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Abstract— We characterize the accuracy of a cooperative
localization algorithm based on Kalman Filtering, as expressed
by the trace of the covariance matrix, in terms of the algebraic
graph theoretic properties of the sensing graph. In particular,
we discover a weighted Laplacian in the expression that yields
the constant, steady state value of the covariance matrix.
We show how one can reduce the localization uncertainty
by manipulating the eigenvalues of the weighted Laplacian.
We thus provide insight to recent optimization results which
indicate that increased connectivity implies higher accuracy. We
offer an analysis method that could lead to more efficient ways
of achieving the desired accuracy by controlling the sensing
network.

I. INTRODUCTION

Every robot navigation and map building algorithm relies
on accurate localization. Odometry is the simplest and most
inexpensive technique for mobile robot localization, but un-
equal wheel diameters, uneven floor surface, wheel slippage,
and low encoder resolution, contribute to errors that increase
with time [1]. Position estimates are improved by means of
relative position measurements to known landmarks [2], [3]
made by exteroceptive sensors, such as laser range finders,
sonar sensors, and infra-red sensors.

Several filters have been developed to fuse measurements
obtained by the proprioceptive (internal measurement) and
exteroceptive (external measurement) sensors like (Extended)
Kalman filters [4], [5], particle filters [6], [7], grid based
methods [8], [9] and expectation maximization algorithms
[10], [11].

When landmarks are initially unavailable or sparsely pop-
ulated, achieving the desired accuracy using these filters can
be a challenge. In such cases, a robot team offers additional
flexibility: robots within a team can improve their state
estimates by using relative position measurements between
themselves, in addition to measurements of known landmarks
in the environment. In [12], the absence of available land-
marks motivates the division of a group of robots into two
teams. At a given instance of time, one of the teams acted as
a landmark set for the other team. Over time, the roles can
be reversed. If one can afford having one robot with absolute
position information, then the combined (linearized) system
becomes observable [5].

Not surprisingly, the larger the number of measurements,
the better. However, sensor data availability always comes at
a cost; computation requirements increase, and constraints
on the spatial distribution of robots multiply. A question that
arises is: how can we obtain a sufficiently good level of ac-
curacy, with the smallest number of relative measurements?
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The starting point in our approach to this question is [4],
where authors compute upper bounds for the covariance ma-
trix of position estimates obtained via the extended Kalman
filter. In [13], they show that the trace is an non-convex
objective function of the sensing graph topology, and they
minimize it using a genetic algorithm. In this paper, we try
to shed more light into the relation between the trace and
the graph topology, by relating the two through the sensor
graph weighted Laplacian. Although, as correctly observed
in [13], the addition of edges in the sensing graph leads
to improved localization accuracy, the claim made here is
that some links are better than others. We do not offer a
constructive way of designing the sparser sensing graph to
fit given accuracy specifications, but this paper contributes
by exposing the dependence of the trace to the weighted
Laplacian eigenvalues. Hopefully, this link will enable us
to invent efficient inter-robot sensing network architectures,
drawing from the arsenal of algebraic graph theory results.

Section II formalizes our objective in this paper and states
any additional assumptions. Section III reviews briefly how
the closed form for the steady state value of the position
estimates covariance matrix was derived in [4], for the partic-
ular case where one landmark’s location is known accurately.
We interpret a special case of [4] from an algebraic graph
theoretic perspective in section IV, while section V gives
proofs for interlacing theorems on weighted graphs.

II. PROBLEM DESCRIPTION

Consider a group of M mobile robots capable of obtaining
odometry data as well as making relative measurements with
respect to each other. We assume the existence of at least one
perfectly known landmark, which at least one of the robots
can observe. Based on the absolute position information
of this landmark, and relative position information between
the robots in the group, all robots can localize themselves
within certain error bounds, which depend on the statistics
of their relative position measurements. The question in this
paper is the following: How can one affect the accuracy of
localization by changing the observation relations between
the robots and the landmark?

ITII. OUR STARTING POINT

The material in this section is borrowed from [4], and the
introductory discussion in this section attempts to set the
stage and justify our interpretation of the results of [4], that
follow in section IV. The mathematical development in this
section is intentionally brief, since it is not new. We have
kept notation as close to the original as possible, to facilitate



the interested reader who is referred to [4] for details on the
derivations.

