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Abstract

The equations of motion for a system of multiple mobile manipulators that handle a
deformable object during an agricultural task are developed. The model is based on Kane’s
approach. The imposed kinematic constraints are included and incorporated into the
dynamics. Sufficient conditions for avoiding tipping over of the mechanisms are also
provided. The deformable nature of the object can easily accommodate a variety of
agricultural products and the analysis allows for the inclusion of specific handling limitations
in order for the objects not to be damaged during manipulation. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Stationary robots are used for sheep hearing, cow milking and the use of
manipulators in slaughterhouses has also been proposed. Mobile robots are used
both in outdoor environment (Papadopoulos and Sarkar, 1997) and inside a
greenhouse (Mandow et al., 1996). Robots have also been employed in the
inspection and harvesting of cucumbers (van Kollenburg-Crisan et al., 1998). Many
robotic and mobile robotic applications in agriculture have been reported (Ameri-
can Society of Agricultural Engineering, 1989).

* Corresponding author.
E-mail addresses: htanner@central.ntua.gr (H.G. Tanner), kkyria@central.ntua.gr (K.J. Kyriakopou-

los), nkrik@central.ntua.gr (N.I. Krikelis).

0168-1699/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0168 -1699 (00 )00176 -9



H.G. Tanner et al. / Computers and Electronics in Agriculture 31 (2001) 91–10592

Mobile manipulators have also been applied in agriculture (Figs.1 and 2). The
University of Western Australia developed two robots (the ORACLE and the SM)
for sheep shearing. The robots consist of one or more manipulators, which can
translate on a horizontal platform. In Israel, Greentech Ltd has developed a
greenhouse harvester, a mobile robot which moves around growing rows identifying
fruit ripe for picking. Greenhouse spraying can be performed by the AURORA
mobile robot (Mandow et al., 1996). The robot is capable of navigating au-
tonomously along the corridors of a greenhouse while performing spraying tasks.
Other mobile manipulators have been built to operate under field conditions and
collect grapes (Kondo, 1995), oranges (Fujiura et al., 1990), watermelons (Iida et
al., 1996) etc. The Center for Intelligent Machines at McGill University has
developed an articulated forestry machine (Papadopoulos and Sarkar, 1997). The
application is very promising for the employment of multiple mobile manipulator
systems. The use of such systems for packaging and palletizing in food industry has
also been considered (Dreyer, 1994; Masinick, 1994).

The mobile base of a mobile manipulator is subject to motion constraints called
nonholonomic (Campion and Bastin, 1991). Many of the models proposed for
mobile manipulator systems do not include them (Khatib et al., 1995; Tarn et al.,
1996). Others include them, using classic Euler–Lagrange (Yamamoto, 1994) and
Newton–Euler formulations (Chen and Zalzala, 1995), but do not consider all
constraints imposed in such systems. Recently, Thanjavur and Rajogopalan (1997)
modeled an AGV using Kane’s equations.

Previous approaches to non-rigid material handling focus mainly on formulating
general continuous dynamic equations for the object. Sun et al. (1996) followed
Terzopoulos’ (Terzopoulos and Fleischer, 1988) hybrid approach to deformable
objects. Kosuge et al. (1995) used finite elements but ignored the dynamics of the
object.

Fig. 1. Mobile manipulators in forestry.
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Fig. 2. Apple harvesting mobile manipulator.

Due to space limitations mathematical derivations have been shortened. The
interested reader may refer to Tanner (1999). The rest of the paper is organized as
follows: In Section 2, Kane’s methodology is used to model a single mobile
manipulator. Section 3 is devoted to modeling the deformable object. The com-
bined model for the system of mobile manipulators handling a deformable object is
constructed in Section 4. In Section 5, the dynamic constraints imposed are
analyzed. Section 6 summarizes the conclusions from the present work and high-
lights future research directions.

