maximum distance between two distinct vertices. A (directed)
cycleis a connected graph where every vertex is incident with
one incoming and one outcoming edge. An acyclic graphisa
graph with no cycles.

B. Formation Graphs

We consider formations that can be represented by acyclict
directed graphs. In these graphs, the agents involved are iden-
tifed by vertices and the |eader-following relationships by (di-
rected) edges. The orientation of each edge distinguishes the
leader from the follower. Follower controllersimplement static
state feedback control laws that depend on the state of the par-
ticular follower and the states of its leaders.

De£nition I1.1 (Formation Control Graph). A formation
control graph 7 = (V, E, S) is a directed acyclic graph con-
sisting of:

o Afniteset V = {vq,...,uon} Of N vertices and a
map assigning to each vertex v; a control system &; =
fi(t, z;,u;) wherez; € R™ and u; € R™.

e« Anedgeset E C V x V encoding leader-follower rela-
tionships between agents. The ordered pair (v,,v;) £ e;;
belongsto £ if u; depends on the state of agent 4, x;.

« Acollection D = {d;;} of edge specifcations, defning
control objectives (setpoints) for each j : (v;,v;) € E for
somew; € V.

For agent j, the tails of all incoming edges to vertex j rep-
resent leaders of j, and their set is denoted by L; C V.
Vertices v, of indegree zero represent formation leaders with
ve € Lrp C V. Since there are no incoming edges for the ver-
ticesin L, no formation speci£cations can be defned for for-
mation leaders; instead, these agents regulate their behavior so

1The case of cyclesin aformation graph istreated in [18].

that the formation may achieve some group objectives such as
navigation in obstacle environmentsor tracking reference paths.

Given a specifcation d; on edge (vi,v;) € E, asetpoint
for agent j can be expressed asz; = xj, — dy;;. For agentswith
multiple leaders, the speci£cation redundancy can be resolved
by projecting the incoming edges speci£cationsinto orthogonal

components:
= Silx
keL;

dk] (1)

where S),; are projection matrices with 3", rank(Sk;) = n.
Then the error for the closed loop system of agent j is defned
to be the deviation from the prescribed setpoint  ; = Ti — xj,
and the formation error vector is constructed by stacking the
errors of al followers:

#2037, veV\Lp

Formation leaders are supposed to pursue some group objec-
tives (missions). Consider a formation leader associated with
avertex v, € Lp. If these objectives are known a priori, then
they can be encoded in some nominal trajectory, x7, in which
case we can defne the error for agent £ as: £, = xj — x¢. Now
consider the input transformation u, = u, + wy, and assume
a feedback control law @,(Z,), which makes the origin of the
closed loop system

Ty = ff(tv‘%fvwf)

with w, = 0, asymptotically stable. Similarly, if the mission
objectives are unspecifed, we can set z; = 0, and assume the
existence of an asymptotically stabilizing control law, i, that
makes 7, = fg(t Z¢,0) asymptotically stable. Then, the mis-
sion objectives can be realized by means of the input term w .

C. Leader-to-Formation Sability

In this section we investigate the stability properties of the
formationwith respect to al leader inputsw, or errors z, (inthe
case where leader control specs have been encoded in zj.) We
obtain nonlinear gain estimates that quantify the transient ef-
fects of initial errors z(t() and the steady state effects of leader
inputswy, vy € Ly onthe amplitude of the formation error z.

Defnition 11.2 (LFS). A formation is called leader-to-
formation stable (LFS) if thereis a class KL function g and a
class K function ~ such that for any initial formation error z(0)
and for any bounded inputs of the formation leaders, {w,} the
formation error satistes:

@) < Bz

1) +

+ > w <?Up |wz||> 2

leLr

Thefunctions 5(r, t) and v,(r) are called transient and asymp-
totic LFS gains for the formation.

L eader-to-formation stability builds on the notion of input-
to-state stability and it is a ‘robustness' property [36], [37]. In
this approach, the formation is viewed as a nonlinear opera
tor from the space of leader input/disturbances to the space of
the formation internal state. Functions 3(r, t) and v,(r), in (2)



are ‘nonlinear gain estimates quantifying the effect of initial
conditions and leader input on formation errors. Inequality (2)
provides a safety bound on the formation error. Thus, given a
safety specif£cation, and aset of initial conditions, one can esti-
mate an upper bound on the admissible input that can keep the
system safe; conversely, given a safety speci£cation and under
aparticular input regime, a set of initial conditions from which
systemstrajectoriesremain safe at al times, can be determined.