Consider a team of M mobile robots, moving in an
area containing N landmarks. The robots use proprioceptive
measurements to propagate their own position estimates
and obtain relative position estimates of neighboring robots
using their exteroceptive sensors. An Extended Kalman Filter
(EKF) is used to filter out measurement noise and reduce the
uncertainty associated with the interpretation of sensor sig-
nals. Each robot can obtain absolute orientation information.

Kalman filter estimation can be divided into two cycles:
the position propagation cycle, in which the knowledge about
position estimates is propagated to next time step; and the
update cycle, where the position estimates are updated using
relative position information obtained from sensors.

A. Position propagation

The pose of robot i is given by X,., = [z,,,y,,|T, where
x and y denote the longitudinal and latitudinal coordinates,
respectively. The subscript r is used to distinguish the
coordinates of robots from that of landmarks. The discrete-

time equations approximating the kinematics of robot 7 are

@y, (k + 1) = @, (k) + Vi(k)5t cos(¢: (k)
Yri(k +1) = yr, (k) + Vi(k)dt sin(¢i(k)),

where V; (k) is the translational velocity at time step k and dt
is the sampling time. Let us denote the estimated values for
the robot coordinates using a hat (*), and the corresponding
estimation errors by annotating the corresponding quantities
with (7); for example, ¢; = ¢; — ¢;. Linearizing (1) along
the robot’s trajectory, we derive a linear approximation of
the robot’s position error propagation between time steps

(1a)
(1b)

rire = T2x2Xe, |+ Gr (K)Wik), 2
where X, =@ g 7 and G,, is the error
ikt1lk g1k a1k ‘

propagation matrix:

_ 5t cos(¢; (k)
Gy, (k) = St sin(e; (k)

in which V,, (k) is the measured robot velocity, 0t is the
sampling time and ¢;(k) is the estimate of robot’s orien-
tation. The term W; is the vector of noise signals, defined
as Wi(k) = [wy,(k), ¢:(k)]T, where wy, (k) is zero-mean,
white Gaussian noise sequence of variance 0‘2,1,, with oy,
being the standard deviation of velocity measurement noise
for the ith robot at time step k, and ¢;(k) is the error in
robot’s orientation at time step k. From (2), the covariance
matrix of system noise for the i-th robot is

Vi, (R)tsin(i(1))
Vi, (k)dt cos(¢p;(k)) |’

In [4] it is shown that the covariance propagation equations
of the state error are

Pyy1pk = Popp + GQ(k)GT,

where Py, is the covariance matrix of the position errors at
time step k, calculated based on measurement information
collected at step k.

B. Position update

The information obtained from relative measurements
between robots is used in the update phase to reduce the
position uncertainty of each robot. The relative position
measurements obtained when robot ¢ observes robot j are

Zij = CT(d)i)(Xij - Xh‘) + Nziy
where X;; denotes the position of the robot (or landmark)
j observed by robot 7, and n.,, is the noise affecting this
measurement. Matrix C(¢;) is a rotation matrix, used to
express the relative measurements in the inertial coordinate
system. Measurement errors evolve as follows

Zij(k+1) = Hij(k + 1) Xp 15 + Dij(k + Dng; (k + 1),

where X is the combined stack vector of all the estimates
for robot and landmark positions, and I';;(k) is given by

Lij(k) = [loxa  —CT(¢i(k +1))JApy;(k + 1)] ,

in which
0 -1 o ey, (R)
J = |:1 0 :| s nzy(k) = [d%(k) :| s
and Api;(k+1) = Xi.jk:+1|k — X’“z‘kmk’ with X, denoting

the estimate for position of robot ¢, and Xij he position of
robot (or landmark) j as estimated by robot <.

The matrix H,; is defined in [4] as H;;(k + 1) =
CT (i (k + 1))H,,;, where

H,,, = [0 —Izx2 Ixs 0 -+ 0]. 3

If robot i observes robot j, H,,; is a 2 x (2M +2N) matrix
with i-th entry as —Isxo and j-th entry as Is4o and the rest
of the entries are zero.