2. Modeling of a mobile manipulator

Consider a mobile manipulator numbered k and a fixed inertial frame, {I} as in
Fig. 3. Its x and y axes lie on the horizontal plane. On the mobile platform of
mobile manipulator, a frame {6} at its mass center is attached with axis z6 parallel
to zI. At the same point, the platform’s central principal inertial frame, {6cpi}, is
assigned. The point of the manipulator in contact with the platform is named mm
and coincides with the platform point mm. The manipulator frames are assigned
according to Denavit and Hartenberg (1955). Finally, a frame is assigned at the
manipulator end effector. The right superscript of any quantity will denote the rigid
body it refers to. The left superscript will denote the reference frame with respect to
which the quantity is expressed. When omitted, frame {I} is assumed.

At the center of each wheel j, j=1, …, w, frame {wj} is attached (Fig. 3). Its zwj

axis remains parallel to the vehicle z6 axis, but the frame can rotate around this
axis. Each frame is related to the fixed frame through a rotation matrix R. This
rotation matrix will be written as, e.g. wj

IR, to indicate transformation of free
vectors expressed in frame {wj}, to the inertial frame. In the sequel it is assumed
that the motion of all vehicles is restricted on the horizontal plane. The coefficient
of static friction between each wheel and the ground is h, assumed the same for all
wheels.
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Fig. 3. Frame assignment on mobile manipulator k.

The manipulator has n−4 rotational joints. The system’s generalized coordinates
are

q= [x 6 y 6 u f q1…qn−4]T

where x, y are the vehicle planar coordinates in coordinate system {I}, u its
orientation corresponding to the direction of its linear velocity, f the steering angle
of the vehicle and the rest correspond to the manipulator joints. The generalized
speeds are defined as:

u= [x; 6 y; 6 u: f: q; 1 … q; n−4 …]T

2.1. The dynamic equations of the 6ehicle

A wheel j can have two degrees of freedom. A rolling angle about ywj axis (Fig.
3), controlled by input torque td

wj and steering angle f
wj, controlled by input torque

t s
wj. All steering angles are kinematically coupled. Let f be a particular steering

angle, and assume f
wj=f

wj(f).
If the no skidding condition for the wheels is used:
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u3=
u2 cos (fwj+u)−u1 sin (fwj+u)

6ly
wj sin fwj+ 6lx

wj cos fwj
for any j�{1, …, w} (1)

where lwj= [lx
wj lx

wj lz
wj ]T is the position vector from frame {6} to the contact

between the wheel and the ground, and xwj is a unit axis vector on the wheel (Fig.
3), then the partial velocities of the center of the wheel can be derived as:

v1
wj=cos (fwj+u)xwj v2

wj=sin (fwj+u)xwj

v3
wj= (6lx

wj sin f
wj− 6ly

wj cos f
wj)xwj (2)

If rwj is the wheel wj radius, the no slipping constraint can be expressed as:

vwj=v
wj×rwjzwj (3)

From Eq. (3) the partial angular velocities of a wheel can be derived:

v1
wj=

cos (fwj+u)
rwj

ywj v2
wj=

sin (fwj+u)
twj

ywj

v3
wj=

(6lx
wj sin f

wj− 6ly
wj cos f

wj)
rwj

ywj+zwj v4
wj=
(fwj

(f
zwj

for each j�{1, …, w} (4)

Partial angular velocities of wheel wj for r=5, …, n are zero.
Input torques contribute to the generalized active forces by:

(Fr)w=v r
wj · Ts

wj+v r
wj · Td

wj r�{1, …, n}, j�{1, …, w}

Let mwj be the mass of wheel j, which is being modeled as a disk. If Iwj is the
wheel’s central inertial dyadic (Kane and Levinson, 1985), the inertial moment
exerted on the wheel will be:

T*wj= − [ax
wjIx

wj−vy
wjv z

wj(Iy
wj−Iz

wj)]xwj− [ay
wjIy

wj−v z
wjvx

wj(Iz
wj−Ix

wj)]ywj

− [a z
wjIz

wj−vx
wjvy

wj(Ix
wj−Iy

wj)]zwj

where ax,y,z
wj , vx,y,z

wj and Ix,y,z
wj denote the components of angular acceleration, velocity

and central principle moment of inertia of the wheel in frame {wj}, respectively.
The generalized inertial forces of all wheels are computed as (Kane and Levinson,

1985):

