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Abstract—Simulation relations are powerful abstraction tech-

niques in computer science that reduce the complexity of anal-

ysis and design of labeled transition systems. In this paper,

we define and characterize simulation relations for discrete-

time linear systems in the presence of state and input con-

straints. Given a discrete-time linear system and the associated

constraints, we consider a control-abstract embedding into a

transition system. We then establish necessary and sufficient

conditions for one constrained linear system to simulate the

transitions of the other. Checking the simulation conditions

is formulated as a linear programming problem which can be

efficiently solved for systems of large dimensions. We provide

an example where our approach is applied to the hybrid model

of the Electronic Throttle Control (ETC) System.

I. Introduction

Theoretical computer science, and, in particular, the
areas of concurrency theory [12], and computer aided ver-
ification [11] have established formal notions of abstrac-
tion and model refinement which exploit the hierarchical
and compositional nature of large scale systems. In the
context of hybrid systems, such notions have been re-
cently considered by [10],[2], and [7]. In the control com-
munity, similar ideas have been considered in the hierar-
chical, supervisory control of discrete event systems [4],
[21], and hybrid systems (see surveys [1], [8]).
Simulation relations of labeled transition systems pro-

vide such a formal notion of abstraction [12]. Roughly,
transition system T2 simulates transition system T1, if
every transition taken by T1 can be matched by a similar
transition taken by T2. Simulation relations are used in
order to establish modeling consistency between various
levels of hierarchical systems, as transitions of the higher
level system T1 can be matched by the lower level system
T2.
As mentioned in [20], simulation relations have escaped

the world of purely continuous systems. More recently, a
notion of simulation was introduced for continuous-time
systems [14]. Given a continuous system and quotient
map, a formal construction was provided for extracting
quotient systems that simulated the trajectories of the
original system. Furthermore, linear maps that preserve
control theoretic properties such as controllability [14],
and stabilizability [13] were characterized. Similar re-
sults have also been established for nonlinear systems [15].
Simulation relations for unconstrained discrete-time lin-
ear systems have been established in [18].

In this paper we derive necessary and sufficient condi-
tions for simulation relations between discrete-time linear
systems that are subject to state and input constraints.
We first embed constrained linear systems into transition
systems. Control input information is abstracted away,
contrary to model reduction methods in which control
inputs are preserved [3]. The simulation relations con-
sidered in this paper can capture at least two important
cases: complexity reduction and refinement. In the for-
mer case, one is concerned with reducing the dimension-
ality of the system to facilitate analysis. In the latter
case, one may be interested in either refining a controller
designed at a higher level or substituting the target sys-
tem with a more complicated. The simulation conditions
are expressed as a set-inclusion relationship that can be
checked numerically using a linear programming formu-
lation. The structure of the linear programming formu-
lation, naturally reflect the game theoretic interpretation
of simulation relations, a subject that has a long and rich
history in theoretical computer science.
The outline of this paper is as follows: In Section II we

review the definition of simulation relations for transition
systems. In Section III we derive necessary and sufficient
conditions for simulation relations between constrained,
discrete-time, linear systems. Section IV provides a com-
putational framework for checking the simulation condi-
tions and Section V illustrates the application of our ap-
proach on a challenge problem, the ETC problem. The
conclusions from this work are summarized in Section VI.

II. Simulations of Transition Systems

In this section we review the standard definitions of
simulation relations for transition systems [12]. A (la-
beled) transition system is defined as follows:

Definition II.1 A labeled transition system is a tuple
T = (Q,Σ,−→) that consists of:

• A (possibly infinite) set Q of states,
• A (possibly infinite) set Σ of labels,
• A transition relation −→⊆ Q×Σ×Q,

The transition (q1, σ, q2) ∈−→ is commonly denoted as
q1

σ−→ q2. The transition system is called finite if Q and
Σ are finite, and infinite otherwise. A region is a subset
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P ⊆ Q of the states. The σ-successor of a region P is
defined as the set that can be reached from P with one
σ-transition. More precisely,

Postσ(P ) = {q ∈ Q | ∃p ∈ P with p
σ−→ q} (1)

Simulation relations between transition systems formally
define when one transition system implements another.

