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Abstract

A new type of stability of leader follower forma-
tions is defined, based on input-to-state stability (ISS)
properties of cascade interconnections. Formation ISS
links leader input to internal state of the formation and
characterizes the way this input affects performance.
The effect of feedforward and feedback inter-agent
communication is then investigated in this framework
and it is indicated how the structure of interconnec-
tions and the amount of available information can af-
fect stability performance.

1 Introduction

Recent advances on communication and compu-
tation have enabled the development of multi-agent
robotic systems. Methods for analyzing interconnected
systems are therefore necessary. Such methods find
applications in automated highway systems [1, 2, 3],
mobile robot reconnaissance [4], formation flight con-
trol [5, 6] and sattelite clustering [7].

Existing methods are based mainly on three differ-
ent approaches to interconnection architecture. In the
behavior based approach [4, 8, 9] each agent is thought
of being able to exhibit a number of primary behav-
iors. The group behavior emerges as a weighted sum
of the independent behaviors of its agents. In [4] be-
havior - based schemes are implemented on formations
of unmanned ground vehicles and different formation
types are tested. In [9] elementary behavior strate-
gies for maintaining a circular formation are developed
with the use of potential field methods. Another ap-
proach focuses on maintaining a certain group config-
uration and forces each agent to behave as a particle
in a rigid virtual structure [10, 11]. In [11] the agents
try to maintain a virtual structure defined around an
artificial reference agent called the virtual leader, us-
ing a centralized potential-field control scheme. The
leader-follower approach [6, 12, 13, 14] distinguishes a
designated leader which the other agents follow either

directly or indirectly. In [14] feedback linearizing con-
trollers are developed for the control of mobile robot
formations in which each agent is required to follow one
or two leaders. Reference [13] investigates the condi-
tions under which a set of formation constraints can be
satisfied given the dynamics of the agents and consider
the problem of obtaining a consistent group abstrac-
tion for the whole formation.

Stability properties of interconnected systems is in-
vestigated using the notion of string stability [2, 3].
String stability actually requires that internal errors
attenuate as they propagate through the interconnec-
tions. For this to be possible, inter-agent communica-
tion and (exponential) stability of the unforced system
of each agent is typically required.

The approach presented in this paper is based
on input-to-state stability [15]. We define formation
input-to-state stability (ISS), that relates the leader in-
put to the internal state of the formation. Formation
ISS stability requires only state feedback information
from the preceeding agent. By exploiting the fact that
ISS is preserved in cascade interconnections [16, 17],
it is possible to propagate ISS properties from a pair
of leader-follower to the whole formation and obtain
gain functions that constraint internal errors based on
the formation leader input. In this framework, differ-
ent formation types can be characterized according to
their stability properties. Then, the influence of addi-
tional feedback and feedforward information on stabil-
ity performance is investigated.

The outline of the paper is as follows: section 2
introduces the formation dynamics considered in this
paper and defines formally the notion of input-to-state
stability for formations. In section 3 the ISS properties
of a leader-follower interconnection within the consid-
ered formation are investigated. Section 4 describes
how the leader-follower ISS gains can be used to cal-
culate the gains of the whole formation. Section 5 ex-
amins the effect of additional feedforward information
on formation stability. Example cases are presented in
section 7 and section 8 summarizes the results.
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2 Formation Input-to-State Stability

Consider a collection of n agents, the kinematics of
which are represented by an equation of the form:

ẋi = ui, i ∈ N , {1, . . . , n} (1)

where xi ∈ R
n denotes the state of agent i in absolute

coordinates and ui its input.
A formation is constructed by defining feedback

control laws for the agents:

ui = Ki(xj − xi) (2)

where Ki is positive definite, implying that agent i
follows agent j. One agent, L ∈ N , is assigned to be
the leader of the formation. The leader does not follow
any agent so that no law is defined for uL.

The formation errors are defined as:

z , [zij ], where zij , xj − xi (3)

By plugging (2) into (1), in view of (3) one obtains:

żij = −Kizij + ẋj (4)

Our aim is to investigate the stability properties of
the formation error kinematics with respect to the in-
put of the formation leader, uL. We thus need to define
the kind of stability in terms of which the formation
will be analyzed:

Definition 2.1 (Formation ISS). A formation is
called input-to-state stable iff there is a class KL func-
tion β and a class K function γ such that for any initial
formation error z(0) and for any bounded inputs of the
formation leader uL(·) the evolution of the formation
error satisfies:

‖z(t)‖ ≤ β(‖z(0)‖ , t) + γ

(
sup
τ≤t

‖uL‖
)

(5)

Input to state stability thus establishes a relation-
ship between the amplitudes of the formation leader
input and the formation errors. The relationship pro-
vides ways to compare formation interconnections in
terms of internal stability.