(Fr*)w= %
w

j=1

v r
wj · T*wj+ %

w

j=1

vr
wj · F*wj

Consider the vehicle mass center and the point mm which coincides with the base
of the manipulator. The vehicle mass center c6, where frame {6} is located,
translates with velocity vc6=u1xI+u2yI. The partial velocities for the vehicle mass
center and the point mm will be:

v1
c6=xI v2

c6=yI v1
mm=xI v2

mm=yI v3
mm=zI× 6rmm

Frame’s {6} angular velocity is v 6=u3zI, and the only partial angular velocities
of the vehicle frame and of the vehicle point wj coinciding with the wheel center are:
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v3
6=zI v3

wj=zI (5)

The reaction torques by the wheels contribute to the generalized active forces by:

(Fr)wj
=v r

wj(−Ts
wj)+v r

wj(−Td
wj) [ (F3)w̄= − %

w

j=1

t s
wj (6)

If Fmm and Tmm are the force and torque exerted by the attached manipulator on
the vehicle, respectively, their contribution to the generalized active forces will be:

(F1)mm=xI · Fmm (F2)mm=yI · Fmm (F3)mm= (zI× 6rmm)· Fmm+zI · Tmm

(7)

Then the contribution of the vehicle body to the generalized active forces would
be:

(Fr)b= (Fr)mm+ (Fr)wj
(8)

The acceleration of the mass center of the vehicle is ac6=u; 1xI+u; 2yI, and if the
mass of the vehicle body is m 6 then the inertial force and moment will, respectively,
be:

F* 6= −m 6(u; 1xI+u; 2yI) T*c6= −a 6 · I6−v 6×I6 · v 6

where a 6 is the angular acceleration of the vehicle, a 6=u; 3zI
3, and I6 the inertial

dyadic. In the central principal inertial frame, the inertial dyadic (Kane and
Levinson, 1985) is diagonal with entries Ix

6, Iy
6, Iz

6. In the central principal inertial
frame, the inertial moment is expressed as:

T* 6= − [ax
6Ix
6−vy

6v z
6(Iy
6−Iz

6)]x6cpi− [ay
6Iy
6−v z

6vx
6(Iz
6−Ix

6)]y6cpi

− [a z
6Iz
6−vx

6vy
6(Ix
6−Iy

6)]z6cpi

The vehicle inertial forces and moments contribute to the generalized inertial
forces by:

(Fr*)b=v r
6 · T* 6+vr

c6 · F* 6

The vehicle dynamic equations are derived as:

%{(Fr*)6+ (Fr*)b}+%{(Fr
w)6+ (Fr

w)b}=0

The reduced model will be obtained in Section 2.3.

Example 1. The dynamic equations of the mobile platform have been derived for
the case of a mobile robot.

The mobile robot considered is depicted in Fig. 4. This vehicle has motion in the
front wheel only (wheel 1). Rotation of the wheel results in change of the steering
angle f, while traction is implemented by the traction torque td. For this model, the
following parameter values were used:
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Fig. 4. The mobile robot considered in Example 1.

m 6=41.3 Iz=4.37 mw=2 lx
1 =0.16 ly

1=0
lx

2 = −0.08 ly
2= −0.139 lx

3 = −0.08 ly
3=0.139 rw=0.15

For this example we assumed a constant traction torque, while for the steering
torque a simple PD controller has been applied. Simulations were conducted in
MATLAB™. Fig. 5 shows a circular trajectory with zero initial conditions resulting
from td=0.1, ts= −0.1(f− (p/6))−0.01f: .

Fig. 6 shows the motion with input torques td=0.1, ts= −0.1(f− (p/7)sin
t)−0.01f: .

