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Abstract—The paper introduces a set of nonsmooth con-
trol laws that enable a group of vehicles to synchronize
their velocity vectors and move as a flock while avoid-
ing collisions with each other and with static obstacles
in their environment. In addition, all vehicles converge
to a common destination point, accomplishing a group
mission. The proposed control law can steer each ve-
hicle based on local information that can be obtained
from within a spherical neighborhood around it. While
only the nearest neighbors and obstacles affect a vehi-
cle’s motion, as the vehicles move the neighborhoods
change discontinuously. The induced discontinuities in
the control law of each vehicle do not affect the stability
properties of the group collision free motion and connec-
tivity requirements on the interconnection network can
be relaxed due to the common objective.

I. Introduction

Recent advances in computation and communication
have opened the way for the development of a new class
of multi-agent systems. In these systems agents are au-
tonomous enough to operate independently, yet they
can function collectively as a group and synchronise
through communication. The challenge here is for the
group to cooperate using minimal computing and com-
munication resourses, without the need for centralized
coordination. Such cooperative control schemes are the
most promising in terms of their ability to scale with
the size of the group.

Nature provides several examples of marvelous decen-
tralized, coordinated behaviors in groups of living or-
ganisms. Such cases have been studied in in ecol-
ogy and theoretical biology, in the context of ani-
mal aggregation and social cohesion in animal groups,
but also in statistical physics and nonlinear science
[30, 29, 14, 12, 24, 4, 10]. Although such phenom-
ena have not been thouroughly investigated and under-
stood, researchers in control theory computer anima-
tion and robotics have been trying to develop models
that describe and explain several aspects of the coop-
erative behaviors observed in nature. This is especially
true in robotics, in the context of formation control
and cooperative control of multi-agent systems, where
so much effort has been directed towards the develop-
ment of autononous, distributed multi-robot systems
[11, 2, 16, 19, 5, 13, 7, 25, 8, 15, 3, 9, 31, 18]. In
a flocking model proposed by Vicsek et al. [30], mo-
bile agents regulate their heading to the average of the

headings of themselves and their nearest neighbors plus
some additive noise. Numerical simulations in [30] in-
dicate the spontaneous development of coherent collec-
tive motion, resulting in the headings of all agents to
converge to a common value. Convergence of the Vic-
sek model was theoretically established in [8]. In a
similar model, developed approximately ten years ear-
lier, Reynolds [20] described the coordinated motion in
bird flocks as the combined result of three simple steer-
ing rules, which each agent independently follows: (i)
Separation: steer to avoid crowding local flockmates;
(ii) Alignment: steer towards the average heading of
local flockmates; (iii) Cohesion: steer to move toward
the average position of local flockmates. The superpo-
sition of these three rules results in all agents moving
in a formation, while avoiding collision.

Motivated by Reynolds model, a set of decentralized
control laws were developed [27], giving rise to coherent
and coordinated motion for a group of interconnected
dynamic mobile agents. The stability analysis that es-
tablished convergence for the group to the synchronized
state where all agents have the same velocity vectors,
was based on LaSalle’s invariant principle and the alge-
braic graph theoretic properties of the interconnection
network among the agents. It was also shown that sta-
bility is still guaranteed if the agent interconnections
appear and disappear dynamically [28], so long as the
connectivity of the network is preserved.

In this paper, we extend these previous results to the
case where there are several static obstacles in the en-
vironment, which the agents need to avoid. Similar
recent results for obstacle avoidance in vehicle forma-
tions treat the obstacles as ficticious vehicles [22]. The
proposed treatment can not only ensure obstacle avoid-
ance and flocking in the group, but also allows for the
agents to pursue additional objectives which are guar-
anteed to be met. For the purposes of this paper, these
objectives are formulated as convergence to a common
destination or rendez-vous point. The dynamic nature
of the interconnection network induces control discon-
tinuities. The resulting closed loop dynamics is stud-
ied within the framework of nonsmooth systems. Al-
gebraic graph theory properties are exploited to show
that arbitrary changes in agent interconnections do not
affect the stability of the system. The common objec-



tive “binds” the group together so that interconnection
connectivity is no longer required. The group can be-
come disconnected and velocity synchronization takes
place within each connected component. Eventually, as
each component will converge to the rendez-vous point,
connectivity will be regained.

This paper is organized as follows: in Section II we
define the problem addressed in this paper and sketch
the solution approach. The stability analysis follows in
Section IV. The results of Section IV are verified in
Section V via numerical simulations. Section VI sum-
marizes the results and highlights our key points.

