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Abstract— We demonstrate the principle of a bidirectional
interaction between the perception model that describes the
environment, and the sensor data collection that shapes the
model, through the first automated scheme for sequential
nuclear search. The objective is to detect and localize a
weak radioactive point source, with consideration to the time
spent for the search. Numerical simulations verify that desired
false positive and false negative rates can be achieved using
the control algorithm developed for deployment on prototype
system. The simulation results are also consistent with previous
theoretical, discrete simulation of the sequential search strategy

that our continuous search control algorithm is based on.

I. INTRODUCTION

Changes in the geopolitical atmosphere around the world

over the past decade has lead to qualitative changes in the

types of threats with which we are now faced. Modern threats

are subtle and ephemeral, and can be hidden across large ar-

eas. These threats can no longer be easily characterized using

classical information extraction methods where the data are

usually randomly collected, filtered and then analyzed by

human operators in search for relevant signatures. We must

guide data collection by querying models that, unlike the

human mind, can have the span and resolution needed for

multi-scale problems. Physical models of real-world threats

will need continuous updating to follow unpredictable human

choices and chaotic physical outcomes. The new approach

of model-driven measurement offers the dynamic interplay

between model update and data collection (Fig. 3) that goes

beyond the classical data assimilation.

Fig. 1. The Khepera II mobile robot
with a custom built turret to interface
the radiation sensor.

Fig. 2. The miniature radiation sen-
sor that is to be interfaced with the
mobile robot.
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In robotic search and exploration, existing approaches dif-

fer depending on the a priori information available about the

environment. If the boundary of the environment is known,

a robot can follow a variety of pre-specified paths to cover

the entire space [1], [10], [2]. But when the environment

boundaries are not known, exploring the area in minimum

time is known to be an NP-complete problem, even for

the simplest, discretized environments with graph structure.

Since an efficient, time-optimal exploration algorithm is

unlikely to exist, locally optimal “greedy” approaches and

heuristics are being used. One of the most sophisticated

approaches is that of [6], where a single robot decides the

new search directions by weighting the information gain

against the cost of moving along each particular direction.

Currently, searching for radiation sources is done man-

ually, usually by operators waving radiation counters in

front of them. When the target is a weak radiation source

like a speck of uranium, this process is highly unlikely

to yield any results at all. The strength of the signal in

nuclear search relative to noise falls as R2 as distance R
to the source increases. For this reason, existing techniques

for autonomous mapping and searching that are based on

gradient following [3] will fail: there will be no statistically

significant gradient measurement to follow. A new approach

that combines random and guided search is needed, to bring

the sensor as close to the source as possible [4]. Using mobile

robots to carry the sensors close to the source, and position it

accurately for required measurement collection, is a natural

choice (Fig. 2).

We automate the nuclear search using the strategy based

on the classical sequential testing theory which allows to

Fig. 3. Model-driven measurement: we must start asking our questions of
models, rather than measurements.



quickly locate microscopic specks of radioactive material

scattered over large area. To speed up the search task our

motion controller maintains a maximum scanning speed

while the observed count rate is consistent with our model

of natural background radiation. When the increase in the

number of emissions is observed the robot decelerates to

a level where the exposure time is sufficient to produce a

definitive answer at a very high confidence level (10−7 or

better) as to whether a source is present there.

In a sequential search for a weak radiation source, the

space is divided in cells and the “sensor” collects measure-

ments at each for different time periods. These time periods

are determined by the need to reach a statistically definitive

conclusion on whether a radioactive source is present in the

particular cell. Once a decision is made, the sensor “jumps”

to the next cell.

One of the first problems that has to be resolved for real-

izing an automated sequential search by means of a mobile

robot, is how to modify the method to make it applicable in a

continuous-space/time framework, without decomposing into

cells; a robot could never instantenously “jump” from one

cell to the next, and measurements are collected continu-

ously. We approached this issue by regulating the velocity

and acceleration of the moving sensor, to approximate the

execution of the discrete algorithm as close as possible. We

linked the robot motion controller to the statistics of the

radiation measurements, and let the latter determine if the

robot should accelerate or slow down. This paper presents

our motion control strategy and a set of extensive simulations

that verify consistency between the search task parameters

and the search outcome. We are moving in the direction of

experimentally testing our automated search strategy using a

retrofited Khepera II mobile robot shown in Figure 1.

In the current paper the search is one-dimensional, but

we envision it to be facilitated by a topographic map of the

known workspace in the form of a navigation function [7].

We link the “Measurement” with the “Physical Model” in

Figure 3 through an automated search strategy that aims

at formally refining our local interpretation of the world

to a certain level of statistical confidence, by driving the

measurement. This will be our starting point in developing

new, fully 2-D and 3-D nuclear search algorithms within

our model-driven measurement paradigm, in which robots

navigate in partially known cluttered environments using

navigation functions.