2.2. The manipulator

Link 0 is the manipulator base, attached to the mobile platform. Let mm be the
manipulator point where the manipulator is attached to the vehicle. The interaction
forces and torques exerted on the vehicle by the manipulator are of great impor-
tance but do not appear in the final expressions. Their expressions are necessary for
deriving mechanical stability conditions. Thus, we introduce additional generalized
speeds in order to bring them into evidence. Assume that point mm can translate
and rotate, so that its partial velocities and partial angular velocities are:
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v1
mm=xI vn+1

mm =x6 v1
0=0 vn+4

0 =x6

v2
mm=yI vn+2

mm =y6 v2
0=0 vn+5

0 =y6

v3
mm=zI× 6rmm vn+3

mm =z6 v3
0=zI vn+6

0 =z6

Â
Ã
Ì
Ã
Å

(9)

The contribution of the reaction forces by the platform to the generalized active
forces is:

(Fr)mm=vr
mm · (−Fmm)+v r

0 · (−Tmm) r=1, …, n+6 (10)

Due to Eq. (9) the weight of link 0 contributes. Let 0rc0 be the position vector of
the mass center in frame {0} and 0rmm the position vector of point mm in the same
frame. Then the partial velocities of the mass center of link 0 can be expressed as:

v1
c0=xI vn+1

c0 =x6 vn+4
c0 =x6(0rc0−0rmm)

v2
c0=yI vn+2

c0 =y6 vn+5
c0 =y6(0rc0−0rmm)

v3
c0=zI(6rmm+0rc0−0rmm) vn+3

c0 =z6 vn+6
c0 =z6(0rc0−0rmm)

Â
Ã
Ì
Ã
Å

(11)

The link weight G0=m0gzI contributes to the generalized active forces by:

(Fr)G0=m0gzI · vr
c0 r=1, …, n+6

The contributions of the manipulator joint torques can be expressed as:

(Fr)jointi=
((v i−v i−1)

(ur

· tizi−1 (12)

where zi−1 is the axis of rotation of link i relative to link i−1.
The contribution of the base of the manipulator to the generalized active forces

is:

(Fr)0= (Fr)mm+ (Fr)G0 (13)

The inertial force is F*0= −m0ac0, where ac0 is the acceleration of the mass
center of the link. The inertial moment in principle inertial frame is:

T*0=

[− (ax
0Ix

0 −vy
0v z

0(Iy
0−Iz

0)) − (ay
0Iy

0−v z
0vx

0(Iz
0−Ix

0)) − (a z
0Iz

0−vx
0vy

0(Ix
0 −Iy

0))]T

where vx,y,z
0 and ax,y,z

0 denote the components of the link’s angular velocity and
acceleration.

The contribution of the inertia forces and moments of link 0 can be calculated as:

(F*)0=vr
c0 · F*0+v r

0 · T*0 r=1, …, n+6 (14)

For link i, the input torque’s contribution is given by Eq. (12), whereas the
weight’s of link i by:

(Fr)Gi=
(vci

(ur

· mig

where vci is the velocity of link i mass center. Its contribution to generalized active
forces is:
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(Fr)i= (Fr)jointi+ (Fr)Gi (15)

Inertial force and inertial moment on link i are, respectively:

F*i=miaci T*i= −a i · Ii−v i×Ii · v i

where aci is the linear acceleration of the mass center of link i, a i is the angular
acceleration of the link and Ii is the central inertia dyadic of i. Their contribution
to generalized inertia forces is:

(Fr*)i=
(vci

(ur

· F*i+
(v i

(ur

· T*i, r=1, …, n+6 (16)

Let torque Tee and force Fee represent the end effector load, applied at the end
effector frame {ee}, coincident with {n}. The load contributes to the generalized
active forces by:

(Fr)ee=
(vee

(ur

· Fee+
(v ee

(ur

· Tee (17)

2.3. Mobile manipulator k dynamic equations

Kane’s dynamic equations for mobile manipulator k can be summarized in:

(Fr)k+ (Fr*)k=0 r=1, …, n+6 (18)

where (Fr)k and (Fr*)k are the sum of generalized active forces and inertial forces,
respectively.

The model can easily be brought (Tarn et al., 1996) into the classical form:

M(q)q̈+C(q, q; )+G(q)+Fe=t (19)

The nonholonomic constraints are expressed as A(q)q; =0. Let S(q) be the matrix
the columns of which span the null space of A. S implies the existence of variables
h�Rn−2 such that (Campion and Bastin, 1991) q; =Sh. Then Eq. (19) can be
transformed to:

Q(q)h; + f(q, h)+g(q)=B(t−Fe) (20)

where Q=STMS, f=ST{M((/(q)[Sh ]}Sh+STC, g=STG and B=ST

Consider the operational point of the mobile manipulator, p. Using the relation:
p; =J(q)h, and Eq. (20) the dynamics of the operational point of mobile manipula-
tor k can be described as:

Lk(qk)p̈k+mk(qk, hk)+nk(qk)=Fk (21)

where L(q)= [JQ−1JT]−1, m(q, h)=J( Tf−Lh, n(q)=J( Tg, F=J( T(Bt−Fe) and J
(Khatib, 1995) is the pseudoinverse of J(q): J(q)=Q−1(q)JT(q)L(q).
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Fig. 7. Approximating the deformable object.

