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Abstract—The motion of a group of nonholo-
nomic mobile agents is synchronized using local
control laws. This synchronization strategy is in-
spired by the early flocking model proposed by
Reynolds [17] and following work [22, 8]. The
control laws presented ensure that all agent head-
ings and speeds converge asymptotically to the
same value and collisions between the agents are
avoided. The stability of this type of motion is
closely related to the connectivity properties of
the underlying interconnection graph. Proof tech-
niques are based on LaSalle’s invariant principle
and algebraic graph theory and the results are
verified in numerical simulations.
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I. Introduction

Recent technological advances offer more ef-
ficient computation and less expensive commu-
nication. The ability to compute locally and
share information has facilitated the develop-
ment of new multi-agent systems. Such type
of systems promise increased performance, effi-
ciency and robustness, at a fraction of the cost
compared to their centralized counterparts, uti-
lizing distributed coordination sensing and actu-
ation. The question arising is how to achieve
coordination in multi-agent systems.

Nature is abundant in marvelous examples of
coordinated behavior. Across the scale, from bio-
chemical cellular networks, up to ant colonies,
schools of fish, flocks of birds and herds of
land animals, one can find systems that ex-
hibit astonishingly efficient and robust coordi-
nation schemes [1, 15, 23, 7, 5]. At the same
time, several researchers in the area of statis-
tical physics and complexity theory have ad-
dressed flocking and schooling behavior in the
context of non-equilibrium phenomena in many-

degree-of-freedom dynamical systems and self
organization in systems of self-propelled parti-
cles [22, 21, 20, 13, 11, 18, 9]. Similar prob-
lems have become a major thrust in systems
and control theory, in the context of coopera-
tive control, distributed control of multiple ve-
hicles and formation control; see for example
[10, 2, 16, 4, 12, 6, 19, 8, 14, 3]. The main goal
of the above papers is to develop a decentral-
ized control strategy, such that a global objec-
tive, such as a tight formation with fixed pair-
wise inter vehicle distances is achieved.

In 1986 Craig Reynolds [17] made a computer
model of coordinated animal motion such as bird
flocks and fish schools. He called the generic
simulated flocking creatures “boids”. The basic
flocking model consists of three simple steering
behaviors which describe how an individual boid
maneuvers based on the positions and velocities
its nearby flockmates:separation, alignment, and
cohesion. In 1995, a similar model was proposed
by Vicsek et al. [22]. Under an alignment rule, a
spontaneous development of coherent collective
motion is observed, resulting in the headings of
all agents to converge to a common value. A
proof of convergence for Vicsek’s model (in the
noise-free case) was given in [8].

In this paper provide a system theoretic justi-
fication for the flocking phenomenon in [17]. In
our flocking model, we consider dynamic mobile
agents steered by local control laws. The mobile
agents are described by nonholonomic differen-
tial equations of the form:

ẋi = vi cos θi (1a)

ẏi = vi sin θi (1b)

θ̇i = ωi (1c)

v̇i = ai, (1d)
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for i ranging from 1 to N , which is the total
number of agents in the group. In the above,
ri = (xi, yi)

T is the position vector of vehicle i,
θi its orientation (Figure 1), vi its translational
speed and ai, ωi its control inputs. The relative
positions between the vehicles are denoted rij �
ri − rj.
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Fig. 1. Agent i and its control inputs.

For this system of mobile agents we show that
all agent headings converge to the same value,
and pairwise relative speeds are stabilized. This
results in an overall motion in which the group
maintains its shape and moves uniformly in a
particular direction. An artificial potential func-
tion ensures that collisions between the agents
are avoided and cohesion in the group is main-
tained. Our analysis is based on Lyapunov sta-
bility and algebraic graph theory. Central to this
analysis is the connectivity of the graph that rep-
resents control interactions between the agents,
a property which allows propagation of informa-
tion. While the proof techniques are totally dif-
ferent from those in [8], the end result is similar,
suggesting that addition of cohesion and sepa-
ration forces in addition to alignment as well as
addition of dynamics, does not affect the stabil-
ity of the flocking motion.

II. Coordination Strategy

Let us now assume a fixed control interconnec-
tion topology on the group of vehicles, where in-
terconnections express control dependences. The
agents that are interconnected with i, are called
neighbors of i. The set of neighbors of i is de-

noted Ni. We can represent the interconnec-
tion topology by means of an undirected graph
G = {V, E}, where V is the set of vertices in-
dexed by the agents in the group, and E is the
set of edges, with one edge between each pair of
interconnected agents.

For a pair of neighboring agents, (i, j) ∈ E we
define an artificial potential function Vij that de-
pends on the distance between these two agents.
An example of such function, given here for il-
lustration purposes, is the following:

Vij(‖rij‖) =
1

‖rij‖2 + log ‖rij‖2 .

The potential of an agent i, is now defined as
the sum of all artificial potentials associated with
every one of its neighbors:

Vi �
∑

j∈Ni

Vij(‖rij‖).