Definition 2.2 (Formation ISS Measure). Con-
sider a formation that is input-to-state stable with gain
functions β(r, t) and γ(r). Assume γ(r) ∈ C1 and let
U ⊆ R

n be a compact neighborhood of the origin con-
taining all uL ∈ U that are of interest. Then

PISS , γ−1(1)

will be called the ISS measure of the formation.

In that sense, if the norms are taken as Euclidean,
the ISS measure is the upper bound for the leader in-
put that guarantees that the formation error vector
remains within a unit ball.

In the following sections we will show how the for-
mation ISS gain functions β and γ can be computed
from those of the individual agent interconnections.

Formation ISS does not require any inter-agent com-
munication: the feedback laws (2) can be constructed
by means of position sensing. Furthermore, each agent
is required to have information only for its immediate
leader. Contrary to string stability which investigates
the behavior of errors as they propagate in the forma-
tion chain, formation ISS focuses in characterizing the
dependence of formation stability to leader input.

3 ISS of Agent Interconnection

Agent interconnections are represented in graph no-
tation form. Agents are denoted by vertices. A di-
rected edge from vertice j to vertice i implies that
agent i follows agent j using feedback information. By
abuse of notation we denote the exchange of additional
feedforward information by a dashed directed edge.

Consider the agent interconnection error (4):

żij = −Kizij + ẋj

A Lyapunov function candidate could be Vij =
1
2zT

ijzij . Then for c1 = c2 = 1
2 it holds that c1 ‖zij‖ ≤

Vij ≤ c2 ‖zij‖, and the derivative of Vij satisfies:

V̇ij = −zT
ijKizij + zT

ij ẋij

≤ −2λi
m ‖zij‖2 + ‖zij‖ · ‖ẋij‖

where λi
m is the minimum eigenvalue of Ki. By taking

any θ ∈ (0, 1) and defining c3 , 2λi
m(1 − θ),

V̇ij ≤ −c3 ‖zij‖2
, ∀ ‖zij‖ ≥ ‖ẋj‖

2λi
mθ

Moreover, for c4 = 2λi
M , where λi

M is the largest eigen-
value of Ki, it holds that:

∥∥∥∥∂Vij

∂zij

∥∥∥∥ ≤ c4 ‖zij‖

From stability of perturbed systems [lemma 5.2, [16]]:

‖zij(t)‖ ≤ ‖zij(0)‖ e2λi
m(1−θ)t +

λi
M

θλi
m

sup
τ≤t

(‖ẋj‖) (6)

showing that the interconnection kinematics are input-
to-state stable with respect to the leader’s velocity.
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4 Propagation of ISS

4.1 Cascade interconnection

Consider the leader-follower configuration of section
3 and assume that in addition, agent j is assigned to
follow agent k (Figure 1):

k j i
zz jk ij

Figure 1: Cascade interconnection of agents. Solid
arrows denote feedback information flow

Based on the assummed available feedback informa-
tion, the agent control laws are formed as follows:

ui = Ki(xj − xi)
uj = Kj(xk − xj)

The results of section 3 establish the ISS of each pair:

‖zij(t)‖ ≤ ‖zij(0)‖ e−αi(θ)t +
λi

M

θλi
m

sup
τ≤t

(‖ẋj‖) (7a)

‖zjk(t)‖ ≤ ‖zjk(0)‖ e−αj(θ)t +
λj

M

θλj
m

sup
τ≤t

(‖ẋk‖) (7b)

where

αi(θ) , 2λi
m(1 − θ) αj(θ) , 2λj

m(1 − θ)

However, since ẋj = Kjzjk, from (7) we get:

‖zij(t)‖ ≤ ‖zij(0)‖ e−αi(θ)t +
λi

Mλj
M

θλi
m

sup
0≤τ≤t

(‖ẋk(τ)‖)

Define the leader j-follower i ISS gains as:

βij(‖zij(0)‖ , t) , ‖zij(0)‖ e−αi(θ)t (8a)

γij(sup(‖ẋk‖)) ,λi
Mλj

M

θλi
m

sup
0≤τ≤t

(‖ẋk(τ)‖). (8b)

The gains for the leader k- follower j pair are defined
accordingly.