II. Problem Description

Consider N agents, moving on the plane with the fol-
lowing dynamics:

ṙi = vi (1a)
v̇i = ui i = 1, . . . , N , (1b)

where ri = (xi, yi)T is the position of agent i, vi =
(ẋi, ẏi)T is its velocity and ui = (uxi , uyi)T its con-
trol inputs. Relative position vectors are denoted rij =
ri − rj . The control input consists of three components
(Figure 1):

ui = ai + αi + fi. (2)

The first component, ai, is derived from an artificial
potential field that is responsible for cohesion and sep-
aration of the agents within the group. It is generated
by a function Vi which encodes relative position infor-
mation between agent i and its neighbors. The second
component, αi regulates the velocity vector of agent i
to the average of its own and that of its neighbors. The
last component, fi is a second potential field term that
is used for navigation of the agent in its environment.
This term ensures that the agents avoids stationary ob-
stacles and moves towards a predefined position.

R

fi

ŷ
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Fig. 1. Control forces acting on agent i.

The problem is to determine the input components so
that the group exhibits a stable, collision free flocking

motion and accomplishes a common mission. Flocking
motion is being understood technically as a convergence
property on the agent velocity vectors and their relative
distances, while a mission will be convergence of the
flock to a specified point in the workspace.

III. Control Law with Dynamic Topology

In this section we present a realization of the control
law (2) that achieves the control objective. The steer-
ing policy of each agent is based only on local state
information from its nearest neighbors. The graph G,
represents the nearest neighboring relations:

Definition III.1 (Neighboring graph) The neigh-
boring graph, G = {V , E}, is an undirected graph con-
sisting of:

• a set of vertices (nodes), V = {n1, . . . , nN}, indexed
by the agents in the group, and

• a set of edges, E = {(ni, nj) ∈ V ×V | ni ∼ nj}, con-
taining unordered pairs of nodes that represent neigh-
boring relations.

Let Ni denote the index set of neighbors of i,

Ni � {j | ‖rij‖ ≤ R} ⊆ {1, . . . , N}.

Since the agents are in motion, their relative distances
can change with time, affecting their neighboring sets.
The time dependence of the neighboring relations gives
rise to a switching graph. For each edge incident to
agent i, we define an inter-agent potential function, Uij

which should satisfy:

Definition III.2 (Interaction potential) The
interaction potential function Uij is a nonnegative
function of the distance ‖rij‖ between agents i and j,
such that

1. Uij(‖rij‖) → ∞ as ‖rij‖ → 0,

2. Uij attains its unique minimum when agents i
and j are located at a desired distance.

3. Uij is increasing near ‖rij‖ = R.

The interaction potential Uij can be nonsmooth at dis-
tance ‖rij‖ = R, and constant Uij = VR for ‖rij‖ > R,
to capture the fact that beyond this distance there is no
agent interaction. One example of such a nonsmooth
potential function is the following, depicted in Figure 2:

Uij =

{
1

‖rij‖2 + log ‖rij‖2 , ‖rij‖ < R,

VR, ‖rij‖ ≥ R



Uij

‖rij‖R

Fig. 2. A nonsmooth interaction potential function.

For agent i the (total) interaction potential Ui is formed
by summing the potentials due to each of its neighbors:

Ui � (N − |Ni|)VR +
∑
j∈Ni

Uij(‖rij‖)

where Ni = |Ni|.

We will define an additional potential function that en-
codes the proximity of the agents to stationary obsta-
cles and the degree to which they have satisfied their
portion of the group objective. This potential will be
constructed as a navigation function [21]. This formula-
tion will ensure that the group objective will eventually
be met, at least when agents are freed from the inter-
action from their teammates.

Let Vi(ri) be the mission potential function for agent i.
It depends only on the configuration of the particular
agent. In the context of this paper, the mission will be
the convergence to a particular point in the workspace
which will be named rd. The particular characteristic
of this potential function is the way in which the obsta-
cles are implemented: they are designed so that beyond
a certain distance d, the function that models each ob-
stacle remains constant and equal to 1. In this way, the
only obstacles that are significant for the value of the
function and its derivatives are those which are inside
a d-neighborhood around the vehicle. For simplicity,
the obstacles will be assumed to be points; for a large
class of more complicated shapes, diffeomorphic trans-
formations have been proposed that reduce such shapes
into points [26]. The obstacle function for obstacle o,
as seen from agent i will be:

βio =
(

1 − λ
[δ(ri, ro) − d]2

[δ(ri, ro) − d]2 + 1

)m

where δ(ri, ro) denotes the distance between the vehicle
and the boundary of the obstacle, which is supposed to
be located at position ro, the exponend m is given as:

m � 1
2
(sign(d2 − δ(ri, ro)2) + 1)

and λ is a constant that can be selected so that the
transition of the obstacle function to the value of 1 is
smooth:

λ =
d2 + 1

d2
.