3. Modeling of the deformable object

We discretize the deformable object using finite elements. For each element, the
displacements U within its volume can be expressed in terms of the displacements
at its nodes, U=Nq, where N is the matrix of shape functions (Rao, 1989). The
deformations, o, displacements, U, and stresses, s are related as follows o=D · U
s=E · o. Substituting yields o=Bq.

The dynamic equations of each element can be derived following Lagrange’s
formulation:

Meq̈e+Ceq; e+Keqe=Fi
e

The characteristic matrices appearing in this equation can be expressed as:

Me=
&&&

rNTN dV Ke=
&&&

BTEB dV Ce=
&&&

mNTN dV

Element dynamic equations are assembled to form the object dynamic equations:

M0q̈0+C0q; 0+K0q0=Fi
0 (22)

4. Multiple mobile manipulator system

Suppose that there are m mobile manipulators grasping the object (Fig. 7).
The dynamics of the deformable object can be described in terms of all opera-

tional points.

Definition 1. The global operational point is a vector formed by the Cartesian
product of the operational points of all manipulator systems grasping the de-
formable object:
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Pb [p1 p2 ··· pk ··· pm]T�Dp 1×Dp 2× ···×Dp k× ···Dp m

where pi is the operational point defined for each mobile manipulator, Dp i the
operational space of mobile manipulator i and m the total number of mobile
manipulators.

In the framework of the augmented object approach (Khatib, 1995), only rigid
objects have been considered. Subsystems can be integrated into a centralized
dynamic model in the global operational space. Consider Eq. (22) and set:
q0bP.

The dynamic equations of the deformable object are expressed as a function
of the global operational point coordinates: M0P8 +C0P: +K0P=Fi

0. Now con-
sider all m mobile manipulators in a single system with dynamic equations:

L�P8 +m�+n�=F� (23)

where L�=M0+diag{Lk}, m�=C0+diag{mk}, n�=K0+diag{nk} and F�=
Fi+diag{Fk}

5. Dynamic constraints

The resultant of all but the ground forces exerted on the platform k is:

R( =m 6(g−a6)+%j=1
wk

m j(g−a j )+Fmm

where j is used to denote each where, wk is the number of wheels of mobile
manipulator k, and the subscript k has been dropped for simplicity. Denote the
reaction forces exerted to the wheels of platform k by F j. Then the set of
constraint equations can be summarized as follows:

R( zI=%j=1
wk

F jzI 05F jz j r jF jx j= (td
j )

0]
1


1+h

F j
−z jF j �

R( +%j=1
wk

F j�(v 6×vc6)=0

Finally, the moments of all external forces exerted on mobile platform k are
related as:

−a 6 · I6−v 6×I6 · v 6+Fmm× 6rmm+Tmm

+%j=1
w [F j× 6l j−m ja j× (6l j−r jz j )]=0 (24)

where I6 is the central inertia dyadic of the platform of mobile manipulator k.
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6. Conclusion

In this work, a multiple mobile manipulator system handling a deformable object
is modeled, introducing novelties an terms of systematic analysis and generality.
Steps towards implementing such a system in agriculture have been taken (Mandow
et al., 1996; Papadopoulos and Sarkar, 1997; van Kollenburg-Crisan et al., 1998).
The model is based on Kane’s methodology which has the inherent advantages of
simplicity, physical insight, speed in simulation and control orientation and allows
for the manipulations of a deformable object of arbitrary shape. It is pointed out
that conventional velocity constraint equations are not sufficient to guarantee
nonholonomic motion for a real system. A set of additional conditions is formed
which ensures mechanical stability and nonholonomic motion.
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