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Abstract

The paper presents a new method of performing
integrator backstepping in systems that are discon-
tinuous, either due to their inherent structure or be-
cause of the applied control input. The proposed tech-
nique is applied to the stabilization problem of the dy-
namic system of a nonholonomic mobile robot. Simu-
lation studies indicate that the methodology can also
help alleviate the problem of chattering that is com-
monly associated with discontinuous nonholonomic
controllers.

1 Introduction

Stabilization of nonholonomic mobile robots has
been a subject of intense research in the past years
[1, 2, 3]. The implications of nonholonomic constraints
on the kind of admissible control inputs for this class
of systems has made the problem particularly chal-
lenging [4]. Many approaches have been proposed to
address the issue of nonholonomic stabilization and
can be broadly characterized as open loop strategies
[5, 6], time-varying feedback designs [7, 8, 9] and dis-
continuous static feedback methods [10, 11, 12].

Although nonholonomic systems arise mainly from
dynamic mechanical systems subject to preservation
laws, the control problem has usually been tackled at
the kinematic level, with few exceptions [13, 14, 15].
This is mainly due to the fact that the kinematic
model captures their nonholonomic nature while ab-
stracting away the details of their full dynamics. Im-
plementation of a particular solution designed at the
kinematic level has not been thought to be particularly
difficult. However, this is not always the case.

A popular way of implementing a kinematic control
law to a dynamic nonholonomic system is by backstep-
ping [16] the velocity control commands to accelera-
tion input [17, 18]. The technique can be applied only
to continuous kinematic control laws, since the back-
stepping procedure requires their differentiation with
respect to time. This constraint excludes an important
class of nonholonomic controllers which are based on
switching or introduce discontinuities.

This paper addresses the problem of backstepping a
discontinuous nonholonomic kinematic controller into
a dynamic equivalent one in order to stabilize a dy-
namic unicycle-type mobile robot. The approach is
based on non smooth analysis [19] and relatively re-
cent developments on application of Lyapunov stabil-
ity to non smooth systems [20]. The results on discon-
tinuous backstepping presented in this paper are not
confined to the case of nonholonomic stabilization but
can be applied to other discontinuous control systems.
In fact, it turns out that backstepping the discontinu-
ity is advantageous and alleviates the consequences of
high frequency switching.

The paper is organized as follows. Section 2 gives
a formal problem description of the issue addressed
in this paper. Section 3 presents the design of a dis-
continuous state feedback controller that can globally
asymptotically stabilize a unicycle-type mobile robot.
In section 4 this discontinuous control law is back-
stepped through the feedback linearized dynamics of
the mobile robot. Section 5 provides simulation ev-
idence that support the theoretic developments and
indicates the merits of the proposed technique. The
results are summarized in section 6.
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2 Problem description

Consider a nonholonomic mobile robot that moves
on the horizontal plane. The coordinates of its po-
sition on the plane are given by (x, y), whereas its
orientation with respect to an inertial reference frame
is denoted by θ

Let the kinematics of the mobile robot be described
by the equations of a unicycle:


ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

⇔ q̇ = Gu (1)

where u = (v, ω) are the velocity control inputs.
Given the dynamic equations of the mobile robot:

q̇ =Gu (2a)

u̇ =M(q)−1(f − R(q, u)) (2b)

we seek a time invariant state feedback control law
f(q) that stabilizes the mobile robot (2).

3 Discontinuous kinematic control

For self-containment, we first give some definitions:

Definition 1 ([19]). Let f f : X → R be Lipschitz
near x ∈ X, where X is a Banach space, and let v be
any vector in X. The generalized directional derivative
of f at x in the direction v, denoted f◦(x; v) is defined
as follows:

f◦(x; v) , lim
y→x
t→0

sup
f(y + tv) − f(y)

t

Definition 2 ([19]). The generalized gradient of a lo-
cally Lipschitz f : X → mathbbR at x, denoted ∂f(x),
is the subset of the dual space X∗ of continuous linear
functionals on X:

∂f(x) , {ζ ∈ X∗ | f◦(x; v) ≥ 〈ζ, v〉∀v ∈ X}
Theorem 1 ([20]). Let x(·) be a Filippov solution
to ẋ = f(x, t) on an interval containing t and V :
R × R

n → R be a Lipschitz and in addition, regu-
lar function. Then V (t, x(t)) is absolutely continuous,
d
dtV (t, x(t)) exists almost everywhere and

d

dt
V (t, x(t)) ∈a.e. ˙̃V (t, x)

where

˙̃V (t, x) ,
⋂

ξ∈∂V (t,x(t))

ξT

(
F (t, x(t))

1

)

In fact, the globally Lipschitz continuity require-
ment of the above Theorem can be relaxed. Now,
consider the kinematic equations of a unicycle type
mobile robot (1). The following proposition presents
a kinematic controller that renders (1) globally asymp-
totically stable. Consider the following definition for
the signum function :

sgn(x) =

{
1 if x ≥ 0
−1 if x < 0

.