The mission potential function for agent i is then de-
fined as

Vi(ri) =
‖ri − rd‖2

[‖ri − rd‖2κ +
∏

o βio]
1
κ

where κ is the navigation function tuning parameter.

The control law ui is defined as:

ui =




− ∑
j∈Ni

[(vi − vj) + ∇riUij ]

−∇riVi − cdvi

, Vi > Vmin

− ∑
j∈Ni

[(vi − vj) + ∇riUij ]

−∇riVi

, otherwise

(3)
where the last component is a damping term to ensure
convergence to the destination point rd by suppressing
oscillatatory motion around it, since the first two terms
have no effect on the group kinetic and potential energy.
The constant Vmin defines a sufficiently small level set
of the mission potential function.

Since the group may become disconnected as a result
of obstacle avoidance maneuvers, we may need to con-
sider k = 1, . . . , p ≤ N different connected components,
or subgroups. In order to avoid motion singularities
that may arise due to the effect of obstacles, braking
of the group may also be intentional. For that reason,
we may consider controlling the topology of the group
by regulating the neighborhood radius of the agents
within each connected component. In every connected
component, the agents synchronize their radius to the
maximum of their groupmates to enhance connectivity,
but when they become immobilized while away from
their destination point, they reduce it to break free:

Ri =

{
Ri/2, vi = 0, Vi > Vmin,

max{Ri, Rj , j ∈ Ni} otherwise
(4)

Note that these first two terms depend on the neigh-
boring set of each agent i. Changes in the neighboring
set Ni, during motion introduce discontinuities in the
control law (3). The stability of the discontinuous dy-
namics should be analyzed using differential inclusions
[6] and nonsmooth analysis [1].

IV. Stability Analysis

In this section we show how the decentralized control
laws (3) give rise to a coordinated flocking behavior.
Specifically, we prove that all agents of the closed loop
system (1)- (3) asymptotically attain a common veloc-
ity vector, minimize their artificial potential and avoid
collisions with their flockmates.



Our main result is formally stated as follows:

Proposition IV.1 Consider a group of N vehicles
with dynamics (1), each steered by control law (3) and
interconnection topology rule (4). Then all vehicles will
avoid collisions with each other and with static obstacles
in their environment, will converge to a common des-
tination point, and away from obstacles each connected
component of the group will flock by synchronizing its
velocities asymptotically.

Proof: Consider the following function:

Q =
1
2

N∑
i=1

(
N∑

j=1

Uij + vT
i vi + 2Vi). (5)

Function Q is continuous everywhere but nonsmooth
whenever ‖rij‖ = R for some (i, j) ∈ N×N . Due to the
mission potential terms Vi, and regardless of the con-
nectivity status of the group, the level sets of Q define
compact sets in the space of agent velocities vi and po-
sitions ri. Therefore, relative distances ri − rj between
agents are also bounded, ensuring the differentiability
of ‖ri − rj‖, ∀i, j ∈ {1, . . . , N}. Thus

Ω = {(vi, rij) | Q ≤ c} (6)

will be compact. Since Uij is continuous at R, it is
locally Lipschitz. It is shown that Uij is regular :

Lemma IV.2 ([28]) The function Uij is regular ev-
erywhere in its domain. Moreover the generalized gra-
dient of Uij at R and the (partial) generalized gradient
of Uij with respect to ri at R are empty sets.

Regularity of each interaction potential function Uij

is required to ensure the regularity of Ui, as a linear
combination of a finite number of regular functions [1].
Thus, Q is regular as a sum of regular functions. The
latter is a necessary condition for all nonsmooth stabil-
ity theorems. The fact that the generalized gradient of
Uij is empty, facilitates the evaluation of the general-
ized time derivative of Q. When all agents are outside
the level set defined by Vmin, regularity of Q and the
property of finite sums of generalized gradients ensures
that for the generalized time derivative of Q,

˙̃Q ⊂
N∑

i=1


⋂

ξi

ξT
i vi


 − vT K


(Lt ⊗ I2)v +


 ...