Definition II.2 Let T1 = (Q1,Σ,−→1) and T2 =
(Q2,Σ,−→2) be two transition systems over the same la-
bel set Σ . The relation S ⊆ Q1 × Q2 is called a simu-
lation relation if for all (q1, q2) ∈ S, the following prop-
erty holds: if q1

σ−→ q′1, then there exists q′2 ∈ Q2 with
q2

σ−→ q′2 and (q′1, q
′
2) ∈ S.

If such a simulation relation exists, then T2 simulates
(or implements) T1, since every σ-transition taken by T1
can be matched (or implemented) by a σ-transition of T2.
The label set Σ is common to both transition systems. In
general T2 may have many more transitions, and may be
a much more complicated system. Transition system T1
can also serve as a more abstract description of transition
system T2. If, in addition, T1 also simulates T2 with the
same relation S, then T1 and T2 are called bisimilar.
The language of a transition system, denoted L(T ), is

the collection of label sequences that can be generated by
transition system T . It is straightforward to show that if
transition system T2 simulates T1, then L(T1) ⊆ L(T2).
Therefore, the behavior of T1 is contained in that of T2.
Simulation relations, even though sufficient for language
inclusion, are preferable to language inclusion since there
are much easier to check algorithmically.

III. Simulations of Constrained Linear Systems

We begin by embedding linear systems into a transi-
tion system choosing one possible embedding out of a
variety of different ones: a transition can occur whenever
an admissible control exists, where by admissible con-
trol we mean an input that ensures that transitions do
not violate the state constraints. Consider discrete-time,
constrained linear control systems:

∆ : xk+1 = Axk +Buk (2)

with time k ∈ N+, state xk belonging in a set X ⊆ R
n,

control uk belonging in a set U ⊆ R
m, and matri-

ces A, B of appropriate dimension. From linear sys-
tems theory [22], we know that given an initial condi-
tion x0 at time zero, and an input sequence {ui}k−1

i=0 =
{u0, u1, . . . , uk−1}, then the state xk at time k is

xk = Akx0 +
k−1∑
i=0

Ak−i−1Bui (3)

The embedding of discrete-time systems into transition
systems preserves information about the state in which
the system is at each single time step, abstracting away
the particular control that was used the transition.

Definition III.1 The transition system T∆ =
(Q,Σ,−→) generated by ∆ consists of:

• State space Q = X ⊆ R
n,

• Unique label Σ = {1},
• Transition relation −→⊆ Q× {1} ×Q with

x
1−→ x′ ⇔ ∃u ∈ U : x′ = Ax+Bu∧Ax+Bu ∈ X

The transitions of the transition system naturally corre-
spond to evolution of the discrete-time system in one time
step. Furthermore, the transitions of Definition III.1 are
control abstract in the sense that the transition system
does not care which u is responsible for the transition of
the discrete-time system, as long as the states stays in X .
Consider two discrete-time, state and input constrained

linear systems:

∆1 : xk+1 = Axk +Buk, x ∈ X ⊆ R
n, u ∈ U ⊆ R

m (4)
∆2 : zk+1 = Fzk +Gvk, z ∈ Z ⊆ R

r, v ∈ V ⊆ R
s (5)

where matrices A,B,F , and G are of appropriate dimen-
sion. Linear systems ∆1 and ∆2 generate various transi-
tion systems T∆1 and T∆2 respectively.
The simulation relations we shall consider in this paper

are of the form S ⊆ Q1 × Q2, with Q1 = X ⊆ R
n and

Q2 = Z ⊆ R
r where

(x, z) ∈ S ⊆ Q1 ×Q2 ⇔ z = Hx+ y, y ∈ Y (6)

where H ∈ R
r×n is an arbitrary linear map, and Y ⊆ R

r

is a set. Relation S can be thought of as a set valued map
assigning to each x ∈ Q1 an affine set Hx+ Y ⊆ Q2.
The structure of the relations (6) considered in this

paper captures at least two important cases. In the first
case, where Y = 0 and the map Hx is surjective, we are
interested in simulating the transitions of ∆1 by a sys-
tem ∆2, which should be smaller in size, thus performing
complexity reduction. Such a case can be useful in model
checking and verification. In the second case, where the
map Hx is injective and Y = R(H)⊥ (the orthogonal
complement of the range of H) we are interested in the
more complicated system ∆2 simulating the transitions
of the simpler system ∆1, thus refining the transitions
from the simpler to the more complicated model.