The covariance update equation of the EKF is [4]

T a1
Pretiik+1 = Pryrpe — PrvnHy Sy HoPrg1 )i

where H, is a matrix whose block rows are H,,, and H,,
is a constant matrix with block rows H,, as given in (3);
So £ HoPyy1xHY + Ro(k+1), and R, is a block diagonal
matrix with elements R, defined as

. Op;
Ro, = 02 Iy, xan, — Didiag (g) DF
ij
+ 05, D;Df + 03 Dilag s, DY

where D; is a block diagonal matrix with diagonal blocks
Af}ij, M; is the number of observations made by robot ¢,
and Jgi, O'gi, U?n are variances of noise in distance mea-
surements, bearing measurements and orientation estimates

of robot 7, respectively.



C. Covariance matrix for accurate landmark location

The system consisting of M robots with kinematics (1)
and one landmark becomes observable if the absolute posi-
tion information of the landmark is available. In this case,
the steady-state solution to Riccati recursion becomes [4],

0227 %2
O2x2

Pu(O) |: P TToo (4)

0220

The trace of P;g@) serves as a measure of localization
accuracy. From (4), note that

trace{ P9} = trace{ Py}, (5)

and matrix P%

Troo?

1 1 1 1)\2 1
Py = Q7 Udiag {2 + (4 + A') } UrQz,,

where Q,, = diag{q;} with ¢; = max{dtzav,(StQVQUi 1,

U is formed by the eigenvectors of ¢ = le QT“, with I
given by

I = [Lvxanv Oonrxe] HE Ry H, [Ionrxom 02M><2]T7
(6)

being symmetric, can be decomposed as

=

and R, is a diagonal matrix
R, = diag{(ﬂi + Mmiﬂ% +05.08) Lantyxong, - (1)

Where pg is the maximum distance at which relative mea-
surements can be recorded by the robot. Finally, \;, i =
1,...,2M are the eigenvalues of .

IV. ALGEBRAIC GRAPH THEORETIC
CHARACTERIZATION

To formalize the observation relations we consider a di-
rected graph, which has a node for every robot and landmark
in the workspace, and a (directed) edge between a pair of
nodes (a,b) whenever the robot associated with one node
a observes the object associated with node b. The sensing
graph is defined as follows:

Definition 1: The sensing graph is a weighted directed
graph X = {V, £, W} consisting of

o a set of vertices V = {ri,...,ra,L1,...,
dexed by the M robots and N landmarks,

o a set of edges &, containing ordered pairs of the form
(ri,rj) or (ry,1;), with r;, r;, I; € V, representing
relative measurements made by the robots, and

« a set of weights, VW, consisting of positive constants

LN}, in-

oy 4+ Mo pg + ogipg) 1, i € V, each associated
with all out-going edges of node 1.
Our analysis starts with the observation that H,,, in (3)
is the Kronecker matrix product of a row of the incidence
matrix of X, B, with Iy9: H,,, = (B ® I2x2)s;. Then,

H, = B® Iyyo.

Note that according to Definition 1, matrix R, 1 s the
diagonal weight matrix of X. The weights associated with

each node depend on its out-degree. The weighted Laplacian
matrix L,, of X is a positive semidefinite matrix given as

L,=H'R;'H,.

The smallest eigenvalue of L,, is zero and the rest are always
positive [14].

Note that I, in (6) is obtained by multiplication of L,, by
I, = [IQMXQM 0201 x2] from both sides. Such an operation
results in the removal of the last row (and column) from L,,
This is the row (and column) corresponding to the known
landmark. Due to matrix tree theorem I, becomes positive
definite [14], denoted L,,[M + N] (following the notation of

[14]). Using (5),
1
2 1
it}
trace{PT“T(i) }

— trace {UTQTuUdiag {; n (i + A%,) }} @®)

Matrix UTQ,., U is positive definite since Q,., is a diagonal
matrix, and the diagonal elements are strictly positive.
Let «; denote the ¢th diagonal element of U TQT U and

trace{Pj‘T(i) }=

1 1 1 1
trace {QéuUdiag {2 + <4 + )\_)

Using the properties of the trace [15],

1; the ith diagonal element of diag{1 + (3 + ) }. Then,
from (8) it follows that
ot
trace{ Py, _} = Z%Mz racgil} =aq; > 0.

