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Abstract— In this paper we introduce the notion of Finite
Time Mode Abstraction to relate a hybrid automaton to a
timed automaton that preserves the stability and reachability
properties of the former. The abstraction procedure discards
the continuous dynamics of each mode in the hybrid automaton
completely, keeping only the information about the maximum
time in which the continuous state makes a discrete jump. This
information is used to construct a timed automaton, based on
the original hybrid automaton, and to prove that the stability
and reachability properties of the original system are retained
in the abstract timed automaton. In the process of abstracting
a hybrid to a timed automaton we introduce a new notion of
hybrid distance metric, which provides information about both
the number of discrete transitions that a system would have to
make to go from one hybrid state to another, and the distance
between the continuous parts of such hybrid states.

I. INTRODUCTION

Complex nonlinear systems with a large number of de-

grees of freedom are notoriously difficult to analyze. They

usually do not lend themselves to common control design

methodologies. This is especially true with hybrid systems,

where the interaction between the discrete and continuous

dynamics makes the analysis task formidable, even for sim-

ple cases. In synchronization tasks, or rendezvous problems

involving multiple autonomous systems, coordinating may

require reliable timing information, but exact position history

may be irrelevant. The question that arises is whether some

system details not related to the problem at hand can be

safely ignored, and enable a more efficient solution.

One school of thought that envisions managing the com-

plexity of such tasks advocates system abstraction, as a is the

selective retention of information pertinent to a specific task

or objective. It is a concept used widely in computer science,

formally described in terms of a bisimulation relation [10].

In [13]–[15], (purely) continuous systems are related to each

other in terms of their vector fields: the vector field of the

quotient system is the image of that of the original system

under a surjective (Φ) map. The link between this form of

abstraction and the notion of bisimulation is made clearly

(for the linear case) in [12] and (for the nonlinear case) in

[17], [20]. In [18], where abstraction of nonlinear control

systems was rephrased in a categorical framework, building

upon the differential geometric interpretation of bisimulation.

Bisimulation, however, may be too restrictive at times. The

survey paper [1] demonstrates that in order to obtain bisim-

ulations for hybrid systems in general, one has to restrict
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either the discrete logic that governs the transitions, or the

type of continuous dynamics. Certain undecidability results

are presented [1] to indicate the limits of abstraction based on

bisimulation. Such results motivate less restrictive conditions,

posed by simulation relations [10]. In such cases, one may

choose to abandon the search for input-output equivalence for

the hope of obtaining some property inclusion. Abstractions

that are based on simulation relations, were obtained in [19]

for linear systems, in a similar framework as that of [12].

When a system is abstracted by means of a simulation

relation, the abstract system will generally have a richer

behavior (through the abstraction map), but if a property is

verified for the abstract system, it holds for the original.

Both these abstraction methods, having their mechanisms

based on a different type of equivalence relation between

pairs of states, are similar in the sense that in the continuous

world, they associate one vector field with another. There

could be cases where even this is too restrictive, or unnec-

essary. The motivation for the work presented here comes

from the desire to devise a consistent method for mapping

continuous (or hybrid) dynamics into (almost purely) discrete

ones, in a meaningful way. We attempt to characterize the

asymptotic behavior of a system, rather than its local direc-

tion of motion, by ensuring that after a certain time period,

initial system states in set A have “collapsed” into points in

a set B. We are interested in where a system will eventually

end up, and under certain assumptions, we are willing to

sacrifice knowing exactly how it will go there. These ideas

are then exploited to map a hybrid automaton to a timed-

automaton. The only information that is preserved in the

later model of computation is the identity of the continuous

partitions and the (maximum) time required by the system

to reach one from another. The assumptions that we make

in order to safely ignore the “transient” phase could increase

the number of discrete states. We feel, however, that this is a

reasonable price to pay for obtaining a discrete representation

of the system dynamics. The stricter assumption we make on

the (time-invariant) continuous part is the existence of a finite

number of disjoint limit sets.