Theorem III.2 (Simulation) Consider discrete time
systems ∆1 and ∆2 given by (4)-(5), and a relation S
of the form (6). Then T∆2 simulates T∆1 if and only if

(HA− FH)X +HBU − FY ⊆ GV − Y (7a)
AX +BU ⊆ X (7b)
FZ +GV ⊆ Z (7c)
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Proof: By Definition II.2 and equation (1), with
σ being a one-step transition, ∆2 simulates ∆1 with re-
spect to the relation S if and only if for all (x, z) ∈ S it
holds that: ∀x′ ∈ Post1(x), ∃z′ ∈ Post1(z) : (x′, z′) ∈ S.
Given (6), the above is rewritten as: ∀(x, z) ∈ S, ∀x′ ∈
Post1(x), ∃y1 ∈ Y : z′ = Hx′ + y1 ∈ Post1(z). Defini-
tion III.1 provides explicit expressions for the Post1 op-
erators T∆1 and T∆2 . Substituting, the necessary and
sufficient condition for simulation becomes:

∀ (x, z) ∈ S, ∀u ∈ U : Ax+Bu ∈ X, ∃y1 ∈ Y,

∃v ∈ V : H(Ax+Bu) + y1 = Fz +Gv ∈ Z

Since (x, z) ∈ S, z can always be expressed as z = Hx+y2
with y2 ∈ Y , which makes the above equivalent to:

∀x ∈ X, ∀y2 ∈ Y, ∀u ∈ U : Ax+Bu ∈ X,

∃y1 ∈ Y, ∃v ∈ V : H(Ax+Bu)+y1 = F (Hx+y2)+Gv ∈ Z

Collecting terms, and eliminating the quantifiers we have:

(HA− FH)X +HBU − FY ⊆ GV − Y.

Thus, the necessary and sufficient condition for simula-
tion can take the form of (7a). The remaining conditions:

AX +BU ⊆ X, FZ +GV ⊆ Z

restrict transitions that do not lead to admissible states.

IV. Simulation Checking Algorithm

An important question that arises is how to check the
simulation conditions of Theorem III.2. We show that
when the constrained sets can be expressed as polyhedra,
checking the conditions for simulation is equivalent to
solving a number of Linear Programming (LP) problems.

A. The Linear Programming Formulation

Consider the linear systems (4) and (5) and assume
that the sets X , U , Z, V and Y are given as:

X ={x ∈ R
n | Cxx � dx}, U ={u ∈ R

m | Cuu � du},
Z ={z ∈ R

r | Czz � dz}, V ={v ∈ R
s | Cvv � dv},

Y ={y ∈ R
r | Cyy � dy}.

The above constraint sets can be grouped together into
two polyhedral regions, each characterizing each side of
the simulation condition (7a):

Pl �{q = (x, u, y)T | Plq � dl} (8a)

Pr �{w = (y, v)T | Prw � dr} (8b)

where:

Pl �diag {Cx, Cu, Cy} , dl �(dx, du, dy)T ,

Pr �diag {Cy, Cv} , dr �(dy, dv)T .

In order for transitions to remain within X and Z, con-
ditions (7b,c) are expressed as:

CxAx+ CxBu � dx, CzFy + CzGv � dz − CzFHx.