Thus, the trace of P,PTOC increases monotonically with each

;. Since
1 Jr(1 n 1 )%
,U%*Q PR VA

where \; are the eigenvalues of v, the larger \; are, the more
accurate the position estimates will likely be. Note now that
i <1+ \/%, so that

trace{ P, } < trace {UTQ“ Udiag {1 + ﬁ } }

To see how we can manipulate \;, note that

trace{y} = trace{Q%u IrQéu} = trace(Qr, Ir),

and if ¢, is the ith diagonal element of (), , and i;; is the
ith diagonal element of matrix I, then

Otrace{Q,, I}

2M
trace{d)} = Z qy’L” al
i

=1

—¢>0. (9

Hence, to minimize Py, _, it suffices that the eigenvalues of
I, are increased. The eigenvalues of I,. (and therefore 1)) are
positive.

Matrix I, is obtained from L,, after removing the two rows
and columns associated with the landmark. The eigenvalues
of I,, therefore, interlace those of L, [15], since I, is



a principal submatrix of L,,. This suggests that if the
eigenvalues of L, increase, those of I, have to increase
too, indicating a way to regulate the trace of Py, : enforce
sensing graph topologies that increase the spectrum of Ly,.

In the case of an unweighted graph, the eigenvalues of the
Laplacian always increase with the addition of an edge [14].
What we show in section V is that the same happens for
the case of weighted graphs. This is a fairly well established
result in the graph theory community; what section V does
is to offer the proofs that appear to be missing from [16].

Combined with weighted graph interlacing, (9) is in
complete agreement with [13]: there, the genetic algorithm
suggested a complete graph as the best sensing topology.
However, if the complete graph topology is infeasible, or
too expensive to implement, (9) provides another means to
achieve the required accuracy: if one is to add a single edge
to the sensing graph, (9) points to the robot that should do
the observation. What the particular robot should observe,
depends on the topology of the sensing graph, as expressed
by the spectrum of the Laplacian.

V. HOW TO CONTROL THE COVARIANCE TRACE

A. Interlacing for Weighted Graphs

Interlacing is a relationship between the eigenvalues of
a matrix and those of its submatrix. Suppose A is a real,
symmetric m X m matrix and B is a real, symmetric n X n
submatrix of A. Then the eigenvalues of B interlace the
eigenvalues of A. Let {A1,...,\,} denote the eigenvalues
of A, and {6i,...,0,} be the eigenvalues of B. Then,

In this section, we offer proofs for some of the interlacing
results on the Laplacian spectrum of weighted graphs that
appear in [16]. This section does not introduce new theory;
besides giving the proofs, it provides insight into how these
known results apply to the particular case of cooperative lo-
calization using relative measurements. We start with proving
that the smallest positive eigenvalue of the new weighted
Laplacian matrix obtained by adding an edge to the original
one is always greater than the smallest positive eigenvalue
of the original graph.

Theorem 2: Let X be a graph with V vertices and £ edges
with weights w;; on each edge, and let Q(X') be the weighted
Laplacian matrix of X. Let graph ) be obtained by adding an
edge to X, joining two distinct vertices of X. Then, \y(X) <
oY)

Proof: Assume that ) is obtained by joining vertices
r and s of X,and let Q()) denote the weighted Laplacian
of Y. For any eigenvector z orthogonal to 1 (the vector of

ones), we have similarly to [14], [17],

T
2 Q)z
A = A
2(Y) 217;1111:10 2Tz
o wes(zr — )%+ D wvee () Wuv(Zu — 2)?
= min
2T1=0 2Tz
. Wrs (Zr - Zs)2
= min
2T1=0 2Tz
i Zwee(x) Wuw(Zu — )’
2T1=0 2Tz
. Wrs (zr - Zs)z
= + Ao (X
1m0 2Tz 2(%)
Hence, A2(Y) > Aao(X). [

Thus, the smallest eigenvalue always increases with addi-
tion of an edge to the original graph. Increasing A\ only af-
fects one of the terms in the sum that produces trace{ P}. _}.
In the next theorem we prove that all the eigenvalues of the
new weighted Laplacian increase with addition of an edge.
We make use of the following Lemma from [15]:

Lemma 3 ([15]): Let A, B be Hermitian matrices. For
a positive definite matrix B, the following is always true
A(A) < A (A+ B).

The next theorem extends the interlacing property to
weighted Laplacians.

Theorem 4: Let X be a weighted sensing graph with n
vertices and ) be obtained from X by adding an edge joining
two distinct vertices of X. If the weights on the edges of Y
that are also edges in X do not decrease, then, \;(X) <
Ai(Y), foralli=1,...,n.