II. CONTINUOUS DYNAMICAL SYSTEMS

Let M be a Banach manifold modeled on R
n. A standard

definition of a (closed loop) time invariant system in terms

of a (smooth) vector field f(x) on M is:

Definition 1 ( [5]) A system consists of a pair (M, f) where

M is a manifold and f : M → TM a smooth vector field.

Let Φt(p) be the flow [4] of the vector field f ; that is,

∀p ∈ M , ∀t > 0, Φt(p) = σp(t). We assume that flows are



ultimately bounded in the following sense:

Assumption 1 For all p ∈ M , and for all t ≥ 0,

supt≥0 ‖Φt(p)‖ < ∞.

The norm ‖·‖ on M is assumed to be the one induced in M
by a typical norm on R

n. We first recall the concept of the

positive limit set of the trajectories of a system (M, f) [7]:

Definition 2 (Positive limit set) Let Φt(p) be a flow of the

system (M, f) starting from p ∈ M . Then q ∈ M is said to

be a positive limit point of Φt(p) if there is a sequence {tn},

with tn → ∞ as n → ∞, such that Φtn
(p) → q as n → ∞.

The set of all limit points of Φt(p), ∀p ∈ M is called the

positive limit set of Φt.

We define the distance of a point to a set as [7]:

Definition 3 (Distance to a subset of M ) The distance of

a point p of a Banach manifold M to a subset Z ⊂
M is denoted dist

(

p, Z
)

and is defined as dist
(

p, Z
)

,

infz∈Z ‖p − z‖.

III. HYBRID SYSTEMS

A hybrid system is a type of system in which continuous

time and discrete event dynamics blend together to enrich its

behavior. One of the most common forms of representing a

hybrid system is the hybrid automaton [2], [9]:

Definition 4 (Hybrid Automaton) A hybrid automaton H
is a collection H = (Q, X, f, Init, D, E, G, R) where,

• Q is a finite set of discrete variables.

• X is a finite dimensional set of continuous variables.

• f : Q× X → TX is a vector field.

• Init ⊆ Q× X is a set of initial states.

• D : Q → P (X) is a domain.

• E ⊆ Q× Q set of set of edges.

• G : E → P (X) is the guard condition.

• R : E × X → P (X) is the reset map.

where Q denotes the set of al possible valuations of q ∈ Q,

X denotes a smooth manifold for X , TX denotes the tangent

bundle of X and P (X) is the power set of X. (q, xq) ∈
Q×X is referred as the state h of the hybrid automaton H .

We study a subset of the hybrid automata of Definition 4.

Similarly to [9], we assume:

Assumption 2 Consider hybrid automata as in 4 for which:

• X is subset of a Banach manifold M , modeled on R
n;

• G(e) 6= ∅, ∀e ∈ E;

• R(e, x) 6= ∅, ∀x ∈ G(e);
• For each q ∈ Q, the positive limit set L+ of the flows

f(q, x) satisfies L+(q) ⊆ G(e), for e ∈ {(q, p) |
(q, p) ∈ E}.

The last condition implies that the positive limit sets of

the flows are contained in the guards. Note that we do not

assume global Lipschitz continuity of f ; instead, we use the

boundedness condition of Assumption 1, which also ensures

the existence of a positive limit set L+ for the flows of f .

The positive limit set of Φt for a given q ∈ Q, L+, may be

disconnected. For a given discrete state q ∈ Q, let L+
i (q) i =

1, . . . , ℓ be a disconnected component of L+(q). We assume

that ℓ < ∞, considering the verification of this condition a

control design issue to be addressed in the future. Whenever

a domain D contains multiple disconnected components of

L+(q), (and given that each component belongs to a different

guard,) we partition the given D into regions that have a

single, common component L+
i as shown in Figure 1.
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Fig. 1. A domain is partitioned according to the inclusion of connected
components of the positive limit set within the guards.