Proposition 1. The following feedback control law:

v =sgn(x)kv [(y2 − x2) cos θ − 2xy sin θ] (3a)

ω =kω(arctan2(2xy, x2 − y2) − θ) (3b)

where kv and kω are positive constants, asymptotically
stabilizes (1) to the origin.

Proof. Consider the positive semidefinite functions:

V1(x, y) =
x2 + y2

x
, (4a)

for (x, y, θ) ∈ M1 = {(x, y, θ) |x ≥ 0} \ {0} and

V2(x, y) = −x2 + y2

x
, (4b)

for (x, y, θ) ∈ M2 = {(x, y, θ) |x < 0}. Note that
{(x, y, θ) | x = 0} 6∈ M1, M2 and thus V1, V2

are well defined. Then on each region M1, M2, (1)
under control law (3) is asymptotically stable. In
M1 \ {(x, y, θ)|x = 0}:

V̇1 = − y2 − x2

x2
v cos θ +

2xy

x2
v sin θ

= − kv(
(y2 − x2)2

x2
cos2 θ + 4y2 sin2 θ) ≤ 0

Similarly, in M2 \ {(x, y, θ)|x = 0}:

V̇2 =
y2 − x2

x2
v cos θ − 2xy

x2
v sin θ

= − kv(
(y2 − x2)2

x2
cos2 θ + 4y2 sin2 θ) ≤ 0

In both cases equality is satisfied for (x, y) = (0, 0) for
all θ. For any invariant set in (0, 0, θ) it should be:

ω = 0 → θ = 0

by definition of arctan2. Therefore, by LaSalle’s in-
variant principle the system is asymptotically stable
in the closures of both M1 \ {(x, y, θ)|x = 0} and
M2 \ {(x, y, θ)|x = 0}. To establish global asymptotic
stability we need a certain transversallity condition,
stated in the following Lemma:
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Lemma 1 ([10]). Let M1, M2 be two open connected
subsets of R

n such that M1 ∪M2 = R
n \ {0}. Let f i :

M i → R
n, i = 1, 2 be two vector fields. Assume also,

that there exists a separating hypersurface Γ with 0 ∈ Γ
and Γ \ {0} ⊂ M1 ∩M2. Let Ci, C2 be two connected
components of R

n \ Γ and assume that Ci ⊂ M i and
that f i points towards Ci on Γ for i = 1, 2. Finally
assume that f1, f2 are asymptotically stable on M1,
M2. Then, the vector field f : R

n → R
n defined by

f(x) =




f1(x) if x ∈ (Γ \ {0}) ∪ C1

f2(x) if x ∈ C2

0 if x = 0

is globally asymptotically stable.

Then, a direct calculation can show that the
transversllity condition is satisfied. Therefore (1) is
globally asymptotically stable.

Remark 1. Convergence of θ to θd can be made ex-
ponentially fast by the choice:

ω = kω [arctan2(2xy, x2−y2)−θ]+
2v(x sin θ − y cos θ)

x2 + y2

which implies that θ̇ − θ̇d = −kω(θ − θd).

Lyapunov’s direct method has been extended to
non smooth systems [20]. The following result for-
malizes this extension:

Theorem 2 ([20]). Let ẋ = f(x, t) be essentially
locally bounded and 0 ∈ K[f ](0, t) in a region Q ⊃
{x ∈ R

n|‖x‖ < r} × {t|t0 ≤ t < ∞}. Also, let
V : R

n × R → R be a regular function satisfying

V (0, t) = 0

and

0 < V1(‖x‖) ≤ V (x, t) ≤ V2(‖x‖), for x 6= 0

in Q for some V1, V2 ∈ class K. Then,

1. ˙̃V ≤ 0 in Q implies x ≡ 0 is a uniformly stable
solution.

2. If in addition, there exists a class K function ω(·)
in Q with the property

˙̃V (x, t) ≤ −ω(x) < 0

then the solution x(t) ≡ 0 is uniformly asymptot-
ically stable.

4 Backstepping discontinuous inputs

Let us turn out attention now to the dynamic model
of the mobile robot (2). It follows that the stabilizing
control input (3) can no longer applied since u is now
a state variable.

The feedback input transformation:

f = R(q, u) + M(q)v (5)

linearizes the lower part of (2):

q̇ = Gu (6)
u̇ = v (7)

where v is now the new control input. If (3) was
smooth, then by backstepping it through the integra-
tors (7) one could stabilize the complete dynamic sys-
tem (2).

