
Integration of Deterministic Inference with Formal Synthesis for Control
under Uncertainty

Kevin J. Leahy1, Prasanna Kannappan2, Adam Jardine3, Herbert Tanner2, Jeffrey Heinz3, and Calin Belta1

Abstract— In this work, we consider an agent playing a turn-
based game in a known environment against an adversary with
unknown dynamics. The model of the adversary is assumed to
belong to a subclass of regular languages that can be learned
in the limit. We use tools from formal methods to synthesize
a control strategy for the agent to win the game as it learns
the model of its adversary, if a winning strategy exists. The
strategy is updated as new information about the adversary is
learned. The proposed framework is tested in simulation.

I. INTRODUCTION

Uncertainty is one of the main challenges in symbolic
control of dynamical systems that interact with their envi-
ronments. Uncertainty may be present in the dynamics of
the system under control, its observations about its environ-
ment, the mechanisms of interaction with it, as well as the
description of the environment itself. In this paper we focus
on the last source of uncertainty, namely the description
of the environment, and we specifically assume that this
environment has its own autonomous dynamics which are
unknown. In fact, we consider a case where the environment
may behave in a way that is antagonistic to the system,
actively trying to prevent the system from achieving its
control specification.

Adversarial interactions between systems is often con-
sidered in the context of game theory. Algorithmic game
theory [1], in particular, deals with theoretical and com-
putational properties of games evolving on graphs, and
provides several methods for determining winning strategies
in such games. One–player stochastic games are equivalent to
Markov Decision Processes (MDPs) [2]. In such a framework,
uncertainty is typically taken into account by developing
probabilistic models of player behavior, and reasoning in
a Bayesian sense. There are distinctions, however, between
almost-surely winning a game, which means that the player
wins with some degree of certainty, and sure-winning a
game, which means that the player is guaranteed to win, no
matter what the adversary does [2]. Chatterjee and Henzinger
[2] have shown that sure-winning strategies for two–player
deterministic games are almost surely winning in one–player
stochastic games but not vice versa. This paper departs from

1Department of Mechanical Engineering, Boston University, Boston, MA
02215 USA (e-mail: {kjleahy,cbelta}@bu.edu).

2Department of Mechanical Engineering, Univer-
sity of Delaware, Newark, DE 19716 USA (e-mail:
{prasanna,btanner}@udel.edu).

3Department of Linguistics and Cognitive Science, Uni-
versity of Delaware, Newark, DE 19716 USA (e-mail:
{ajardine,heinz}@udel.edu).

This work was partially supported by NSF CNS-1035588 at Boston
University.

the Bayesian paradigm by treating uncertain dynamics in a
purely non-probabilistic setting. One reason to prefer a non-
probabilistic approach to reasoning and strategizing in the
face of adversarial interaction with unknown dynamics is that
an alternative Bayesian approach would require probabilistic
priors, which may or may not be available. In addition, as
[2] suggests, a non-probabilistic approach offers solutions
that are also applicable to stochastic systems.

Uncertainty can in principle be resolved, at least partially,
through learning or inference methods. Incorporating learn-
ing in control has been pioneered by extensive studies in Re-
inforcement Learning (RL). RL offers methods for learning
a control strategy by formulating the control problem in an
uncertain environment as an MDP [3], [4]. The difference
between our approach and reinforcement learning is that
in our work learning is decoupled from control design:
the learner in our approach performs system identification,
while a control design methodology of choice can then take
over based on the identified model. Moreover, the same
identified model can be used with any compatible control
synthesis, yielding possibly different policies depending on
what purpose is to be served each time. In other words, the
(intermediate) outcome of the learner here can actually be
recycled and reused.

An important aspect of an algorithmic game theoretic
approach to control synthesis in the case of adversarial
interactions is that it places the problem inside the domain
of formal languages, and thus allows the utilization of a
whole new suite of analytical tools. It is this particular link
that enables us here to borrow machine learning techniques
that are rooted in language identification. The idea is that
by observing traces, or strings, that are acceptable by some
finite state machine, one is able to incrementally construct
an increasingly more accurate model of that machine. While
learning a formal language from only positive samples may
be intractable in general, it has been shown to be possible
to learn certain subclasses of regular languages in the limit
[5], [6]. In this work we illustrate the approach with such
a subclass, namely the Strictly k-Piecewise languages [7],
to model the motion of the adversary. Thus, the inferred
structure of the adversary’s possible behavior converges
asymptotically to the true structure.