The paper is organized as follows: in section II we for-

mulate the nuclear search problem and review the sequential

search strategy. In section III we describe our motion control

algorithm that will enable a mobile robot to perform nuclear

search as suggested by sequential nuclear search strategy.

Section IV presents our simulation results where we estimate

the probabilities of false alarms and false negatives that our

method achieves. Finally, section V gives an overview of the

results of this work and highlights our current and future

research directions.
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Fig. 4. By applying sequential testing theory to our search problem, we
calculate thresholds for a positive confirmation or rejection of thesource
hypothesis (from eqn. 2). The set of gates for positive (top set of thin hori-
zontal lines) and negative (bottom set of thin horizontal lines) identification
of 10cts/s source within 1cts/s background compared with the set of gates
obtained from numerical calculation (triangles). The bold solid lines are the
linear fit to the outer limit of the gates.

II. NUCLEAR SEARCH STRATEGY

Low-rate counting of radiation from nuclear decay is

described by the Poisson statistics, where the probability to

register n counts in the detector in t seconds from the source

that is known to emit an average of µ counts per second

(cts/s) is:

P (n, t) =
(µ · t)n

n!
e−(µ·t) (1)

The simplest way to find the radiation source is to search

the area uniformly, exposing each location for a fixed dura-

tion of time. When no time constraints are present, uniform

search is the reasonable strategy to employ. The width of

Poisson distribution is defined as σ =
√

µ · t. At known

average expected background µb, signal µs and exposure

time (t), the threshold on the number of observed counts

can be set that satisfies the required confidence level of the

search outcome.

Classical sequential testing theory [9] suggests the “stop-

ping rules” that allow for rejection of certain sequences

of observations at early stages. Either positive or negative

identification can be made based on the likelihood ratio

κk = P (Nk|S)/P (Nk|B), where P (Nk|S) is the probability

to observe Nk counts within time period tk, given that the

location contains source with average number of counts per

unit time µs:

P (Nk|S) =
(tk · µs)

Nk

Nk!
e−tk·µs

and the probability to observe Nk counts assuming location

k has only background is:



P (Nk|B) =
(tk · µb)

Nk

Nk!
e−tk·µb

The stopping rule is determined from the desired false

negative and false alarm rates:

C =
PFN

1 − PFA

A =
1 − PFN

PFA

(2)

For the probability ratio κk in location k, the condition κk ≤
C rejects the hypothesis that the source is present, while the

condition κk ≥ A confirms the presence of the source. When

C < κk < A, longer exposure is required to make a decision.

An example of the stopping rules is illustrated in figure 4.

III. ROBOTIC IMPLEMENTATION OF THE SEQUENTIAL

SEARCH

Presently, the nuclear search and radiological mapping is

performed through direct human control and relies strongly

on human intuition. The use of mobile robotic agents in-

stead of human operators, allows for faster, more reliable

search with statistically definitive outcome. We construct a

motion controller for the sequential search strategy that is

compatible with modern swarm navigation and cooperative

control techniques [8]. The robot controls the sensor location

in the continuous mode, and regulates the exposure time

of each point of the search area by changing the cruising

speed. The nuclear search problem we consider in this paper

is one dimensional for simplicity, but higher dimensional

generalizations are straightforward.

The strategy is implemented on the robot as follows: as

long as the counts received at the end of the sampling

period remain below a certain threshold, a constant speed

is maintained. A sudden increase in the rate of change could

bring the system in the region of uncertainty, between the

two lines in Figure 4. The presense or absense of a source

cannot be verified there, and the robot decelerates, increasing

the exposure time of the region that gave the last counts Tt,

which is approximately equal to 2.4 seconds.

• If during this interval the number of counts collected

from this region falls below the negative detection

(lower) line, the hypothesis that a source is present is

rejected and the robot accelerates back to its nominal

speed.

• If the number of counts registers above the positive

detection (upper) line, the presence of the source is

verified, the position is marked and the robot accelerates

to to nominal speed.

• If the number of counts is still in the region of un-

certainty at the end of the Tt exposure interval, the

presence of a source is rejected by default, and the

robots accelerates to nominal speed.

The robot dynamics is modeled in discrete time as follows:

x[k + 1] = x[k] + v[k]∆T +
1

2
a[k]∆T 2, (3)

v[k + 1] = v[k] + a[k]∆T. (4)

In the above, x[k] and v[k] are the position and speed of the

robot at the end of the k sampling period, respectively. The

sampling time is ∆T and a[k] is the acceleration input at

the k sampling period, calculated from observations made in

the (k − 1) time step.

Suppose that the robot initially moves with a predeter-

mined speed vo. We assume that the length of the sensor

is LS [mm] (Figure 2). If the robot is moving with speed

v[k] [mm/s], each point on the robot’s path will be given a

uniform exposure time of

Texp =
LS

v[k]
.