However, the kinematic control law (3) is discontin-
uous to conform with Brockett’s condition [4]. This
motivated the extension of the technique of integra-
tor backstepping to handle the case where the orig-
inal control law that stabilizes the subsystem is non
smooth. The result obtained can be used in general for
systems that are described by discontinuous ordinary
differential equations:

Theorem 3. Consider the system:

η̇ = f(η) + g(η)ξ (8)

ξ̇ = u (9)

where η ∈ R
n, ξ ∈ R

m. Assume that the subsystem
(8) can be stabilized by a control law ξ = φ(η) with
φ(0) = 0, and that there is a regular (possibly non
smooth) Lyapunov function V (η) for which it holds:

W (η) , −
⋂

λ∈∂V (η)

λT K[f(η) + g(η)φ(η)] > 0 (10)

where K[·] is the Filippov solution. Then the following
control law (dependence of g and φ on η is dropped):

u = −diag
{‖ξ − φ‖−2

2 V ◦(η; g(ξ − φ)) + kz

}
· (ξ − φ(η)) + ˙̃φ (11)

where V ◦(·) is the generalized derivative [19], ˙̃φ is the
generalized time derivative [20] and kz a positive con-
stant gain vector, stabilizes asymptotically the system
(8)-(9) to the origin.
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Proof. The proof structure is adopted from [21]. By a
change of variables:

z = ξ − φ(η)

the system (8)-(9) can be written as:

η̇ = f(η) + g(η)φ(η) + g(η)z

ż = u − φ̇

Taking v = u − φ̇:

η̇ = f(η) + g(η)φ(η) + g(η)z
ż = v

Consider the following Lyapunov function:

Va(η, ξ) , V (η) +
1
2
zT z

Its time derivative is
˙̃Va = −W (η) +

⋂
λ∈∂V (η)

λT g(η)z + zT v

Let v be defined as follows:

v , −diag
{‖z‖−2

2 V ◦(η; g(η)z) + kz

}
z

where kz is a positive constant gain vector. Then,
from the definition of generalized derivative it follows:⋂

λ∈∂V (η)

λT g(η)z − V ◦(η; g(η)z) ≤ 0,

and ˙̃Va becomes negative definite. Application of The-
orem 2 completes the proof.

According to Theorem 3 at the discontinuity point
the control input is no longer a real-valued vector, but
instead it is a set, as indicated by ˙̃φ(η). Any value
within that set is admissible in the sense that asymp-
totic stability is preserved. If the original control is a
switching - sliding mode type law, then zero is always
contained in the set and can be selected to substitute
˙̃φ(η) in (11).

5 Simulation results

The technique is tested on the system:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

v̇ = u1

ω̇ = u2

that describes the linearized dynamics of a nonholo-
nomic mobile robot. Results are depicted in Figures 1
- 6 for several initial conditions. The following values
for the controller gains were used:

kv = 3 kω = 3 kz =
[
10 1

]

In case 1 the initial conditions are x(0) = 0, y(0) = 1
and θ = π

2 . Figure 1 shows the path traversed by
the mobile robot and Figure 2 depicts the evolution of
its configuration variables. This case shows that the
separating surface Γ in Lemma 1 does not introduce
any singularities despite the fact that the Lyapunov
functions (4) are not defined there. For case 2 initial
conditions are x(0) = −1, y(0) = 0 and θ = π

2 . This is
another suspicious case for potential singularities, the
controllers however are well behaved. The resulting
path is shown on Figure 3 and the time histories of
the configuration variables in Figure 4.
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Figure 1: Path to the origin in case 1

Figures 5 - 6 show that besides stabilization, back-
stepping discontinuous input can lead to alleviation of
chattering. Initial conditions for this case are x = 1,
y = 1, θ = 3π

4 . The integrator through which back-
stepping is performed acts as a low pass filter for the
switching input (Figure 5). The bandwidth of this “fil-
ter” is adjusted by the gains of the backstepping con-
troller: higher gains ensure close tracking of the ref-
erence control input (including discontinuities); lower
gains make the system less sensitive to switching but
reduce convergence rate (Figure 6).
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Figure 2: Trajectories of configuration variables in
case 1
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Figure 3: Path to the origin in case 2

6 Conclusions

The paper presents a novel technique for backstep-
ping discontinuous control signals with application to
stabilization for the dynamic model of a nonholonomic
mobile robot. The methodology is not restricted,
though, to nonholonomic systems but can be applied
to a broad class of strictly feedback discontinuous non-
linear systems. It is also indicated that backstepping
discontinuous reference control signals can help allevi-
ate the effect of chattering. Future research directions
include generalization of the method to other, more
complicated forms of backstepping.
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Figure 4: Trajectories of configuration variables in
case 2
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Figure 5: Filtering of chattering through backstepping
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