Based on alternative characterizations of input-to-state sta-
bility [36], De£nition I1.2 implies the following:

Corollary 11.3. If aformationisLFS inthe sense of DeEnition
I1.2, then the formation error satisEes:

Jim [ E(@)] < D elsup [lwel])
leLp

Corollary 11.3 establishes the asymptotic LFS gain
~(sup ||we||) @ an ultimate bound for the formation er-
ror. This motivates the defnition of the following L FS stability
measure:

Defnition 11.4. Consider a formation that is LFS. Then the
scalar quantity:

SR E—
LFS 1+21{6LF ’Yl(l)

is called the LFS stability measure of the formation.

As defned, Py rg variesin [0,1]. The sum in the denom-
inator of the defning equation for the LFS measure gives an
estimate of the region in which the steady state formation er-
ror will remain, when the inputs to the formation leaders are
bounded inside unit balls. The larger the error region grows,
the smaller the L FS measure becomes. On the other hand, as
the size of the error region shrinks, the performance measure
tendsto 1.

I1l. LFS PROPAGATION

v
()
O

In the formation graphswe consider in this paper, al induced
subgraphs with N vertices have the form of Figure 1. This
means that all cyclesin the underlying undirected graph are of
order 3. This is done to simplify the analysis, which can be
extended to more general interconnection topologies at the ex-
pense of added analytical complexity. Assume an enumeration

Fig. 1. A generic formation control graph.

on the induced formation control graph of Figure 1, where the
vertices in the £rst row are assigned the numbers 1, ..., L, the
vertices in the second are assigned the numbers L + 1,..., M
and the rest are assigned the numbers M + 1,..., N. Let the
dynamics of the agents be expressed as follows:

e = fo(t,ze,up), £€{1,...,L} (33

5= frt,xp,uyp), fe{M+1,....N} (3¢c)
The agents are driven by control laws of the form:

ug = ug(t, xe, To,we), £€€{1,...,L} (4a)

uz:ul(tvxzvi'z)v ZG{L—’_L;M} (4b)

up =us(t,xp, &), fe{M+1,...,N} (4c)

resulting in closed loop error dynamicswhich can bewritten as:

e = folt, &g, ve) (53)
Ji‘?’,:fli(twilw"wilzwii) (5b)
i'f:ff(tvi'lv"'ail\l;‘%f) (5C)

The main result of the paper is based on the invariance of the
LFS property under a broad class of interconnections:

Proposition 111.1. Consider the formation of Figure 1 with
closed loop error dynamics given by (5). If (5b) is LFS with
respectto z1,...,&

s L[,
() < Bi(1ZO)]|£) + Sogy ves(sup [[e]])

and (5¢) isLFSwith respectto 4, . . .

y LM -

12 (DN < Br (127 O)I1 1) + 302 g (sup 1))

then the induced formation control graphis LFSwith respect to
T1,...,TL"

@)1 < BUEO)I 1) + 3¢y Yelsup [1Zl])

with z := (-iL-l—lw--wiN) and

B t) = X arin { T i [ (48:(26:012(0)11,0), £) )
+ B (1)1, 9)] + 87 (28; (12(0)], )+

2520 4 s (26,12 0)11,0)), ) } (6a)
%) = T aren | 2 Lo 20 (L) + s (0 +
B (QL( Sy ver(r) + Zf\iul Yif (2Lei(r))), 0)
+ i i (1) + i vis (4@- (2Lyei(r), o))] . (6b)
i=L+1 i=L+1
Proof. See Appendix. O

In the case where the agent dynamics are linear, then the
conditions for LFS are automatically satisEed. The following



Proposition takes into account the linearity of the gain func-
tions and provide less conservative bounds than those obtained
by applying (6) to the linear case. The linear version of (3) has
the following form:

Ty = Axy + Buy,
T; = Az + Bu,
Ty = A{Ef + BUf,

ted{l,...,L}
ic{L+1,...,M}
fe{M+1,..., N},

aong with the feedback control laws:

u; =K;x; +e; (73
wy —Kyip+e;, (7b)
ug =KZ¢ + ey, (7c)

where K;, Ky, and K, are such that (A; — B.K,), s €
{1,..., N} are Hurwitz, and e;, e, and ey satisfy:

Biei = —Ail';, Bfef = —Af{E;, Bgeg = —Agxz

These ensure that the control inputs of each follower can pro-
vide the appropriate feedforward action to track the leader. Ap-
plication of (7) results in closed loop error dynamics that can

be written as:

i =~ (A¢ — BeKy)Zs, (8a)
i =(A; — BiK))i; + 47 (8b)
M
iy =(As = ByKp)is — Y Sif(A — BiK))#;,  (8c)
i=L+1

This model is equivalent to the one used for a string of LTI
systemsin [38]. In this case, the LFS gains are as follows:

Proposition I11.2. Consider the formation of Figure 1 where
the closed loop error dynamics of the agents are given by (8).
Then, (8) isLFS with respectto z4,...,ZL:

IZ(@)]| < BIZ(0)] e + 3¢y Fesup |||

i _ 1-0

where 6 € (0,1) is a parameter, y = Tmax O [P (7]}
Aum[] and A, [-] are the largest and smallest eigenvalues of a
matrix, respectively,

M N
B Z [ Z (B?” + (B; + Bf)Bﬁif) + BJ (99)
i=L+1 f=M+1
N ~ M ~ ~
Ve = Z (L + Bp)er + Z (Bf + Bi + 1)%igYei + ui)
f=M+1 i=L+1
(9b)
1
i A Am(Pr] 2 _
Wlth 67" = (%) [} for T - 17...’N, "}/jl =
3
2(Am[P])2 Am[A; —B; Kj] ot e
P , and each P; satisfying:
Pj(Aj — BjKj) + (Aj — BjK;)"Pj = —1
Proof. See Appendix. O

IV. GRAPH PROPAGATION MATRIX EQUATIONS

For linear systems, the LFS gain propagation eguations (9)
can be encoded in recursive matrix eguations, in which the for-
mation graph structure appears explicitly in the form of the
graph adjacency matrix. The recursion is based on the prop-
erty of the powers of the adjacency matrix to give the number
of paths of length equal to the exponent between two vertices
in the graph [35]. By labeling the edges of the graph with the
L FS gains associated with the particular edge, we are able to
propagéte the gains through the graph and obtain a sequence
of matrices that express the LFS gains of al paths inside the
formation graph.

Consider the adjacency matrix A of G:

aijj = 1, if (vq;,vj) ek

A = [a;5], where i
a;; = 0, otherwise

and defne the matricesT', B € RIVI*IVl asfollows:

B =[b;;], where bij = Bj, It ayj = 1 (10)
bi; = 0, otherwise

G =[gi;], where { 99 = it if ai; =1 .
gi; = 0, otherwise

Obvioudly, matrices B and G provide the transient and
asymptotic LFS gains of all paths of length one (edges) in the
formation graph. Thus we defne:

By = B, G =G,

respectively, where the subscript denotes the length of the path.
Then the LFS gains of all longer paths in the formation graph
can be computed through the recursive procedure described in
the following Proposition:

Proposition 1V.1. Consider a formation control graph G with
adjacency matrix A and matrices B, G defned by (10) and
(11), respectively. Then, the asymptotic and transient LFS
gains of paths of length £ > 1 between two verticesv;, v; € V
are given recursively asthe (4, j) elements of matrices

Gr = G(Gr—10Br_1) + GGx—1 + (G o B)Gj—1
+ GAFY 4 G o (ABy_, + AY)

By, = A(Bj_1 0 By_1) + BA*! + (BoB)Gj_,
+ B(Gk-10 By-1),

(12a)

(12b)

respectively, where o denotes the Schur (elementwise) matrix
product. Moreover, the recursion terminates after d < |V| — 1
steps, where d is the diameter of the formation graph G.

Proof. See Appendix. O

V. RELATION TO ALTERNATIVE METHODOLOGIES

The framework of string and mesh stability providesan alter-
native way of analyzing the stability of interconnected systems.
Mesh stability guarantees error attenuation and establishes sta-
bility properties which are preserved when the group is aug-
mented. LFS, on the other hand, models the effect of |eader



inputs and can be used to address issues related to safety and
performance.

Although both notions recect some robustness properties of
the system, due structura perturbations in the former case and
input disturbances in the latter, the similarities seem to end
here:

« mesh stability ensures scalable stability properties which
are independent of system size whereas L FS rel ates stabil-
ity propertieswith initial conditions, input and error spec-
i£cations, and system size and interconnection topology;

« mesh stability establishes the convergence of interconnec-
tion errorsto zero while LFS provides ultimate boundsthat
depend on initia conditionsand inputs;

« in amesh stable system errors attenuate due to ‘weak in-
teraction’ conditions while in an LFS system errors can
increase but their ampli£cation is quantifed via nonlinear
gain estimates.

« thereisno notion of input in mesh stability;

« LFS nonlinear systems are generally not mesh stable;

Although LFS and mesh stahility are generally incompara
ble, one can establish a link between them, in the sense that
mesh stability of the unforced system may, under some sector
conditionsontheinput vector £elds, imply local LFS. Inthisre-
spect, it is possible to introduce inputs in a mesh stable system
and analyze their effect on the size of the errors observed.