Proof: Let ) be the graph obtained by adding an edge
e joining vertices ¢ and j of graph X. The degree of vertex ¢
then increases from M; to M; + 1. Expressing the weighted
graphs X and ) as

X:{vagaw}v y:{v,EU{e},WU{’we}}.

Let W(X) = diag{ax}, ax € W denote the diagonal
weight matrix of X’ and define the augmented matrix

W(X) 0} ;

Wx+é[
(%) O1x1g; O

00 | 0
Rearrange the weights in the weight matrix of ), so that the
new edge, e, weight appears last:
W (Y) = diag{...,bg,...

If H,(Y) = B(Y) ® Is, where B()) is the incidence
matrix of ), then note that one can write the weighted
Laplacian matrix of ) as

Q) = QX) + HoV)T[W(Y) = W(X)]Ho (D),

and that the second term on the right hand side is a
weighted Laplacian too, provided that by, — a;, > 0. Being a
(weighted) Laplacian, H,(Y)T[W (V) — W(X)T]H, (D) is

s€w}.



positive semidefinite. Thus, by Lemma 3, the eigenvalues of
Q(Y) interlace those of Q(X). [ |

Theorem 4 is interesting on its own, but of limited use
in the particular application where the weight matrix is
expressed as R, !, and its elements are given by the inverses
of the diagonal elements of (7). For the addition of an edge,
reduces the diagonal elements in R, ' that are associated
with edges in X originating from ¢, and the condition b; >
aj, no longer holds.

Thus, in the case of sensing graphs, the addition of an
edge does not necessarily increase all the eigenvalues of I,
;. However, it turns out that the introduction of the weight
of the new edge is sufficient to increase the trace of the
weighted Laplacian:

Theorem 5: Let X be a weighted sensing graph with n
vertices and ) be obtained from X by adding an edge
joining two distinct vertices of X. Then, trace{Q())} >
trace{Q(X)}.

Proof: Suppose a new edge e is added to the graph
X when robot 7 observes robot j. The dimension of the
diagonal block corresponding to the ¢-th robot in the diagonal
weight matrix becomes 2 (M; + 1) x 2 (M; + 1), where M;
denotes the number of measurements made by the i-th robot
before the addition of this new edge. Define the reduced
diagonal weight matrix of ), W()e]), as the one obtained
from W (Y)) when the row and column corresponding to the
newly added edge e is removed. The new weighted Laplacian
can be written as

Q) = Q(X)+Hy (X)[W (Vle]) =W (X)|Ho(X) +bPPT,

where P is the new (block) column (associated to edge e)
added to the matrix H,(X) to obtain H,(}). Then,

trace{Q(Y)} = trace{Q(X)}
+ trace{ H (X)[W (Ve]) — W (X)]|H,(X)}
+ trace{bPPT}.
From the above, we express the difference between the traces

of Q(Y) and Q(X), as the trace of some another diagonal
matrix, 1’

trace{T}
— trace{ HI (X)W (V[e]) — W(X)]H,(X) + bPPT)

the elements of which are shown by direct calculation to
satisfy

trace(T) o« (o2, + (M; — 1)o p2 4 05.p7) -

Since M; > 1, and all the other terms in the right hand side
are positive, it follows that trace{Q(Y)} > trace{Q(X)}.
|

B. Discussion

Together, Theorems 2 and 5 give us a handle to manipulate
the trace of Pﬁrm, through I,, viewing the latter as the

principal submatrix of the weighted Laplacian of the sensing
graph. Inequalities relating the harmonic mean, the minimum

element, and the arithmetic mean of a set of numbers, applied
to the eigenvalues of I, yield

7An—1} S

1 1 n—1

min{Aq,. .. < Z Ai
) 1 —1 1 _ )

n—1 Z?:z i n—1 i=2

In view of I, being the principal submatrix of a weighted

Laplacian L,,, it follows

U R o S B
Virace{L,} ~ = VA T Ve(Lw)

Thus, increasing the smallest nonzero eigenvalue of L,, along
with its trace, pushes the trace of the error covariance matrix
for the system to lower values. The increase in Ay(L.,)
restricts the covariance trace from above, while the increase
in the trace of L,, allows it to decrease without saturating at
a lower bound.