∇ri
Ui

...







where ξi ∈ ∑N
j=1 ∂riUij , Lt is the (time-dependent)

Laplacian of the neighboring graph and ∇riUi =∑
j∈Ni

∇riUij . Both Lt and ∇riUi are switching over
time, depending on the neighboring set Ni of each agent
i. Recalling that ∂Uij(R) = ∅ and using some differen-
tial inclusion algebra for sums, (finite) Cartesian prod-
ucts and multiplications with continuous matrices [17],

we obtain

˙̃Q ⊂
N∑

i=1

(∇riUi)T vi − vT K[(L(t) ⊗ I2)v]

−
N∑

i=1

vT
i ∇riUi − cd ‖vi‖2 = −co{vT

x L(t)vx + vT
y L(t)vy}

(7)

For any graph, the right hand of (7) will be an interval
of the form [e, 0], with e < 0. Therefore it is always
q ≤ 0, for all q ∈ ˙̃Q. If the graph is connected and
the components of the agent velocities are not equal,
vx, vy ‖ 1, then −co{vT

x L(t)vx + vT
y L(t)vy} will contain

only negative numbers. If the neighboring graph is dis-
connected, −co{vT

x L(t)vx+vT
y L(t)vy} can be expressed

in terms of the Laplacians of the connected components:

−co{
∑

k

vT
xkLk(t)vxk +

∑
k

vT
ykLp(t)vyk}

where vxk, vyk and Lk(t) correspond to the x, y compo-
nents of the agent velocities in the p connected compo-
nent and Lk(t) is the Laplacian of the graph component
respectively. Since the Laplacians are positive semidef-
inite matrices, the set in (7) will contain 0 only when
each velocity component of the agents in the connected
subgroup are aligned to the vector of ones, since this is
the eigenvector corresponding to the singel zero eigen-
value of the connected subgroup’s Laplacian.

Applying the nonsmooth version of LaSalle’s principle
proposed by [23], it follows that for initial conditions in
Ω, the Filippov trajectories of the system converge to a
subset of the set where {vxk, vyk ∈ span(1)}. This im-
plies that away from the destination point all connected
subgroups are going to asymptotically synchronize their
velocities and move as a flock.

In the neighborhood of the destination, (7) becomes

˙̃Q ⊂ −co{vT
x L(t)vx + vT

y L(t)vy} −
N∑
i

cd ‖vi‖2

and in this case the invariant set has to be in {v |
vx, vy = 0}}. For this subset to be invariant, we need
v̇ = 0, in which case,∑

j∈Ni

∇riUij = ∇riVi.

However, the term on the left hand side is normal to
the vector of ones since for every connected component,

(∇riUi)k = −(Bk(t) ⊗ I2) [ ··· (∇rij
Uij)T

k ··· ]T ,

and the range of the incidence matrix of connected com-
ponent k, Bk(t) is orthogonal to the vector of ones.



Therefore, in steady state, the agents equilibrate in con-
figurations where 1T∇riVi = 0 and the mission poten-
tial forces balance the interaction potential forces. This
can happen either when the agents have surrounded the
destination point (to have 1T∇riVi = 0) or when they
have got stuck in a configuration where due to environ-
ment obstacles, the mission potential forces cancel with
the interaction forces. In the latter case, reducing the
neighborhood radius R, reduces the number of interac-
tions and breaks the symmetry, allowing the group to
escape the singularity.

V. Simulations

We consider five vehicles that are initiated with ran-
dom initial positions and velocities in a neighborhood
of an initial point in the workspace. The mission for the
collection of vehicles is to flock towards the destination
point (0, 0) which is located inside a Π shaped obstacle,
consisted of several point obstacles placed close to each
other. The group has to avoid collisions between vehi-
cles and obstacles and surround the destination point.

0

Fig. 3. Initial state.

0.410474

Fig. 4. The group ap-
proaches the obstacle.

0.675338

Fig. 5. Part of the group
finds its way to desti-
nation.

0.843951

Fig. 6. The group breaks
as one part avoids the
obstacle.

VI. Conclusions

In this paper we showed that a group of autonomous ve-
hicles, in which each agent is steered using local state in-
formation from its nearest neighbors and regulates the
interconnections with them, can synchronize their ve-
locities if their motion is not inhibited by obstacles, can
avoid collisions between the obstacles and each other,
and regroup around a predifined point in the workspace

1.31398

Fig. 7. The second part
approaches again.

1.56589

Fig. 8. One member joins
the part that is inside.

2.29834

Fig. 9. The rest maneuver
around the obstacle.

2.39702

Fig. 10. The two compo-
nents are joined.

accompishing a group objective. The approach demon-
strates that besides synchronizing a subset of its state,
there is additional control authority for the group to
pursue other objectives. When the later are being en-
coded in a navigation function, the accomplishment of
the mission is guaranteed. Stability of motion and con-
vergence to the destination is not affected by the control
discontinuities induced by the dynamically changing in-
terconnection topology, and are being established using
results from algebraic graph theory and Lyapunov sta-
bility analysis for nonsmooth systems.
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