By defining C1 � [CxA CxB 0], C2 � [CzF CzG] and
C3 � [CzFH 0 0], the above can be rewritten as:

C1q � dx, C2w � dz − C3q. (9)

Now define the linear maps:

Ml : Pl → P1; q �→ [
HA− FH HB −F

]
q

Mr : Pr → P2; w �→ [−I G
]
w

Clearly, the image of a polyhedron under a linear map is
itself a polyhedron. The simulation condition (7a) then
requires the inclusion P1 ⊆ P2. The following theorem
offers a computational means of checking this inclusion:

Theorem IV.1 The necessary and sufficient conditions
conditions for simulation, (7), are satisfied iff each of the
following LP problems is feasible:

min
s

pk
r(I −M+

r Mr)s

s.t. Pr(I −M+
r Mr)s � dr − PrM

+
r Mlq

∗
k

C2(I −M+
r Mr)s � dz − (C3 + C2M

+
r Ml)q∗k.

where pk
r is the kth row of Pr, M+

r is the pseudoinverse
of Mr and q∗k = (x∗, u∗, y∗)Tk is the solution of

max
q

pk
rM

+
r Mlq,

s.t. Plq � dl C1q � dx.

Proof: If P1 and P2 are given as:

P1 = {t | P1t � d1} P2 = {t | P2t � d2}

then the checking condition P1 ⊆ P2 is equivalent to
verifying that pj

2t
∗ ≤ dj

2 with j ranging over the number
of rows of P2, where t∗ is the solution of the LP problem:

max
t

pj
2t, s.t. P1t � d1. (10)

The explicit description of P1 and P2 requires vertex
representation of Pl and Pr, which is generally difficult.
Thus, a problem formulation in the original space where
Pl and Pr are expressed in edge representation (8a) is
preferable. Since Mr is a linear surjective map, the solu-
tions of (10) are a subset of the solutions of:

max
q

pj
rM

+
r Mlq (11a)

s.t. Plq � dl, C1q � dx. (11b)
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where j ranges over the number of rows of Pr.
Let z∗j be the solution of (11). Then, z∗j is the point

in Pl, with an image under M−1
r Ml, (M−1 denoting the

inverse mapping), which is the “worst” among all points
on hyperplane pj

rw = c, with respect to containment in
P2. For that point to be contained in P2, the LP problem:

min
s

pj
r

(
M+

r Mlz
∗
j + (I −M+

r Mr)s
)

s.t. Pr

(
M+

r Mlz
∗
j + (I −M+

r Mr)s
) � dr

C2

(
M+

r Mlz
∗
j + (I −M+

r Mr)s
) � dz − C3z

∗
j

should have a feasible solution. And since optimization
is only with respect to s, the above simplifies to:

min
s

pj
r(I −M+

r Mr)s (12a)

s.t. Pr(I −M+
r Mr)s � dl − PrM

+
r Mlz

∗
j , (12b)

C2(I −M+
r Mr)s � dz − (C3 + C2M

+
r Ml)z∗j (12c)

Theorem IV.1 reveals the game-theoretic interpretation
of simulation condition (7a), where system ∆1 first picks
the worst transition by maximizing (x∗, u∗, y∗), which
must then be matched by ∆2 by choosing v∗. Figures
1-2 provide a pictorial description of the procedure fol-
lowed in the proof of Theorem IV.1.
The number of LP problems that need to be solved is

at most 2nr where nr is the number of faces describing
Pr. In other words, the complexity of checking (7) is pro-
portional to the complexity of the polyhedra describing
the admissible regions for state and input.

V. A Challenge Problem

This approach was applied to an instance of the Elec-
tronic Throttle Control (ETC) problem: a throttle con-
trols the amount of air-fuel mixture that is sent to the
engine of a car. The throttle is electronically controlled
by a PWM driven motor. In the main mode of operation
of the system, the PWM signal is produced based on the
output of a sliding mode controller, which takes as in-
put the accelerator pedal position after being filtered by
a fifth order linear filter. In the closed loop system, the
throttle is tracking the reference signal produced by the
driver. The ETC is modeled as a hybrid system with six
different modes, distinguishing between the cases where
the motor is receiving an input pulse or not and in which
direction the throttle is moving. In each mode the states
consists of nine continuous variables expressing the cur-
rent and voltage of the motor, the angle and rotational
velocity of the throttle, and the five states of a filter.
Such a system should meet certain specifications, some

of which can be formalized in terms of overshoot, rise time
and steady error for the throttle angle. However, verify-
ing these properties on the original system is too compu-
tationally expensive due to the relatively high dimension

Mr

q

t

pj
r

z∗

s∗

P	 Pr

j

w

M	

Fig. 1. The image of P� is contained in P2. The abstract system

can simulate the original.