This refinement also guarantees that the flows of f(q, x)
in D(q) do not activate any other guards before reaching the

one where L+ is contained. For the rest of the paper the

following notation is used. The labels of different modes are

denoted as subscripts, i.e., va. The instantaneous values of

the discrete sequences of the hybrid system are denoted as

square brackets, i.e., v[i]. The continuous time evolution is

denoted in parentheses, as in v(t). Finally, vq denotes the

state of that variable at the beginning of an active period of

the mode, q ∈ Q, and v′q denotes the state of that variable

at the end of an active period of the mode q ∈ Q.

Definition 5 (Hybrid time trajectory [8]) A hybrid time

trajectory is a finite or infinite sequence of intervals τ =
{I[i]}N

i=0, such that

• I[i] = [τ [i], τ ′[i]], for all i < N ;

• if N < ∞, then either I[N ] = [τ [N ], τ ′[N ]], or I[N ] =
[τ [N ], τ ′[N ]);

• τ [i] ≤ τ ′[i] = τ [i + 1] for all i.

where τ [i] are the times at which the discrete transition from

the mode q[i − 1] to q[i] takes place.

The set 〈τ〉 , {1, 2, ..., N} if N is finite and {1, 2, ...} if

N = ∞. We define |τ | =
∑

i∈〈τ〉(τ
′[i] − τ [i]).

Definition 6 (Execution [8]) An hybrid automaton execu-

tion is a triple χ = (τ, q, x), with τ a hybrid time trajectory,



q : 〈τ〉 → Q a map, and x = {x[i] : i ∈ 〈τ〉} a collection of

differentiable maps x[i] : I[i] → X , such that

• (q[0], x[0](0)) ∈ Init
• for all t ∈ [τ [i], τ ′[i]), ẋ[i](t) = f

(

q[i], x[i](t)
)

and

x[i](t) ∈ D(q[i]);
• for all i ∈ 〈τ〉\{N}, e = (q[i], q[i + 1]) ∈

E, x[i](τ ′[i]) ∈ G(e), and x[i + 1](τ [i + 1]) ∈
R(e, x[i](τ ′[i])).

We use (q0, x0) = (q[0], x[0](0)) to denote the initial

condition, ǫH(q0, x0) to denote the set of all executions of H
with initial condition (q0, x0) ∈ Init, ǫ∗H(q0, x0) the set of all

finite executions of H with (q0, x0) ∈ Init, and ǫ∞H (q0, x0)
the set of all the infinite executions with (q0, x0) ∈ Init.

Definition 7 (Reachable Set [8]) A hybrid state h ∈
Reach(h0) if there exists at least one finite execution ǫ∗H(h0)
mapping h0 to h. The set of all the hybrid states that

can be reached from any initial condition is ReachH =
⋃

h0∈Init(Reach(h0))

A timed automaton is defined here as follows:

Definition 8 (Timed Automaton [1]) A Timed Automaton

is a hybrid automaton that satisfies the following properties:

• For every discrete variable q ∈ Q the set Init(q) is

empty or a singleton, the set D(q) is a rectangular set

and the continuous flow is given by f(q, x) = 1
• For each edge e ∈ E the set G(e) is a rectangular set.

• For every edge e ∈ E and for all x ∈ X , R(e, x) =
{y ∈ X |y = x or y = c, where c is a constant vector.

We finalize this section noting that a hybrid automaton can

be represented by a directed graph [8], such that each discrete

mode in Q is mapped to a vertex, which will contain the label

of the mode, its domain and its continuous flow equation.

Similarly, each edge, that represents a discrete transition will

have a guard and a reset function attached to it (For an

example see Figure 2). The directed graph related to the

hybrid automaton H will be denoted as GH .
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Fig. 2. Example of a Hybrid automaton represented using a graph.

IV. A NEW HYBRID METRIC

We define in this section a notion of a hybrid distance

that provides information about both the continuous and

the discrete distances between two hybrid states. Since our

graph is directly associated with a Hybrid Automaton H , we

identify its nodes with the modes of H , which represent a

distinct behavior of the underlying dynamical system.