VI. EXAMPLES

Figure 1 shows several ways to add an edge to a sensor
graph, in other words, allow a robot to make an additional
relative position measurement. The directed graph shown in

-\.2 ,\‘.2 5.\‘02 o\: o\:
Bk gk ek ek

(a) b) © (d) (e)

A - Landmark
® - Robots

Fig. 1. Sensing graphs of three robots and one landmark with different
topologies. Solid arrows indicate original observations; the dotted arrow
show the additional measurement.

1(a), (denoted henceforth G,) is thought of as the original
graph consisting of four nodes, where nodes 1, 2 and 3
represent robots and node 4 is a known landmark. Robot 1
observes robot 2, robot 2 observes robot 3, and robot 3 makes
relative position measurements with respect to the landmark.
The incidence matrix B, (from which H, is derived) for this
graph is given by:

—_ o O

The weight matrix R, is a diagonal matrix of size
2(2?:1 M;) x 2(2?21 M;) with the diagonal block element
i being of size 2M; x2M;: diag{a = (02 +M;op*+0jp*)}.
Assuming all robots being homogeneous, for G, the diagonal
elements in the weight matrix R, are the same. Hence,
R, = diag{a,a,a,a,a,a}.



Taking o, = 0.05, 0y = 2°, 09 = 2°, p, = 6 m, yields
a = 0.0902 for M; = 1. The weighted Laplacian matrix L,,
for G, is L, = HI R;;'H,, and the corresponding principal
submatrix L., [z] is obtained by deleting the last two rows
and columns of L,,. For L, [x](G,) we have

0q = {2.1958,2.1958,17.239, 17.239, 35.9976, 35.9976 }
trace{ L,,[z]} = 110.8648,

61
_ —2164 .

Figures 1(b)-(e) show four possibilities for the addition
of an edge. Weights change according to the topology of the
resulting graph. Table I compares the eigenvalues, the trace,
and the quantity > \% obtained for L, [z] for each of the
cases (b) through (e), as well as the trace of the steady state
covariance matrix.

case A tr(Lz]) | > \/1/\7 tr(Pr.)
K2

(a) 2.1958, 17.2390, 35.9976 110.8648 2.164 3.0398
2.1958, 17.2390, 35.9976

(b) 2.0788, 29.0788, 35.5607 133.4346 2.0934 3.0228
2.0788, 29.0788, 35.5607

(c) 2.8394, 23.4351, 36.8155 126.1758 1.8936 2.9226
2.8394, 23.4351, 36.8155

(d) 4.2196, 16.7477, 34.6635 111.2616 1.802 2.8378
4.2196, 16.7477, 34.6635

(e) 5.3858, 17.2583, 32.9867 111.2616 1.6914 2.7798
5.3858, 17.2583, 32.9867

TABLE I

COMPARING EIGENVALUES AND TRACE

Table I shows that that trace of principal submatrix of
graphs obtained by edge addition (G, through G.) is always
higher than that of G,. Similarly, the values of > —* e and
trace{ P} _} are smaller for all new graphs compared to
Ga. Note that the graph with the highest smallest elgenvalue,
Ge, (see Figure 1(e)) has the lowest value of Z vt and
therefore the smallest trace for Py, . Interestingly, the
poorest choice in terms of the smallest eigenvalue for L, [x]
is that of Figure 1(b), however, even in this case the trace
of the steady state covariance matrix is still better than
that of the original configuration. However, if one has to
choose to connect two nodes with one observation, it is
clear that the new edge in G. is the optimal. Intuitively,
it can be justified by the fact that now robot 1 has direct
access to accurate position information, by measuring its
own with respect to the known landmark. Our main point
is that investigation of graph topologies with respect to their
Laplacian spectra might give us additional insight on how to
construct efficient (smaller) sensing graphs that meet specific
accuracy specifications.

VII. CONCLUSION

This paper provides insight to the way in which network
connectivity affects the cooperative localization accuracy. We

have demonstrated that the topology of the sensing graph,

as expressed by the spectrum of the associated weighted
Laplacian, determines the accuracy of localization, if the

latter is quantified by the trace of the covariance matrix
associated with robot position estimates. Although “denser”
graphs generally result in increased localization accuracy, in
agreement with [13], when it comes to choosing how to add
additional observations, some links are better than others.
The analysis provided in this paper facilitates this choice by
indicating efficient ways of increasing accuracy per (new)
observation.
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