Specifically, we consider an agent competing against
an adversary with unknown dynamics but some a priori
knowledge of the appropriate model space with which the

adversarial dynamics can be modeled.1 The agent is tasked
with satisfying a mission specified as a linear temporal
logic (LTL) formula while avoiding being captured by the
adversary. To correctly satisfy the mission specification, the
agent must learn the unknown dynamics of its adversary. Our
method allows the agent to infer the model of its adversary’s
motion and incrementally update its strategy according to
new information. Thus, although we still pose the problem
in a game-theoretic framework, we (a) resolve uncertainty in
a non-probabilistic manner, and (b) perform control synthesis
using mainstream model checking methods.

The closest existing work that is related to this paper
is that of Chen et al. [11] and Fu et al. [12]. Fu et al.
[12] develop a game-theoretic approach to finding winning
strategies when interacting with an unknown adversary, for
cases of reachability [13] as well as for temporal logic [12]
specifications. Chen et al. [11], on the other hand, consider
an agent that has to learn the dynamics of a stochastic envi-
ronment in order to satisfy an LTL mission specification. The
authors of that work model the motion of the adversary as a
Markov chain, using stochastic languages and probabilistic
priors. Given some information about the structure of the
adversary’s model, Chen et al. [11] incrementally identifies
the transition probabilities.

The main difference of this paper with respect to the
approach of Chen et al. [11] is that here the adversary is
modeled as an unknown non-probabilistic transition system.
In some sense, this approach meets the challenge of interact-
ing with an unknown adversary at an earlier step compared
to the formulation of Chen et al. [11], by identifying the
structure itself using observations of the adversary’s behav-
ior. The probability of the adversary taking any specific
action is ignored. This is intuitively the reason why non-
probabilistic policies, when available, work both with and
without stochasticity. They are designed to perform even for
the worst case, and thus, rather than ensuring winning with
probability one, they can actually offer absolute performance
guarantees. The difference of the present work compared to
that of Fu et al. [12] is that here the synthesis of policies is
done using standard model checking tools.

The organization of the rest of the paper is as follows. In
§II, we introduce the models used in this work and formally
state the problem of interest. In §III, we present the solution
for synthesizing a control policy and updating it according to
new information about the environment. Simulation results
are presented in §IV, and finally, in §V we present our
conclusions.

II. MODELS AND PROBLEM FORMULATION

Notation For two sets A and B, we denote their Cartesian
product as A×B and set difference operation as A\B. The
cardinality and power set of A are denoted by |A| and 2A

respectively. The set of finite sequences of symbols from A
is written as A∗. Similarly, we write Ak and A≤k to denote

1If there is zero a priori knowledge then “no free lunch” theorems show
that learning is not feasible [8], [9], [10].

sequences of symbols from A with length equal to k and
length up to k.

A. Agent Dynamics

Consider an agent agi operating on a graph environment
E = (V, E), where V is a set of vertices, E is a set of edges,
i = 1, . . . , N corresponds to the index of an agent and N is
the number of agents. We assume the existence of a labeling
function L : V → 2AP that labels nodes of the environment
from a finite set of atomic propositions AP . We model the
motion of the agent in the environment E as a deterministic
transition system.

Definition 1: A deterministic transition system is a tuple
T =

(
Q, Q̄, Σ →, Π, |=

)
with

1) Q: a finite set of states;
2) Q̄ ⊆ Q: an initial state;
3) Σ: a finite set of actions
4) →: Q× Σ→ Q: a transition function;
5) Π: a finite set of atomic propositions;
6) |=⊆ Q×Π: a satisfaction relation.
We denote the transition system for agent agi as Ti =(
Qi, Q̄i, Σi, →i, Πi, |=i

)
, where Qi ⊆ V . Further, the set

of atomic propositions Πi ⊆ AP is a subset of the labels of
the environment graph. For an atomic proposition πi ∈ Πi

and a state qi ∈ Qi, (qi, πi) ∈|=i if and only if πi ∈ L (qi).
That is, an agent satisfies a proposition by visiting a node in
the environment that is labeled with that proposition.

Similarly, we model the motion of the adversary as a
transition system T0 =

(
Q0, Q̄0, Σ0, →0, Π0, |=0

)
, where

the definitions of Q0, Q̄0, →0, Π0, and |=0 are the same as
for Ti. Unlike the agents, there is only one adversary present
in the game.

It is important to note that for an agent or the adversary,

(q, σ, q′) ∈→ 6=⇒ (q, q′) ∈ E ,

which is to say that in general, when either an agent or the
adversary chooses an action σ, the resulting move may be
across several edges in the graph environment. Thus, even
though Ti and T0 are deterministic, inputs Σi and Σ0 are
required to indicate that both an agent and the adversary
may move across multiple regions in the environment.