Definition 9 (Discrete Distance) Let the distance between

two discrete states of a hybrid system q1 and q2 be the length

of the shortest path1 from mode q1 to mode q2 in the directed

graph GH , associated with the Hybrid Automaton H . This

distance is denoted by dD(q1, q2).

Definition 10 Let A = A(GH) be the adjacency matrix of

the directed graph GH associated with H . The entries of A
have their rows and columns indexed by the pair (qi, qj) ∈
Q × Q. Each entry (qi, qj) will be 1 when a transition is

possible from qi to qj (an edge exists) and 0 otherwise.

The adjacency matrix has the property that its r power will

give as an entry at position (qi, qj) the number of directed

paths from qi to qj of length r [6]. Based on this property

we propose a procedure to calculate the discrete distance

between to discrete modes in a hybrid automaton H :

Lemma 1 The discrete distance dD(q1, q2) can be calcu-

lated as follows:

dD(q1, q2) =

{

minr∈N{r:(Ar)(q1,q2) 6=0} q2∈Reach(q1)

∞ otherwise
(1)

Proof: The discrete distance between q1 and q2 is

the length of the shortest path from q1 to q2 in GH . Since

(Ar)(q1,q2) gives the number of paths from q1 to q2 with

length r ( [6]-Lemma 8.1.2), then the shortest path from q1

to q2 is the minimum r that makes (Ar)(q1,q2) 6= 0 whenever

q2 is reachable from q1. If q2 is not reachable, the distance

is infinite by default.

Definition 11 (Hybrid Distance) Let the distance between

two hybrid states be dH(h1, h2) = tanh(‖x1 − x2‖) +
dD(q1, q2), where hi = (qi, xi) for i = 1, 2 and ‖.‖ is the

norm on X .

Using the tanh(·) function of the norm in the distance

expression gives different weight to the discrete part of the

hybrid state; (hybrid) states in different discrete modes are

considered to be much further apart than any continuous

states in the same mode. In what follows, we show that the

proposed function can serve as a metric on the space Q×X ,

with the exception of symmetry: the existence of a path from

q1 to q2 does not imply the existence of a path of the same

length from q2 to q1. This distinction is not made in the

related constructions found in [9], [16].

Proposition 1 The hybrid distance dH(h1, h2) is zero if and

only if q1 = q2 and x1 = x2.

Proof: First note that the continuous portion of the

hybrid distance tanh(‖x1−x2‖) will only be zero when the

argument of tanh(.) is zero and this will happen only when

1For a definiton of a path, see [6].



x1 = x2. Second note that, by definition 9, the discrete part

of the hybrid distance dD(q1, q2) will be zero only when

q1 = q2 which proves the proposition.

Proposition 2 The hybrid distance dH(h1, h2) ≥ 0 for all

q1, q2, x1, and x2.

Proof: The tanh(·) function is positive for positive

arguments and zero if the argument is null. Since ‖x1 −x2‖
is positive for all x1 6= x2 and zero for x1 = x2 then

tanh(‖x1 − x2‖) will be positive for all x1 6= x2 and zero

for x1 = x2. On the discrete part of the hybrid distance

r represents the number of jumps that an state would have

to take to reach another state. Since this variable is always

nonnegative, and zero only for q1 = q2, dD(q1, q2) will

always be nonnegative proving the proposition.

Proposition 3 The hybrid distance dH(h1, h2) satisfies the

triangle inequality dH(h1, h3) ≤ dH(h1, h2) + dH(h2, h3)
for all q1, q2, q3, x1, x2, and x3.

To prove the above we will need the following Lemmas:

Lemma 2 dD(q1, q3) ≤ dD(q1, q2) + dD(q2, q3) for all q1,

q2, and q3.

Proof: Consider a directed graph that contains

q1, q2, q3 ∈ Q and analyze three cases:

a) I: f q1 = q3, then dD(q1, q3) = 0 by proposition 1.