Based on the ISS property of the cascade intercon-
nection of two ISS systems [16, 17], the stability prop-
erty of the agent interconnection can be propagated to
the new construction. Define the composite error:

zik ,
[
zT

jk zT
ij

]T

It has been shown [16, 17] that the cascade inter-
connection of two input-to-state stable systems:

ẋ1 = f1(t, x1, x2, u)
ẋ2 = f2(t, x2, u)

is itself input-to-state stable with gain functions:

β(r, t) =β1(2β1(r,
t

2
) + 2γ1(2β2(r, 0)),

t

2
)

+ γ1(2β2(r,
t

2
)) + β2(r, t),

γ(r) =β1(2γ1(2γ2(r) + 2r), 0)
+ γ1(2γ2(r) + 2r) + γ2(r).

A direct application of the above to (3) and setting
z0 , ‖zik‖, vk , sup0≤τ≤t{‖ẋk(τ)‖}, yields:

βik(z0, t) = βij

(
2βij(z0,

t

2
) + βjk(z0, t)

+2γij(2βjk(z0, 0)),
t

2

)
+ γij(2βjk(z0,

t

2
)), (9a)

γik(vk) = γij(2γjk(vk) + 2vk)
+ βik (2γij(2γjk(vk) + 2vk), 0) + γjk(vk). (9b)

4.2 Parallel Interconnection

The parallel interconnection is the configuration
where both agents i and j are assigned to follow agent
k based on feedback information about the state of k
(Figure 2):

k

j

iz

z ik

jk

Figure 2: Parallel interconnection of agents. Solid ar-
rows denote feedback information flow

It can easily be shown that the ISS gains for the
parallel interconnection:

ẋ1 =f1(t, x1, u)
ẋ2 =f2(t, x2, u)

are formed as

β(r, t) =β1(r, t) + β2(r, t)
γ(r) =γ1(r) + γ2(r)

and for the linear case after defining:

zijk ,
[
zjk

zik

]
, z0 , zijk(0), vk , sup

0≤τ≤t
{‖ẋk(τ)‖}

the gain function become:

βijk(z0, t) =βik(z0, t) + βij(z0, t) (10a)
γijk(vk) =γik(vk) + γjk(vk) (10b)
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Using (9)-(10) recursively, the ISS gains of a group
of agents can be calculated. This procedure finally
yields the ISS gain functions of the whole formation.

The advantage of the linear structure of (4) is that
one has constructive ways of obtaining the original ISS
gains (8) for each individual pair of leader-follower.
Note that the linear character of the input gain γ is
preserved through each propagation. The transient
term β becomes a sum of decaying exponentials, where
each of them has a different rate of decrease; all of them
though can be ultimately bounded by the slowest term.

5 The Effect of Feedforward

Suppose that for a specific pair of leader-follower,
feedforward information from the leader to the follower
is also available. The control law can be formed as:

ui = Ki(xj − xi) + ẋj (11)

and since Ki is assumed positive definite, the closed
loop dynamics of the pair become exponentially stable:

żij = −Kizij (12)

meaning that ‖zij(t)‖ ≤ ‖zij(0)‖ e2λi
m(1−θ)t. Thus,

when feedforward information from the leader to the
follower can be used, the input gain vanishes. In all
cases examined the ISS bounds on both transient and
steady state components are relaxed, a fact that re-
veals the stabilizing effect of using additional feedfor-
ward information in inter-agent control laws.

5.1 Feedforward in Second Cascade Link

Assume two leader-follower pairs: agent i following
agent j and agent j following k and that feedforward
information about agent j is available to agent i (Fig-
ure 3). This case appears when the link that where
feedforward information is used is located at the end
of the formation chain.

k j i
z

z

x
jk

ij

j

.

Figure 3: Cascade interconnection of agents with feed-
forward. Solid arrows denote feedback information
flow; dashed arrows denote feedforward information.

The control laws can be defined now as:

ui = Ki(xj − xi) + ẋj

uj = Kj(xk − xj)

Then, given γij = 0, and setting z0 , ‖zik(0)‖, vk ,
sup0≤τ≤t{‖ẋk(τ)‖} the ISS gains simplify to:

βik(z0, t) =βij

(
2βij(z0,

t

2
),

t

2

)
+ βjk(z0, t), (13a)

γik(vk) =γjk(vk) (13b)

5.2 Feedforward in First Cascade Link

In this case the feedforward information concerns
agent k and is available to agent j (Figure 4). The link
that uses feedforward information is an indermediate
link in the formation chain.

ijz

z jk

xk

.

k j i

Figure 4: Cascade interconnection of agents with feed-
forward. Solid arrows denote feedback information
flow; dashed arrows denote feedforward information.