Proposition V.1. For alook ahead system, afEnein control:

T = fl(t, J)l) + gl(t, ml)ul (133)
j:Q = fQ(t; T2, xl) + gQ(t; T2, xl)UQ (13b)
iy = fn(t,oNn, .. 7)) +gn(ton, .. o)uy (130)

Ifforu; = 0,71 =1,..., N, (13) is asymptotically mesh stable
at the origin z £ (z1,...,2x) = 0, and there are class-K
functions ¢;(+) such that

lgit,zis o an)ll < () £ max{G:(r)}, i=1,...,N
then thereis a neighborhood of the origin, D = {z : ||z|| < r}
where (13) isLFS.

Proof. See Appendix. O

The converse, however, is not true. If (13) is LFS, setting
u; = 0 does not necessarily mean that ||, ()|, < ||lz(t)]’2",
which is required for mesh stability [30]. Suffcient conditions
for mesh stability include global Lipschitz continuity of the sys-
tem vector £eldswith respect to coupling terms and exponential
stability of the unforced dynamics[30]. These conditions may
not necessarily be satisfed in LFS systems [21].

VI. APPLICATIONS
A. LFSin Mobile Robot Formations

Theresults of Section |11 can be applied to formations of non-
holonomic mobile robots. We borrow the application example
of [15] and we show that the resulting edge error dynamics are

L FS. For each nonholonomic mobile robot we consider the fol -
lowing kinematic model:

T; = v; cosb;, U; = v; sin 6; 0; = w;. 14
where (x,y, #) is the position and orientation of mobile robot
1, and v;, w; arethetranslational and rotational velocity control

inputs. For atriple of robots 4, j and & where j is supposed

Fig. 2. Leader following using a separation-bearing controller.

to follow ¢ and 4 is supposed to follow &, the speci£cation for
the leader-follower relationship can be expressed in terms of
the separation distance ¢ and the relative bearing ¢ (Figure 2)
which e.g. for the: — j pair can be written as:

hij = (6 — Cij, 0 — i) 2 (£, ij) = 0.

where (¢, and y¢; are constant speci£cation parameters. Taking
hi; as an output, the dynamics of the i — 5 leader-follower pair
can be expressed in new coordinates as.

b ] [ cosvn 0Ty,
7 = [ —
d.}” Lij ws

Pij 0 1

where d is a modeling parameter and ¢;; = 6; — 6;.
input-output feedback linearization:

{u]} _ [cos(@j + ij) —fzj sin(¢; + wm)][k{@j}
w;j s1rl(d>izi+w7:]) i COSW;J' +ij) k%w”

(15a)
— L sin(dri + wm)][/f%:m}

bescosl@pitbni) || gy,
(15b)

—sin(¢ij+vij) dcos(dij+ibiy)
Iy Iy

0 —1

cos(¢ij+piz) dsin(¢ij+iz) “:11 ]
J

Wi

Using

vi| _ [cos(ri + Yri)
wil sin(Pri+ri)
v d

the interconnection error dynamics can take the form:

Zij {k{&]} w— CO?(Z%‘ 2}05)(¢k’11 +('l/)k’1',) :
< = - i 7 — | siny; cos(Pri +Vws sin(ri +Vki

Lii cos i sin(dr; + Vi) kil
_ Lgisingsin(@ri+Yri)  Lri cos(Pritri) ki T (16)
d kaz

“ij

The internal dynamics of ¢;; can be shown to be stable [15].
Then, using V;; = 57[14;]1* + 5,7 144 ||* as @ Lyapunov func-
tion for (16), and denoting (s, ;)T by Z;;, we can arrive at:

0 i
_1] Iz

1
. 7 0] |—costi;
~ ~ J 3
Vig < = 121" + 11251 [kol 1] [ sin i |

K3 i
whichyieldsfor ¢ € (0,1):

. -2 - KL RS Y (A8 4 2k D | s
Vig < (1) 311", ¥ |3y | > medb it ol




Then followsthat: [[Z;;]| < B:; (1125 (0)[] 1) + a5 (sup [|Zxsl[),
where

max k’j,k’j —(1—¢) min{k? k2t
Bij (T7 t) =r m?n{{k’{l,k’g}} € 4o ke (17a)
i1t i d
’y” (7“) _ max{kl,k2}2 max{kl,kQ}(d+€M+T)r (17b)

gdmin{k] k3}2

establishing the L FS property of the leader-follower pair.

The simulated response of a string of ten maobile robots with
dynamicsdescribed by (14), is steered using the leader-follower
controllers (15) is depicted in Figures 3-4. Figure 3 shows the
paths of the £rst and the last robots in the string, in an effort to
follow a sinusoidal reference trajectory while maintaining the
shape of a straight line. Error propagation causes large over-
shoot for the last follower. Figure 4 presents the time evolution
of the formation errors related to separation and bearing. Af-
ter an initia transient period, the errors remain bounded inside
a certain region that depends on the magnitude of the velocity
along the reference trajectory.