Moreover it has been proven (proposition 2) that for every

pair of modes qm, qn ∈ Q the distance dD(qm, qn) ≥ 0. So

dD(q1, q3) = 0 ≤ dD(q1, q2) + dD(q2, q3).
b) I: f q1 6= q3 and q3 /∈ Reach(q1) then dD(q1, q3) =

∞, because there does not exist any path from q1 to q3.

This implies that there will not exist any path between at

least one of the pairs q1, q2 or q2, q3 causing at least one of

the distances dD(q1, q2) or dD(q2, q3) to be infinite. Thus

dD(q1, q3) = ∞ = dD(q1, q2) + dD(q2, q3).
c) I: f q1 6= q3 and q3 ∈ Reach(q1) then dD(q1, q3) <

∞. So assume without loss of generality that q3 ∈ Reach(q2)
and q2 ∈ Reach(q1) (If any of this conditions is not satisfied

then the lemma is trivially satisfied because at least one of

the distances in the right hand side of the inequality would be

infinite). Note that the minimum number of transitions to go

from qi to qj for all i = 1, 2 and j = 2, 3 : i 6= j is given by

dD(qi, qj). So if the minimum path from q1 to q3 included q2

then dD(q1, q3) = dD(q1, q2)+dD(q2, q3). Otherwise, if the

minimum path between q1 and q3 did not include q2 then

moving the discrete state from q1 through q2 to q3 would

create a path with more jumps than going directly from q1

to q3, i.e. dD(q1, q3) < dD(q1, q2) + dD(q2, q3).
These three cases together prove that dD(q1, q3) ≤

dD(q1, q2) + dD(q2, q3) for every q1, q2, q3 ∈ Q.

Lemma 3 tanh(‖x1 − x3‖) ≤ tanh(‖x1 − x2‖) +
tanh(‖x2 − x3‖) for all x1, x2, and x3.

Proof: It follows directly from the properties of the

tanh(·) function.

We now prove Proposition 3:

Proof: The triangle inequality in Proposition 3 can be rewrit-

ten as follows tanh(‖x1 − x3‖) + dD(q1, q3) ≤ tanh(‖x1 −
x2‖)+dD(q1, q2)+. . .+tanh(‖x2−x3‖)+dD(q2, q3). Note

that if a ≤ b and c ≤ d then a + c ≤ b + d. Thus the proof

follows from this fact and Lemmas 2 and 3.

The discrete part of the proposed metric, that captures the

length of the (directed) path between two discrete modes, is

consistent with the distance notion in graphs: the “discrete

ball” or a certain radius k [11]. It would be quite elegant to

combine the continuous ball of radius r, Br, and the discrete

ball of radius k, Bk, into a hybrid (open) ball of radius s:

BH
s : BH

s , {(q, x) ∈ Q × X | dH

(

(0, 0), (q, x)
)

< s}.
Such a construction, however, has certain problems. First,

the underlying space Q × X is not a vector space, and the

continuity of dH can only be ensured in certain topologies

on Q (other than the discrete one). One can show that

under starting from a certain family of open sets on Q, one

can define non-empty join irreducibles on X , and discrete

open sets on Q, so that the discrete part of dH can be

recast as an AD Nerode-Kohn map [3], which is continuous

by construction. Whether the topologies generated by the

open sets defined in this process are useful and meaningful

for analysis and design, however, is an open issue. For

this reason, we will follow the standard route of [9], and

explicitly (re)define the stability of Hybrid Automata in the

Lyapunov sense in the following section.

V. HYBRID NOTIONS OF STABILITY

Definition 12 (Invariant Set [9]) A set W ⊆ ReachH is

invariant if ∀(q[0], x[0]) ∈ W , (τ, q, x) ∈ ǫH(q[0], x[0]), i ∈
〈τ〉, and t ∈ I[i] ⇒ (q[i], x[i](t)) ∈ W .