M	

P	 Pr

z∗

q w

t

s

j

pj
r

Mr

Fig. 2. The image of P� is not contained in P2. The abstract

system cannot simulate the original.

of the continuous state vector which inhibits reachability
computations. Thus, the system dimension in each mode
is reduced using the proposed methodology and verifica-
tion can proceed using a lower dimensional system (Fig-
ure 4). If the property is verified on the abstract system,
then it will also hold for the original system, since by the
definition of simulation, the abstract system includes all
the behaviors of the original.
The dynamics of the original system in each mode, is

described by:

x[k + 1] = Aix[k] +Biu[k] (13a)

Ci
xx � di

x, Ci
uu � di

u, i = 1, . . . , 6 (13b)

where Ai, i = 1, . . . , 6 are 9 × 9 matrices and Bj , j =
1, . . . , 6 are 9×3 matrices. Due to lack of space, only the
numerical expressions for A1 and B1 are given:

B1 =




2.58·10−1 2.07·10−5 0
2.86·10−1 −3.67·10−4 0
1.16·10−5 7.00·10−5 0
3.33·10−2 1.40·10−1 0

0 0 −8.13·10−9

0 0 −1.44·10−9

0 0 −3.77·10−10

0 0 −7.84·10−11

0 0 1.00·10−3



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A1 =




7.09·10−1 −7.36·10−2 −5.76·10−5 3.88·10−4

7.30·10−2 2.46·10−2 1.02·10−3 −4.28·10−3

1.07·10−4 −4.43·10−6 1.00 1.00·10−4

2.02·10−1 −1.16·10−2 −3.90·10−1 1.00
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

6.14·10−1 −1.26·10−1 −1.06·10−2 −4.45·10−4 −1.50·10−5

4.09·10−1 9.66·10−1 −2.90·10−3 −1.23·10−4 −4.16·10−6

2.26·10−1 1.01 9.99·10−1 −4.34·10−5 −1.47·10−6

8.01·10−2 5.21·10−1 1.02 1.00 −3.86·10−7

1.05·10−2 8.91·10−2 2.62·10−1 5.12·10−1 1.00


 ,

As it can be seen in the following Tables, the original
state bounds (especially for states x5, . . . , x9) are quite
conservative. This is due to the absence of any partic-
ular physical constraint for this part of the state vec-
tor. The conservative nature of the original state bounds
will eventually be reflected upon the control authority
that is necessary in the abstracted system. This implies
that constraints are actually useful in abstraction: the
use of constraint information can lead to more specific
system description and less conservative abstractions.

Concrete State and Input Constraints
x1 x2 x3 x4 x5 x6

max 7.4 27.3 1.82 19.7 1.57 1.57·108

min 0 0 0.25 0 0 −1.57·108

u1 u2 u3 x7 x8 x9

max 12 −1 1.57 1.57·108 1.57·108 1.57·108

min 12 −1 0 −1.57·108 −1.57·108 −1.57·108

g  < 0
1

g  < 0
1

g  < 0
1g  > 01

g  > 01 g  > 01

g  > 02

g  > 02

2g  = 0

2g  = 0

2g  = 0

2g  = 0 2g  < 0

2g  < 0

ON

OFF 4 6 5

231

Fig. 3. The hybrid system modeling the original ETC System.