The radiation detector collects photon hits (counts) during

the full sampling period. These counts are added up for the

entire period of ∆T and are read by the host computer at

the end the sampling period, with negligible delay. After

reading the counts the detector buffer is cleared and the

sensor starts accumulating the new counts during the next

sampling period.

Denote the sum of the counts in the i sampling period,

ctsi. The rate of change of counts in the i sampling period,

is estimated by
[

∆c

∆t

]

i

=
ctsi − ctsi−1

∆T
. (5)

To distinguish between the background noise and the source,

[∆c
∆t

]i is calculated at the end of each sampling period. The

expression for the line used for negative identification is

cts = λt + ν,

where λ and ν are positive constants. If the following

condition is satisfied:
[

∆c

∆t

]

i

∆T > λ∆T + ν, (6)

then the count sample collected may have been drawn from

a (Poisson) distribution with a mean significantly different

than that of the expected background. This would indicate

that the counts emitted are coming from a source. To confirm

the latter, the exposure time is increased to at least Tt = 2.4
s, a level that the negative detection gate (6) in the graph

of Figure 4} indicates as appropriate in order for the count

increase to be classified as noise.

Let µs denote the average number of counts emitted by the

source each second. Then the estimated time Tp for which

the sensor was already collecting counts from the source,

before the sudden increase was detected, is

Tp =

[

∆c

∆t

]

i

· ∆T

µs

.

By looking at the Figure 4, we know that within the first

0.2 seconds, the source might have emitted nothing. So the

time Tp is bounded between 0.2 < Tp < 0.2 + ∆T . The

additional exposure time needed according to (6) will then

be,

T = Tt − Tp.



n = ceil

[

T

∆T

]

We redefine T as, T = n∆T, ∀n ∈ N . If the robot was

travelling with speed v[k] for the time period Tp, during

which the sensor was exposed to the suspected source, the

latter would have moved relative to the tip of the sensor by

a distance:

Sp = v(k)Tp.

The part of the sensor which has not been exposed to the

source yet is then S = LS − Sp. In our motion control

strategy we assume that the robot travels S1 distance in ∆T
time decelerating, and then covers S2 distance in (T −∆T )
time moving at constant speed. Then,

S1 = v[k]∆T +
1

2
a[k]∆T 2

v[k + 1] = v[k] + a[k]∆T

S2 = v[k + 1](T − ∆T ).

The sum of the distances (S1 + S2) should be equal to the

length of the unexposed part of the sensor, S:

S = S1 + S2

= v[k]∆T +
1

2
a[k]∆T 2 + v[k + 1](T − ∆T )

= v[k]T +
1

2
a[k](2T∆T − ∆T 2).

The above equation gives us the required acceleration input

at step k:

a[k] =
2(S − v[k]T )

2T∆T − ∆T 2
.

The above acceleration expression can be further simplified

and written in terms of LS , v(k) and Tt. Substituting, the

deceleration for the k sampling period is found to be:

a[k] =
2(LS − v[k]Tt)

∆T (2T − ∆T )
. (7)

In order for the robot to be able to decelerate, we need

v[k] > LS

Tt
. Thus, we must set the initial speed so that vo >

LS

Tt
. If needed, the robot will decelerate to a speed v[k + 1],

given by (4). We also impose an additional condition, in order

to exclude the case where the robot has to move backwards:

this suggests that v[k + 1] is always positive, namely,

v[k] + a[k]∆T > 0.

Substituting a[k] using (7),

v[k] +
2(LS − v[k]Tt)

∆T (2T − ∆T )
∆T >0

⇒ −v(k)∆T − 2v(k)(Tt − T ) + 2LS >0, (8)

Since, Tp = Tt − T , −v(k)∆T − 2v(k)Tp + 2LS > 0. This

above inequality gives us another condition on v(k),

v(k) <
LS

∆T/2 + Tp

=
LS

∆T/2 + ∆T + 0.2

Therefore, the initial set speed should have a lower bound

and a upper bound:

LS

Tt

< vo <
LS

3/2∆T + 0.2
(9)

After decelerating with a[k] for one sampling period, the

robot travels with a constant speed, v[k + 1] for the next

(n − 1) sampling periods.