Definition 13 (Stable Invariant Set [9]) An invariant set

W is called

• stable if for all ξ > 0 there exists a δ > 0 such that for

all (q[0], x[0]) ∈ ReachH with dH((q[0], x[0]), W ) <
δ, all (τ, q, x) ∈ ǫH(q[0], x[0]), and all i ∈ 〈τ〉, t ∈ I[i],
dH((q[i], x[i](t), W )) < ξ;

• L is called asymptotically stable if it is sta-

ble and in addition there exists a ∆ > 0
such that for all (q[0], x[0]) ∈ ReachH with

dH((q[0], x[0]), W ) < ∆ and all (τ, q, x) ∈
ǫ∞H (q[0], x[0]), limt→|τ | dH((q[i], x[i](t)), W ) = 0.

Note that positive limit sets L+ are invariant but not

necessarily stable. The existence of L+ merely suggests that

the hybrid trajectory will approach it in time, not that it will

stay in its neighborhood. We use the positive limit sets to

ensure that a transition between discrete modes will occur

in finite time. In this paper, stability of a hybrid system

H , is understood as convergence to a asymptotically stable

invariant set W . For simplicity, we will assume that H has

only one (globally) asymptotically stable invariant set W :

Assumption 3 Assume that the Hybrid Automaton H =
(Q, X, f, Init, D, E, G, R) has only one asymptotically sta-

ble invariant set denoted (Qeq, Xeq). In addition assume



that every q ∈ Q there exists a unique possible discrete

jump e = (q, q′) ∈ E, and that the associated guard G(e)
containing a connected component of L+(q) is “forced” (the

transition must occur).

VI. FINITE TIME ABSTRACTION FOR CONTINUOUS

DYNAMICS

We could call two points p1, p2 in M equivalent if their

positive limit points belong to the same limit set. However,

a finer partition of the state space can be achieved by

comparing the distances of the flows from two points, p and

z, to the same connected component L+
k in time T . Having

set a time limit on the evolution from p and z, we define a

finite time abstraction:

Definition 14 (Finite-time Equivalence relations)

Consider an autonomous system (Z, f), where Z is a

compact subset of a Banach manifold M , and let the flows

of (Z, f) belong in Z for all t > 0. Let L+ =
⋃ℓ

k=1 L+
k

be the positive limit of (Z, f), where each L+
k is simply

connected. We define an equivalence relation ∼T on Z as

follows: Two points z1, z2 ∈ Z are said to belong to the

same T -equivalence class, and we write z1 ∼T z2, if

1) z1 ∼ z2, and

2) if for some k, limt→∞ dist
(

Φt(z1), L
+
k

)

=
limt→∞ dist

(

Φt(z2), L
+
k

)

= 0, then

dist
(

ΦT (z1), L
+
k

)

= dist
(

ΦT (z2), L
+
k

)

.

The first condition excludes the possibility of one point

belonging into different T -equivalence classes. A finite time

abstraction partitions the state space according to the distance

of the flows of the points at time T , to the component L+
k of

the positive limit set which they converge to. We use L+
k +Bd

to denote the set {x + y | x ∈ L+
k , y ∈ Bd}.

Definition 15 (Finite Time Abstraction) Consider a sys-

tem (Z, f), where Z is a compact subset of a Banach

manifold M , and let Φt(p) is the flow of f from p ∈ M .

Suppose that the flows of (Z, f) belong in Z for all t > 0
and that (Z, f) has a positive limit set L+ =

⋃ℓ
i=1 L+

i . The

finite-time T -abstraction of (M, f) is a (set valued) map,

that associates each point p ∈ M to the set L+
k + Bd,

where k is such that limt→∞ dist
(

Φt(p), L+
k

)

= 0, d =
dist

(

ΦT (p), L+
k

)

, and Bd is the ball of radius d centered at

the origin.

In this sense, a finite-time T -abstraction will retain informa-

tion about “how close to destination” the flows from different

points will be, in time T .

VII. DISCRETE ASYMPTOTIC ABSTRACTION

Consider a Hybrid Automaton H satisfying the conditions

of Assumption 2, and let Φt(q, y) be the flow of f(q, x) from

y ∈ D(q)\G(q, q′). Given that L+(q) ⊂ G(q, q′), there will

be a (finite) upper bound on the time needed for the flow

of f(q, x) to reach G(q, q′) from any point x ∈ D(q). We

denote this bound Θq. The existence of Θq is guaranteed by

the definition of the positive limit set L+(q), and the fact

that the latter is completely contained in the guard.