The switching conditions are expressed by the guards
of the hybrid system. These are algebraic expressions
involving the continuous states (Figure 3):

g1 =− x1 + 1.64x3 − 8.36 · 10−2x4 + 0.59sign(x4)
+ 332x7 + 6.49x8
− 2sign(20x3 + x4 − 77.2x8 − 3.02x9 − 5)

g2 =x4

The specifications that the ETC system should meet con-
cern the steady state error of the throttle angle, x3 as well
as the rise time and overshoot. For a hybrid system with
continuous dynamics of that size, reachability computa-
tion is beyond the limits of state-of-the art computational
tools [17], [6], [9], [16], [19], [5].
The abstraction map is designed to preserve the infor-

mation that is crucial for verification (x3 state), as well
as for the discrete transitions between the modes (g1, g2
guards), while compressing the state as much as possible.
This is done by aggregating the states that appear in the
guards into abstract states in a way that all transitions
can still be detected:

H =
[

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 20 1 0 0 0 −77.2476 −3.0175
−1 0 1.6387 −0.0836 0 0 332.3595 6.4914 0

]

The abstracted dynamics in each mode is obtained ac-
cording to [14]:

z[k + 1] = Fiz[k] +Giw[k] (14a)

Ci
zz � di

z , Ci
ww � di

w, i = 1, . . . , 6 (14b)

where Fi = HAiH
+ and Gi =

[
HBi HAiKer(H)

]
, and

matricesGi being replaced by the minimum set of column
vectors that span the range of each Gi. This procedure
yields the following abstracted dynamics for mode 1:

F1 =

[
1.00 10−3 −8.10·10−11 −9.65·10−10

−3.90·10−1 1.00 −1.53·10−7 −1.82·10−6

4.05·10−3 −1.50·10−4 1.00 −2.40·10−1

−3.43·10−2 1.08·10−3 1.78·10−3 1.00

]

G1=



−2.13·10−10 −1.30·10−6 5.16·10−4 1.00

−3.74·10−7 −2.61·10−3 1.00 5.16·10−4

1.18·10−1 −9.93·10−1 −2.59·10−3 −4.49·10−8

−9.93·10−1 −1.17·10−1 −3.05·10−4 −5.26·10−9




g  > 04
g  = 04

g  < 04

g  > 01
g  > 02 g  > 03 g  < 0

3
g  < 0

1
g  < 0

2

g  > 04

g  = 04 g  < 04

g  = 04
ON

OFF

g  = 04

4 6 5

231

Fig. 4. The abstract hybrid system for ETC.

The guards for the abstract ETC system now take the
form (Figure 4):

ĝ1 = z4 + 0.59− 2sign(z3 − 5), ĝ2 = z4 − 2sign(z3 − 5),
ĝ3 = z4 − 0.59− 2sign(z3 − 5), ĝ4 = z2

Theorem IV.1 can be used to compute the input and
state constraint sets for the abstract system. The lin-
ear programming formulation indicates that the abstract
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dynamics in mode 1 of the hybrid system (14) with in-
put and state constraints given below can simulate the
dynamics of mode 1 in the original hybrid system (13):

Abstract State and Input Constraints
z1 z2 z3 z4

max 3.36 19.748 307.27 125.80

min 0 0 −180.17 −132.66

w1 w2 w3 w4

max 25.986 28.234 27.4551 5.8554·10−2

min −35.858 −33.643 −18.134 −5.8844·10−2

The simulation relation between (14) and (13) implies
a containment of trajectories: the image of all trajectories
of (13) under the linear abstraction map H , is a subset of
the trajectories that can be generated by (14). Therefore,
if all trajectories of the abstraction (14) satisfy the specifi-
cation, so will the trajectories of the original system (13).
The problem then reduces to verifying the specifications
on the lower dimensional hybrid system (14), a task that
is within the computational capabilities of available tools.

VI. Conclusions

In this paper we establish necessary and sufficient con-
ditions for simulation relations between two constrained,
discrete-time linear systems. The simulation conditions
derived are expressed in a set-inclusion form since con-
straints do not allow simple algebraic descriptions. We
provide efficient computational means of checking those
conditions based on a linear programming formulation
which in addition reveals the intrinsic game-theoretic na-
ture of simulation relations. Our computational approach
gives a tool for appropriately constraining one of the two
systems in order to achieve the desired simulation rela-
tion. Furthermore, the computational tool provided by
the algorithm allows one to actually measure how close
any two systems are to being similar and help addressing
issues such as robustness of simulation relations, which is
an area for further research.
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