The control laws have the form:

ui = Ki(xj − xi)
uj = Kj(xk − xj) + ẋk

and result in γjk = 0. Setting z0 , ‖zik(0)‖ and
vk , sup0≤τt{‖ẋk(τ)‖} the composite ISS gains can
be expressed as

βik(z0, t) = βij

(
2βij(z0,

t

2
) + 2γij(2βjk(z0, 0)),

t

2

)

+ βjk(z0, t) + γij(2βjk(z0,
t

2
)), (14a)

γik(vk) = βik (2γij(2vk), 0) + γij(2vk) (14b)

5.3 Parallel Link with Feedforward

This is the case where one of the parallel links uses
feedforward information about the leader (Figure 5).

k

j

z

x

z jk

ik

k

.

i

Figure 5: Parallel interconnection of agents with feed-
forward. Solid arrows denote feedback information
flow; dashed arrows denote feedforward information.
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The control laws are then given as:

ui = Ki(xk − xi)
uj = Kj(xk − xj) + ẋk

Setting z0 , zijk(0), sup0≤τt{‖ẋk(τ)‖}, the ISS gains
for this interconnection become:

βijk(z0, t) =βik(z0, t) + βij(z0, t) (15a)
γijk(vk) =γik(vk) (15b)

6 The Effect of Additional Feedback

Consider the leader-follower interconnection (3).
For agent j, given (1) and (2) it holds that ẋj = Kjzjk

and (3) can be rewritten:

żij = −Kizij + Kjzjk = −(Ki + Kj)zij + Kjzki

The above implies that additional feedback infor-
mation from the leader of an agent’s leader can have a
stabilizing effect just as feedforward information from
the leader itself. The feedback law:

ui = Kizij + Kjzki

can transform the cascade interconnection to a cascade
with feedforward (Figure 6: if uj = Kjzkj , then

żij = − (Ki + Kj)zij

żkj = − Kjzkj + ẋk

and the composite ISS gains are as given by (13)

k j i

j ik
z z

z

z

jk ij

ik

jx

ij

jkz
.

Figure 6: Additional feedback can substitute for feed-
forward.

Therefore, the unavailability of feedforward infor-
mation can be compensated by additional feedback
from further up the formation hierarchy.

7 Examples

Suppose that the objective is to control a one di-
mensional platoon of vehicles using only feedback in-
formation, such that each vehicle maintains a certain

distance d from its neighboring vehicles. For that pur-
pose, three interconnection options, depicted in Figure
7 are considered.

1 2 3

1 2 3

1 2 3(c)

(b)

(a)

Figure 7: Three formation interconnection options.

The closed loop kinematics in case (a) is given by:

ẋ1 = u

ẋ2 = k(d + x1 − x2)
ẋ3 = k(d + x2 − x3)

where xi, i = 1, 2, 3 is each agent absolute coordinate,
u is the leader’s speed, and k is a given constant gain
of the feedback control law. The dynamics of the for-
mation errors will then be:

ż12 = −kz21 − u

ż32 = −kz32 + kz21

By simple arguments it can be established that

γ21 , sup{|u|}
kθ

γ32 ,
sup0≤τ≤t{|z2(τ)|}

θ

Application of (9) yields the formation ISS input gain:
γa(sup|u|) = 6+6kθ+θ

kθ2 sup{|u|} and a formation ISS
measure: P a

ISS = 6+6kθ+θ
kθ2

The closed loop kinematics in case (b) is

ẋ1 = u

ẋ2 = k(d + x1 − x2)
ẋ3 = k(2d + x2 − x3)

and lead to a formation ISS input gain: γb(sup|u|) =
2
kθ sup{|u|} and an formation ISS measure: P b

ISS = 2
θk

In case (c), with ui = kz32 + kz31 the formation
error kinematics become:

ż12 = − kz12 + u

ż23 = − 2kz23

yielding a formation ISS input gain: γc(sup{|u|}) =
1
θk sup{|u|} and a formation ISS measure: P c

ISS = 1
θk
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Since

γa =
6 + 6kθ + θ

kθ2
≥ 6θ + 6kθ + θ

kθ2

=
6kθ + 7θ

kθ2
=

6k + 7
kθ

≥ 7
kθ

≥ 2
kθ

= γb ≤ γc

according to the performance measures it is: P a
ISS ≤

P b
ISS ≤ P c

ISS implying that formation (c) outperforms
(a) and (b).

8 Conclusion

The paper presents a new type of stability defined
for leader-follower formations which is based on input-
to-state stability of interconnected systems. The new
stability notion gives rise to a performance measure
by which different interconnections can be compared
in terms of stability.

Preliminary analysis based on this tool indicates
that the depth of the formation has an adverse effect on
its internal stability with respect to the leader’s input.
Furthermore, the fact that additional information can
in gerenal improve performance can now be formally
expressed. Also, there seems to be a close link between
feedforward and feedback links in interconnected sys-
tems in the sense that under some conditions, feedback
links can replace feedforward links and vice versa.
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