At the end of each of the sampling periods from k + 1 to

k + n, the total number of counts is added:

ctsj =

k+j
∑

i=k

ctsi. j ≤ n

The suspected source would have been exposed for a total

time of tj = (j + 1)∆T . Therefore, if

ctsj > λtj + ν1,

where cts = λt + ν1 describes the line used positive iden-

tification gate (Figure 4), then the collected counts sample

has a mean that is statistically significant from µb, and the

presence of a source is verified. After marking the location,

the robot accelerates to v[t + 1] = vo. The acceleration in

the k + j + 1 sampling period is given by

a[k + j + 1] =
vo − v[k + j]

∆T

IV. SIMULATION RESULTS

This section presents simulation results that demonstrate

the efficacy of our nuclear search method. The robotic

implementation has yielded more conservative probabilities

of false alarms (FA) and false negatives (FN) compared to

the ones suggested by the sequential search strategy, as long

as the cruising speed remained below the maximum allowed:

Simulation results indicated that the probability of missing

the source (FN) was less than 10%, and was increasing as

a function of the robot speed. In a set of approximately

100,000 simulation runs, no false alarms were recorded.

In the simulation example, we drive the robot over a

straight line. A radiation source with a mean of µs = 11
[counts/s] is positioned at a distance of is placed at 880

[mm] from the starting point. The sampling period of the

control loop is set at ∆T = 0.5 s, and the total exposure time

allowed for each point (after which we assume the absense

of source if no statistical hypothesis regarding the absense

or presense of a source can be verified), is set at Tt = 2.5 s.

The robot begins moving at a speed of vo = 33 [mm/s], and

continues for 45 seconds. Background radiation is estimated

at µb = 1 [counts/s]. Radiation statistics are simulated using

MATLAB’s poissrnd function.

Figure 5 gives the counts (background plus source)

recorded at each time step, over the total period of motion.

The peaks observed between the 58th and 61st sampling

period suggest the presence of a source. Figure 6 depicts

the cummulative counts versus time. There is a clear change

in the rate of increase around t = 30 s. Figure 7 shows

the trajectory of the robot, in response to the measurements.

After t = 29 s, the increased number of counts recorded,
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Fig. 5. Time vs Total Counts obtained at the end of each sampling period.
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Fig. 6. Time vs Sum of total counts at the end of each sampling period.

registers the data sample within the region of statistical

uncertainty. In the next sampling period, the robot decelerates

in order to increase exposure time, obtain a sample with a

larger time horizon and decrease uncertainty. In the following

sampling period, the robot moves with constant speed, and

at the end of the 30th second, it confirms the presence of a

source. Having decreased the uncertainty of the measurement

in this region, and verified one of the two hypotheses,

it accelerates again to the initial speed, and resumes the

search. Figure 8, indicates that during the whole search, the

robot decelerated 9 times, out of which 8 were triggered

by background radiation. Each time the robot decelerated,

verified one of the two hypotheses and promptly accelerated

back to the initial speed to resume the search. The source

were correctly identified at its location and no point gave a

false alarm.
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In a set of 10,000 simulation runs, we estimated the

probability of false negatives (FN), correct detection (CD)

and false positives (FP). In this set of runs, we varied

the initial speed vo from vo = 30 [mm/s] to vo = 80
[mm/s], we moved the robot for 600 sampling periods,

and we measured the percentage of false negatives, using

different sampling periods (∆T = 0.25 s, and ∆T = 0.2
s). In Figure 9 suggests, the percentage of FNs (missing

the source) increases with the initial speed vo. Close to the

maximum speed the robot is allowed to travel, we verify a

percentage of FNs close to 10%, which is what the theory of

sequential search predicts. No false positives (false alarms)

were recorded.

Another observation is that the percentage of FNs de-

creases as the sampling period increases. We believe that

this is due to the way we have simulated the radiation

measurements and we plan to investigate this effect more
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thoroughly in experimental implementations, currently in

progress.

We use Figure 10 to evaluate the efficiency of our search

method. We see a monotonic increase in the area that is

searched as the cruising speed increases.

V. CONCLUSIONS

We have developed a robot motion control algorithm

that implements a sequential nuclear search strategy on a

mobile robot carrying a radiation sensor. The algorithm uses

stopping rules, provided by the strategy, to decelerate and

accelerate the robot based on the “Task” that has to be

performed, the “Local Model” of the robot’s workspace

and the measurements collected. In our 1-D simulation, we

consider only the interaction between the “Local Model”

and the “Measurement,” realized by the motion controller

and the search strategy . The “Task,” which is to locate

the radioactive source, having a probability of missing it

(false negative) equal to PFN = 0.1, and a probability of

a false alarm equal to PFA = 10−7, is relayed from the

“Global Model” to our “Control Algorithm/Strategy”. The

“Local Model” of the environment in which the “Control

Algorithm/Strategy” is executed, is based on the “Prior”

information that we have. The latter is comprised of the

mean emission rates from the source (µs = 11 cts/s) and

the background (µb = 1 cts/s). These emission rates are

kept constant throughout the search process. Our simulations

indicate that the maximum speed of 80 mm/s, we were able

to search 7.7 m, having 13% rate of false negatives, and

< 10−2% rate of false alarms.
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