8

6L

fast vehicle initial strin
9 first vehicle

1 \ \
-4+ final string shape

vehicle path

I I I I I I I I I S
-8 -6 -4 -2 0 2 4 6 8 10
x [m]

Fig. 3. A string of 10 vehicles tracking asinusoidal trajectory.

separation error
T

bearing error
T

I I I I 1 I 1 I I
[ 1 2 3 4 5 6 7 8 9 10
time [sec]

Fig. 4. Formation errors for the string of 10 vehicles.

B. Architecture Comparison

In this section we will £rst turn our attention to a formation
of three mobile robots (Figure 5). We will use LFS to assess

and numerically verify the stability properties of three differ-
ent formation architectures, based on (16). We compare the
three architectures depicted in Figures 6 and 8. In the simu-
lation runs, the formation leader, robot 1 has to follow a cir-
cular reference trgjectory, while the other robots have to re-
main in a straight line behind the leader. The parameter val-
ues selected are (4, = 0.75[m] ¥¢, = w[rad], {3, = 0.75[m],
Yy = wlrad), ¢4, = 1.75[m], d = 0.25[m] and the controller
gainsareset to k; = 10, ko = 10 for all robots.

The cascade formation of Figure 6 has an LFS asymptotic
gain: v(r) = 8r(r + 2) + 256r(r + 2)[2 + 167(2 + r)] +
512r(2 4 r)[2 + 64r(2 + r)] and an LFS performance measure
Prrs = 3.367 x 1077, For the parallel formation of Figure
8 we have y(r) = 16r(2 + r) and Prrs = 0.98, which in-
dicate a signifcant qualitative difference in performance. This
difference is depicted in Figures 7 and 9, where it is obvious
that in parallel formation, the robots are able to movein align-
ment more accurately. Although the gain estimates cal culated
are crude, having to account for the worst case, there are still
indicative of the stability properties of the system. Indeed, asit
can be seen in Figure VI-B, the parallel formation clearly out-
performsthe cascade architecture.
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Fig. 10. Formation error evolution for the two formation architectures.

Consider now the formation depicted in Figure VI-B. All
robots are thought to use the controllers (15), with the only dif-
ference that the vehicle 3 uses higher feedback gains compared
to al the others. In view of the increased performance capa-
bilities of robot 3, one may consider assigning robots 5, 6, and
7 to follow 3. However, an LFS analysis reveals that such a
change will in fact increase the magnitude of the formation er-
rors. assume that k! = kI, = k, fori = {1,2,4,5,6,7} and
k} = k3 = k' > k. Suppose that collision avoidance imposes
a maximum allowable error bound, ||r|| < R. Then the LFS
gains of (17) can be overapproximated as follows:

Bij(r,t) = ref(lfg)kjt, (18q)
kK (d+{+ R
(1) = 45 (T) r (180)

With¢ = 0.5,d = 0.25 and £ = 0.75, from (18) we derive:

Following 3

Vo5 = 2%(1 + R)r
Y36 = 2%(1 + R)r
Yar =25 (1+ R)r

Nearest neighbor following
Yo5 = 2(1 + R)r

V36 = 2%(1 + R)r

a7 =2(1+ R)r

Since k' > k, robots 5 and 7 will exhibit larger errorsin thein-
terconnection of Figure VI-B compared to those expected in the
interconnection of Figure VI-B. This is because higher feed-
back gainsfor robot 3 result to larger control inputswhich prop-
agate into robots 5 and 7, increasing their formation errors.

ol jof
uﬂh‘u uﬂh‘u
uu uu ugu u ugu
u{ ulu }u = ulh‘u
g 8 g8 B B B

Fig. 11. Nearest neighbor following. Fig. 12. Following the fastest robot.

C. Safety Specif£cations

L eader-to-Formation Stability gains can be used to check and
implement safety speci£cationsthat are related to formation er-
rors. In the example of this Section, we consider a formation
of three robots connected in cascade via the separation-bearing
controllers (15). The group is supposed maneuver maintaining
atriangular shape for which the faces must not exceed a certain
distance. Thiswill ensure that the robots movein atight forma-
tion, in the same way as £ghters when oying in formation have
to maintain certain patternsto avoid detection by enemy radars.

Theleader of theformationisto follow areferencetrajectory.
The time parameterization of the reference trajectory defnes a
desired velocity for the leader. This reference velocity can be
regarded as an input to the formation and as such it will affect
thesize of theformation errors. If the magnitude of thisvelocity
were a design parameter, then a question that arises is whether
one can select an appropriate value to ensure that the formation
can track the reference trgjectory without violating its safety
speci£cation.