Definition 16 (Finite Time Mode Abstraction) The

Θq-abstraction of the dynamical system (D(q), f(q, x))
in mode q is given as the image of the constant map:

(M, f(q, ·)) → Q × R : (x, f(q, x)) 7→ (q, Θq).

In this way, the continuous dynamics are dropped completely.

All the information that remains is an indication of “how long

it takes to reach the guard.” This is the concept that allows

us to abstract the continuous dynamics of the hybrid system

H into a “clock” of a timed automaton.

In abstracting H into a Timed Automaton H̃, we have

to consider the equilibrium hybrid set (Qeq, Xeq) separately.

An ǫ-neighborhood of this set (for an arbitrarily small ǫ,)

will give rise to a new “final mode” q̃f :

D(q̃f ) , Xeq + Bε, ε > 0;

G(q̃f , q′) , D(q̃f ), implying q′ ≡ q̃f ;

R((q̃f , q̃f ), x) , identity , x ∈ D(q̃f ).

the domain of which coincides with its guard (and therefore

Θq = 0). Based on Assumption 3, one can obtain the follow-

ing constructive process for defining the Timed Automaton

H̃ that captures the asymptotic behavior of H :

Definition 17 (Abstract timed automaton) Construct a

timed automaton H̃ such that:

• Q̃ = Q
⋃

{q̃f}, where q̃f is a new mode that represents

Xeq ∈ D(Qeq).
• X̃ is a finite set of continuous variables, where each

x̃ = (λ, γ)T .

• f̃(q̃, λ, γ) = 1 for all q̃ ∈ Q̃ (clock dynamics).

• ˜Init ⊆ Q̃ × X̃ .

• D̃ : Q̃ → P (X̃)|λ ≤ Θq̃, q̃ ∈ Q̃.

• Ẽ : Q̃ × Q̃
⋃

{(q̃f , q̃f )}.

• G̃ : Ẽ → P (X̃)|λ ≥ Θq̃ , q̃ ∈ Q̃.

• R̃ : Ẽ × X̃ → P (X̃)|(λ[i + 1], γ[i + 1])T = (0, γ′[i])T .

where (q̃, x̃) ∈ Q̃ × X̃ is the state of H̃ .

We now present the two main results of this paper. The

goal of these two theorems is two study the stability, and the

reachability of a hybrid system using an abstract version of it.

We do this by abstracting most of the continuous dynamics

(Definition 17) of the hybrid automaton keeping only the

relevant information to preserve the stability and reachability

properties of the system.

Theorem 1 (Asymptotic Stability is preserved) If H is

asymptotically stable (AS) with a S being an ǫ-neigborhood

of its AS invariant set (Qeq, Xeq), then the timed automaton

H̃ constructed as in Definition 17 is asymptotically stable

in the sense of Definition 13, with (q̃f , 0) its asymptotically

stable invariant state.

Proof: If S is AS then by definition there exists a

δ > 0 for all ξ > 0, such that for all (q[0], x[0]) ∈ ReachH



with dH((q[0], x[0]), L) < δ, every execution (τ, q, x) ∈
ǫH(q[0], x[0]) will satisfy dH((q[i], x[i](t)), L) < ξ for all

i ∈ 〈τ〉 and t ∈ I[i], and there will also exist a ∆ > 0 such

that for all (q[0], x[0]) ∈ ReachH with dH((q[0], x[0]), L) <
∆ every execution (τ, q, x) ∈ ǫ∞H (q[0], x[0]) will satisfy

limt→|τ | dH((q[i], x[i](t)), L) = 0. Then by the construction

of H̃, and the definition of dH(h, h′) there will exist a δ̃ =
⌊δ⌋+1 for all ξ̃ = ⌊ξ⌋+1 (+1 is added due to the addition of