The neighboring relations of each agent deter-
mine its control law:

ai = − k
∑

j∈Ni

(vi − vj) − [(∇ri
Vi)x cos θi

+ (∇ri
Vi)y sin θi]

∣∣∣∣∣
∑

j∈Ni

(vi − vj)

∣∣∣∣∣ (2a)

ωi = − k
∑

j∈Ni

(θi − θj) − [(∇ri
Vi)y cos θi

− (∇ri
Vi)x sin θi]

∣∣∣∣∣
∑

j∈Ni

(θi − θj)

∣∣∣∣∣ (2b)

with k being a constant positive parameter
(control gain). In (2a)-(2b) the first terms are
responsible for stabilization of relative headings
and speeds, while the second terms reduce the
potential of each boid. For the closed loop sys-
tem we have the following:

Proposition II.1 Consider the system of N
mobile agents with dynamics (1). Then, for a
sufficiently large control gain k, the agent head-
ings and speeds converge to the same value while
collisions between the agents are avoided.
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Proof: Consider the positive semi-definite
function

V =
1

2
θT Lcθ +

1

2
vT Lcv, (3)

where θ and v are the stack vectors of headings
and speeds, respectively and Lc is the Laplacian
of the complete graph with N vertices. Taking
the derivative of V we get:

V̇ = − θT Lc(kLθ + diag{(∇ri
Vi)⊥} |Lθ|)

− vTLc(kLv + diag{(∇ri
Vi)‖} |Lv|)

= − kNθT Lθ − θLcdiag{(∇ri
Vi)⊥} |Lθ|

− kNvT Lv − vLcdiag{(∇ri
Vi)‖} |Lv| ,

where (∇ri
Vi)‖ and (∇ri

Vi)⊥ are the components
of each ∇ri

Vi along the direction of the velocity of
agent i and its orthogonal direction, respectively.
It turns out that components of v and θ that are
along the direction of the vector of ones, 1, pre-
serve the value of V . To this end, decompose
these vectors as θ = θ1 ⊕ θ1⊥ and v = v1 ⊕ v1⊥ ,
where superscripts 1 and 1⊥ identify the com-
ponents of the vectors along the direction of the
vector of ones and its orthogonal, respectively.
Then, the derivative of V becomes

V̇ = − k(θ1⊥)T (NLθ1⊥ + Lcdiag{(∇ri
Vi)⊥}|Lθ1⊥|)

− (v1⊥)T (kNLv1⊥ + Lcdiag{(∇ri
Vi)‖}|Lv1⊥|)

≤− kNλ2‖θ1⊥‖2

+ ‖θ1⊥‖ ‖Lc‖ ‖diag{(∇ri
Vi)⊥}‖

√
N‖Lθ1⊥‖

− kNλ2‖v1⊥‖2 (4)

+ ‖v1⊥‖ ‖Lc‖
∥∥diag{(∇ri

Vi)‖}
∥∥√

N‖Lv1⊥‖
≤ −N(kλ2 − N

√
Nfmax)‖θ1⊥‖2

− N(kλ2 − N
√

Nfmax)‖v1⊥‖2 (5)

(6)

where fmax is the magnitude of the maximum
potential force. Choosing

k ≥ N
√

Nfmax

λ2
,

ensures that V will be decreasing. Any level set
of V is invariant and from (3) all speed and head-
ing differences have to remain bounded. Given
that v1⊥ = θ1⊥ = 0 is an equilibrium configu-
ration for (1), application of LaSalle’s invariant
principle shows that this configuration is asymp-
totically stable.

III. Numerical Validation

Consider a group of 10 mobile agents. At first
assume that the interconnection graph is com-
plete, that is every agent has every other agent
as a neighbor. Let the agents be initiated with
(x, y) positions selected randomly in the interval
[−5, 5] m, speeds in the interval [−1, 1] m/s and
headings in [−π, π]. Control gain k is set to 1.

We depict the evolution of a set of N − 1 = 9
heading differences that span the relative head-
ings space in Figure 2. The Figure shows that the
heading differences have converged exponentially
to zero after approximately 10 simulation sec-
onds, resulting in all agents moving in the same
direction.
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Fig. 2. Convergence of headings when the interconnec-
tion graph is complete.

Figure 3 shows the convergence of speeds. In
Figure 3 the (absolute) speeds of the 10 agents
converge exponentially to the same value, which
is approximately 0.5m/s.

Figures 4-5 refer to the case where the inter-
connection graph is not complete, i.e. it does
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Fig. 3. Convergence of speeds when the interconnection
graph is complete.

not have all possible edges, but it is nevertheless
connected. The evolution of same set of heading
differences as in the previous case is now depicted
in Figure 4. The Figure shows that the headings
still converge to the same value, however the rate
of convergence is smaller and it takes almost 15
simulation seconds to reach steady state. This
is due to the fact that in this case, the second
eigenvalue of the graph Laplacian, λ2 is smaller.
Recall from (6) that λ2 is related to the conver-
gence rate of the Lyapunov-like function.
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Fig. 4. Convergence of speeds when the interconnection
graph is incomplete but connected.

The evolution of the agent speeds is given in

Figure ??. Speeds converge exponentially to a
value close to 0.7m/s. Note once again that due
to the reduced value of λ2, the agent speeds take
longer to reach their steady state compared to
the case of the complete interconnection graph.
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Fig. 5. Convergence of speeds when the interconnection
graph is connected but not complete.

IV. Conclusions

In this paper we show how a group of nonholo-
nomic mobile agents can synchronize their head-
ings and speeds using local control laws. These
control laws are constructed as a combination of
a synchronization term that drives each agent
speed and heading to the average over its set
of neighbors and a sector bounded artificial po-
tential term that steers the agent towards a di-
rection that minimizes its potential and keeps it
from colliding with its neighbors. Stability anal-
ysis makes use of Lyapunov theory and known re-
sults from algebraic graph theory. This is where
the topology of interconnection is reflected on the
stability and robustness properties of the group.
The dependence of convergence speed to the de-
gree of connectivity in the interconnection graph
becomes evident in simulation examples.
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