The formation motion is simulated £rst for the case where
the reference velocity is set to aconstant value: ||ug|| = 1. The
robot paths are given in Figure VI-C. A circle of radius p =
1.5[m] around the formation leader marks the boundary of the
region in which the followers should be for the group to satisfy
the safety speci£cation. Due to the magnitude of the reference
velocity for the leader, the formation shapeis distorted and the
last follower in the string exhibits an unacceptable error, which
forcesit to remain outside the safe region.

Original reference velocity

7N
/7O
s [ \
{ J
,—\@fl /
. —

y[m]
b o
—
- W
Y,

x [m]

Fig. 13. Formation input not satisfying safety spec.

Based on the fact that the distance between the last follower
and the leader should not exceed 1.5[m], we can determine the
largest allowable formation error: Z . = 0.5829. Using the
LFS gain estimates (18), with R = 0.5829, k1 = ko = 10
and £ = 0.5, we derive a formation asymptotic gain: 5, =
1721.73. Thisimpliesthat in order for £ < Z,ax it SUfECesto
have |Ju¢|| < 0.000338. Then the reference speed for the leader
isset to ||lug|| £ 0.0001 and the formation motion is simulated
again and depicted in Figure VI-C, where it is clear that the
safety speci£cation is now satisEed.
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Fig. 14. Slowing down the formation to satisfy safety spec.

D. Gain Computation

One of the major considerations when dealing with large
scale interconnected systems such as large vehicle formations,
is the ability to compute the gain estimates ef£ciently, regard-
less of the size of the system. For nonlinear systems, due to
their inherent complexity, LFS gain computation using (6) is
cumbersome and does not scale well. The conclusions that can
be drawn in the case of large scale vehicle formations are basi-
cally qualitative: one knowsthat the LFS property of individual
subsystems ensures the continuous dependence of the size of
the formation errors on the amplitude of the leaders excitation.
Figure 3 shows the vehicle pathsin a string of ten, with closed
loop dynamics described by (16). Figure 4 gives the formation
error evolution with respect to timein which, dueto the absence
of an appropriatenormon SE(2), we choseto plot the position
and orientation errors separately. Figures 3-4 show how LFS
can ensure boundedness of errors and continuous dependence
of system trajectories on leader input.

In the remaining of this section we will demonstrate the use
of equations (12) to assess the stability properties of the forma-
tion depicted in Figure VI-D. To apply equations (12) we con-
sider alinear overapproximation of the LFS gainsin the sense
of (18) and assume 3;; = 1.2,4;; = 0.2 for any pair of leader i
and follower j with,j € {1,...,36}. Inthisformation graph,
the largest path is of length 5. The computation process ter-
minates after 6 steps, yielding an LFS performance measure:

—1
Prrs = (1450, 671;)  =7172952""

VIlI. CONCLUSION

LFS is a stahility property of formations that are based on
|eader-following which quanti£es the propagation of the input
of the formation leaders to the interconnection network of the
group and capturesits effects on the magnitude of the errors ob-
served. It provides performance measuresthat can be cal culated
analytically, and alows the calculation of worst case ultimate
error bounds. which can be used to check the design against
safety specifcations. The intuitive fact that performance dete-
riorates as the graph that represents the formation interconnec-
tionsincreases in diameter, can now be formally justifed. LFS

Fig. 15. Gain computation in large formations.

can be used as an analysis tool to assess the performance and
robustness capabilities of different interconnection topologies
and expose weaknesses in the design of the formation architec-
ture in the form of error amplifying interconnections. Finaly,
the worst case ultimate error bounds obtained by LFS can be
used to check aparticular formation design against error-rel ated
safety speci£cations.
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APPENDIX
Proof of Proposition I11.1

For the generic formation of Figure 1, note that L FS of each
follower f withrespecttozx, k = 1,..., M, for thetimeinter-

val [0,¢/2]and f = M +1,..., N yidds
M
& ()] < B (12,011 5) + D ws(sup 17]), (29
k=1 Ovz
M
1250 < Br (|2 (D] 8) + D s (sup [[zx[))  (20)
k=1 2!t

In case agent f does not follow agent k, the corresponding term
~k¢ is zero. Similarly, the LFS property of ¢ with respect to

Z1,...,Zp isequivaent to:
|Z:()]| < BillE:(0) ) + Yy vea(sup | Ee]))  (20)
and implies:

L
[sup}Hr@-llé@(H:@-(mll,0>+Zwi<sup|mn> (222)
0,% =1

L
[Sup]szll <Bi (|E (D, 5) +D_ yealsup |17])  (22b)
=1
Substituting (19), (22) into (20) yields a new bound:
M
101 < 87 (Br (125 )1 £) + D s (B:lll:0)]],0)
k=1
L
+ > vesup [lzl)) ) + Z’Yﬂf(SUprBzH)
=1
M L
> 5 (B (B130) 1, 0) + 3 yuitsup 7ell), )
i=L+1 =1
L

+ > qulsup @) @3

=1

Combining (23) with (21) and recalling that for any class-K
functiona, axy + - + o) < alnxy) + - + a(nz,):

M
sl < S i (26 26:00:0)1,0), ) )+
i=L+1
M
8 (26,125 O, 5+ 3 2 2B:(17(0)],0)), )+
i=L+1
L M "
> 8r(200 D2 s (2Lass(sup aell)) +ves (sup 1z )], 0)
(=1 i=L+1
L ;\i_l
>N ['Yif (4Lﬂi(2Lm(Sup||5?e|\)a0))
¢=1i=L+1
L
+ 3is (4L7ei(sup [24])) | + D s (sup [24])
(=1



Summing over dl f € {M + 1,...,N} and denot-

ing sup ||Z/| |Z¢||, for brevity, we obtain for @ =
(i‘L_H,...,i‘N)I
M
Izl < Y Billz0)],0)
i=L+1
N M
£ 2 [ 3 w(aEamo0.0.9)+
f=M+1 i=L+
M
87 (28,11 5) + > 2% (28:(12:(0)]1,0)), 1) |
i=L+1
N L M N

(=1 f=M+1 =1 i=L+1 f=M+1
M
77 (418,273 )), 0) )| + 3 veillzell)+
i=L+1

L N M
>3 822 X s @Lanlael o)) +res (1)), 0).

=1 f=M+1 i=L+1

Proof of Proposition I11.2

The proof follows the same lines as that of Proposition I11.1.
Note that every follower f is a perturbed system with expo-
nentialy stable nominal error dynamics having as a Lyapunov
function: Vy = &7 Pyz . Thisimpliesthat for 6 < (0,1):

. B . —(—o) M
2O < By 127 (0)] P 1 Y Firsup [F. (24)
1=L+1

Expressing (24) for the time intervals [0,
stituting we obtain:

] and [, t] and sub-

_ —-3(1-0)t
125l < B7 ll21(0)]| e 7T
M

S g sup ] + Bre P Z Fig sup |||
i=L+1 [5:t i=L+1 [0,3]

L
2 er sup [l (29
=1 0,3]

L
+3 g sup || + Bre P
/=1

3:t]
Similarly, the error for agent ¢ satisfes:
4+ 20w[P)?
(Am[Pi])20
By (1), sup ||27]| < ZZLZI sup || Z,|| which allows us to obtain
the bound:
_ o —(1-0)t B _
1Z:(E)]] < Bi 1 2:(0)]| e mTT 4+ 327, Fei sup |||, (26)
Equation (26) now yields the following bounds for the error of
an agent i:

5 20~ —(a-ot
||J?7,(t)|| < Bz HJ%(O)” e 22 m [Pl

sup || 47| -

L
[Sup}l\fﬂzll<@llw )H+Z%sup|\fe|\ (278)
i) 7‘4
sup |17 < Bill7a(5) e PoTPl +Z%SUpIIweH (27b)
[5:t]

/=1 [2#]

DY Y (L)
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which are then combined with (25) to produce:

_ — —3a-o¢ L ~
|2 (0)]| < BFe ™aTmr | &5 (0)]| + Y er sup ||

=1
M L
+ ) s (ﬁdf%(% \64*M +) % Sup|$e||>
i=L+1 =1 27

—(1-0)t

L
+B e P M IFf] Z Yif (ﬁz ||J:z Z P||iz|>
=1 E

1=L+1
L
Z Feg sup ||Ze||,

—(1-0)t

4 5f€MM Py

using the fact that for a linear K class function «(+) it holds
a(z1,...,zn) = alxr) + -+ - + a(z,). Using once again (26)
for ||Z;(%)|| we £nally arrive at:

_ ;
I (£)]| < B2 175 (0)]] T 4
M _ _ —(a-09t _ —(1—6)t
> [Bir (Br 1Z:0) ]| e DM + B [|:(0) ]| e arTPiT)
1=L+1
L
+ ) (L4 Bp)Fer + (Br + B + 1)Yiger) sup || 2| ]
=1

Combining the above with (26) and summing over f:

L N
<> Y {a+8m+
=1 f=M+1
M B B
> By + B+ g + 1)%‘} sup || Z||

i=L+1

M N
+ 3 N (B (Bt B)Beis + B) I1E0) e,

i=L+1 f=M+1

—(1-0)t

where i = 5 max{a [Pf],2 m [P}

Proof of Proposition IV.1

By deEnition, the LFS gains of the paths of length one are
givenin matrix formby B, and G1:
G =G, B1=B (283)
The gains in paths of length two ending at an agent f can be

derived using (9):
’Yéf) = Z (’_Yéﬁ/ifﬂ_f + YeiYif + ’_Veiﬁ_’i%f + ’_Vif)

i~ f

+5es (14 By)

32 — 52 + Z (Br + Bi¥ir + Bivis By) -

ke~ f

(299)
(29b)



where ~ denotes vertex adjacency. Equations (29) can be writ-
ten in matrix form:

Gy = G(G1 o Bl) + GGy + (G o B)Gl +GA
+ G o (AB; + A?) (30a)

By = A(B1oB1)+ BA+ (BoB)Gy + B(G10B1)
(30b)

where o denotes the Schur matrix product (also known as Har-
ramand product) [39]. The Schur product is used to generate
theterms#,;3; and 37 for an arbitrary i. The rightmost termin
(294) isrelated to the existence of paths of length two between
two vertices in Figure 1 which are already connected with an
edge. These are identifed by the term G o (AB) as stated in
the following Lemma:

Lemma.1l. The elements of the matrix A o A? give the number
of paths of length two between any two adjacent vertices.

Proof. Matrix A2 hasas elements the number of paths of length
two between two vertices. On the other hand, the nonzero el-
ements of the adjacency matrix, A, are in positions that corre-
spond to edges in the graph. The Schur product 4 o A2 will
therefore have nonzero elements only at positions that corre-
spond to a pair of vertices that are connected both by an edge
and by a path of length two. Further, since anonzero element of
Ao A%isgivenby [a;;] - [a;;]* # 0 and the £rst term, [a,;] = 1,
then neces&arlly [aij] : [aqjj]Q = [aq;j]Q # 0. o

Multiplication by the adjacency matrix of the formation
graph, A, shifts the gains of paths of length one from positions
arowsf = M +1,..., N to the corresponding positions of
their leaders at positionsin rows 1, ..., M, based on the fact
that powers of the adjacency matrix providethe number of paths
between two vertices of length equal to the exponent [35].

Equations (29) and (30) are based on combining the gains
of agents f = M +1,..., N, that is, 3y, 7y and ¢, with
those of their leaders, 5; and ;. Theideanow isto apply (30)
recursively, starting from the agents at the end of the longest
paths and moving towards the formation leaders. In each step,
one needs to update the gains of the followers that correspond
topositions f = M +1,..., N inthegraph of Figure 1, asthe
latter shifts up towards the formation leaders position. 1n (30),
thegainsof agents1, ..., M areprovided by B andI", whereas
thegainsof M + 1,..., N were computed in previous steps.

This is formalized with an induction argument. The induc-
tion step is as follows; assumethat for somek < d < |V| — 1,
where d denotes the formation graph diameter, the gains of
paths of length k& — 1 are given by matrices B;_; and G_.
Since all paths of length & ending at an agent ¢ have as a suf£x
apath of length £ — 1 ending at 4, the former will be represented
as paths of length two. Then, by (30), the gain matrices of paths
of length & will be:

Gr =G(Gr-10By_1) + GGr_1 + (G o B)Gj—1

+ GA* ' 4 G o (ABy_, + AF) (31)
By = A(Bg_10Bj—1) + BA¥' + (Bo B)Gj_1
+B(Gk_1 OBk_l). (32)
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In thisway one can compute recursively al paths of length at
most |V| — 1.Sincethisisthe maximal path length in any graph
with |V| vertices, the procedure is guaranteed to terminate.

Proof of Proposition V.1
L et the (13) be denoted for brevity as follows:

i = f(z) + g(x)u (33)
wherethe specia “look ahead” structureof f(z) and g(z) isas-
sumed. By deEnition, since the unforced (33) is asymptotically
mesh stable, there exists a class-KCL function §(r, t) such that:

]l < B(I=0)] . 1),

A converse Lyapunov argument for the unforced (33) estab-
lishes the existence of a Lyapunov function V'(z), such that for
some class-KC functions aq (+), cva(+), as(-), aa(-), it holds:

vt > 0.

v v
ot Ox

Thenfor (33) withu # 0, the Lyapunov function V" will satisfy:

an(lel) < V(o) < aalel), |5 | < aatlal

ov oV
St o (@) + gw)

< —ag(|z]]) + ¢zl eallz]) [[u]
From stability of perturbed system it follows that
=@ < Bllz] (0),8) + ar* (az(az (wsup [ul])))

where . = % 6 € (0,1).