q̃f in Def. 17) such that for all (q̃[0], x̃[0]) ∈ ReachH̃ with

dD(q̃[0], q̃f) < δ̃, every execution (τ̃ , q̃, x̃) ∈ ǫH̃(q̃[0], x̃[0])
will satisfy dD(q̃[i], q̃f ) < ξ̃ for all i ∈ 〈τ〉 and t ∈ I[i] and

there will also exist a ∆̃ = ⌊∆⌋ such that for all (q̃[0], x̃[0]) ∈
ReachH̃ with dD(q̃[0], q̃f ) < ∆̃ every execution (τ̃ , q̃, x̃) ∈
ǫ∞
H̃

(q̃[0], x̃[0]) will satisfy limt→|τ̃ | dD(q̃[i], q̃f ) = 0, thus

making q̃f the a.s. discrete invariant set of H̃ . Since the

continuous part of the AS invariant set of H̃ is the whole

domain of qf , the theorem is proved.

Let (q(T ), x(T )) ∈ ReachH denote the state of the hybrid

system H at time T . The next Theorem states that the (finite

time) reachability properties of H are preserved by H̃ :

Theorem 2 (Reachability of H) If (q(T ), x(T )) ∈ ReachH

there exists a k ∈ N such that after some execution

ǫH(q[0], x[0]), q(T ) = q[k], x(T ) = x[k](T ) with T ∈ I[k].
Moreover T will be upper-bounded by the by γ′[k] (the

second component of the continuous state of H̃ at the end

of mode k), i.e. T ≤ γ′[k].

Proof: Let the hybrid state (q, x) ∈ ReachH then the

abstract hybrid state q̃, x̃ will be in ReachH̃ by Definition 17.

Assume that the hybrid automaton starts at the initial con-

ditions (q[0], x[0](0)). Then there exists a hybrid execution

ǫH(τ, q, x) that will map the initial condition (q[0], x[0](0))
to an state (q, x) such that q will be equal to the discrete

state at a k ∈ 〈τ〉 and the corresponding x will be equal

to the continuous state at a k ∈ 〈τ〉 and a T ∈ I[k], i.e.

(q, x) = (q[k], x[k](T )) such that k ∈ 〈τ〉 and T ∈ I[k].
This state (q, x) is the state of the hybrid system at a time

T : (q, x) = (q(T ), x(T )) along the execution ǫH(τ, q, x).
If a timed automaton H̃ is constructed as in definition 17

(λ, γ)T ∈ X̃ correspond to the local and global clocks of

H̃ . So by the definition of D̃ and G̃,

λ′[k] = Θq[k] ≥ τ ′[k] − τ [k] (2)

By the construction of R̃ in Definition 17 γ′[k] =
∑k

i=1 λ′[i].
Then using (2) and noting that T ∈ [τ [k], τ ′[k]], γ′[k] ≥
∑k

i=1(τ
′[i] − τ [i]) ≥ T . Thus T ≤ γ′[k].

VIII. CONCLUSIONS

We define a new distance for hybrid dynamical systems,

composed by two completely identifiable parts: a discrete

part that is the number of transitions separating two discrete

modes, and a continuous part that is a function of a standard

distance (induced by a norm) between their corresponding

continuous states. Using this distance metric, we introduce

the notion of Finite Time Mode Abstraction for a special

class of (convergent) hybrid systems. According to this

concept, most of the continuous dynamics of the hybrid

system is abstracted away, leaving only information about

the time that takes a continuous state to reach a transition

guard within each particular discrete mode. This information

is then used to construct a timed automaton which is shown

to preserve the stability and reachability properties of the

original hybrid system. Our current analysis applies to the

class of hybrid automata with one guard per mode and only

one asymptotically stable equilibrium set, but we suggest a

procedure for generalization more general classes of hybrid

systems, through refinement of their discrete modes. We

consider this work as the first step in a path that will allow

us to map continuous and hybrid dynamics into (almost

completely) discrete ones.
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