B. Agent Interaction

The agents and the adversary play a turn-based game
in the environment E. The order in which they play their
moves is predetermined and does not change during the
game. For simplicity sake, lets assume that the adversary
plays first followed by agent ag1, agent ag2, . . ., agent
agN (in the order specified), then the turn returns to the
adversary and the cycle continues. An agent or the adversary
chooses a transition from q ∈ Qi to some q′ ∈ Qi such
that (q, q′) ∈→i, followed by the other player making its
own choice of transition. The mechanics of this behavior
of playing in turns are captured by the turn-based product,
which is adapted here to apply to transition systems.

Definition 2 (Turn-based product): For two players T0 =
(Q0, Q̄0,Σ0,→0,Π0, |=0) and T1 = (Q1, Q̄1,Σ1,→1

,Π1, |=1), their turn-based product is another transition sys-
tem T = (Q, Q̄,Σ,→,Π, |=) defined as follows:

1) Q = Q0×Q1×{0,1}, where t ∈ {0,1} marks whose
turn it is: 0 for player 0 and 1 for player 1.

2) Q̄ = Q̄0 × Q̄1.
3) Σ = Σ0 ∪ Σ1.
4) →⊆ Q × Σ × Q is the transition relation, ac-

cording to which ((q0, q1,0), σ0, (q
′
0, q1,1)) ∈→ if

(q0, σ0, q
′
1) ∈→1, and ((q0, q1,1), σ1, (q0, q

′
1,0)) ∈→

if (q1, σ1, q
′
1) ∈→1.

5) Π = Π0 ∪Π1.
6) (q0, q1, t) |= π ∈ Π, for (q0, q1, t) ∈ Q0 ×Q1 × {1,0},

if either π ∈ Π0 and q0 |=0 π, or π ∈ Π1 and q1 |=1 π.
This definition can be easily extended to any number of

players. In this problem formulation, we have N + 1 players
(N agents and 1 adversary). Implicit in this definition is
the assumption that one player does not directly interfere
with the behavior of the other, (e.g., blocking some of its
transitions). Resolution of this type of interference, when
present, takes place at the level of synthesis.

We assume that all agents have complete knowledge of
their own transition system, the action set of adversary and
the vertices in the environment where the other agents and
adversary might be located but no knowledge adversary’s
transition relation. That is, an agent has knowledge of Q0

and Σ0 but no knowledge of→0. The agents also have some
apriori knowledge about the class of formal languages to
which the adversary’s behavior belongs. We also assume that
all agent can observe the location of the adversary at all
times, regardless of their relative position with respect to
any player in the environment. With these assumptions, the
agents are naive about the possible behavior of the adversary,
but observe all behavior of the adversary when it moves in
the environment.

C. Temporal Logic Mission Specification

In this work we consider missions to be carried out by
the agent that can be specified as LTL formulas. Given a
set of atomic propositions AP , such formulas are defined
recursively as

ϕ = p|¬ϕ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|♦ϕ|�ϕ|ϕ1Uϕ2| © ϕ ,

where p ∈ AP is an atomic proposition, and ϕ, ϕ1, and
ϕ2 are LTL formulas. LTL combines the Boolean operators
¬ (negation), ∨ (disjunction), and ∧ (conjunction) with the
temporal operators ♦ (eventually), � (always), U (until),
and © (next). The semantics of LTL are given over infinite
words from the set 2AP . By combining operators from
LTL, complex specifications can be created. A complete
description of the syntax and semantics of LTL is given in
Baier and Katoen [14].

For a turn-based product, we consider missions specified
as LTL formulas over the set of atomic propositions Π, as
defined in §II-B. These formulas can be used to specify
persistent tasks ϕpers over Π1 for the agent such as

ϕpers = �♦π11 ∧�♦π12 ∧�¬π1obs ,

which can be expressed in English as “visit regions π11 and
π12 infinitely often and never visit region π1obs.”

Similarly, winning conditions of the game for the agent
can be given as an LTL specification ϕgame over Π. For
simplicity of presentation, we consider a set ΠG ⊆ 2Π,
where atomic propositions πG ∈ ΠG label winning or losing
states of the turn-based product2. If for example we define
πcapture ∈ ΠG as the proposition used to label states in
which the agent and the adversary occupy the same region
of the environment—that is, πcapture is the set of all π1 ∈ Π1

and π2 ∈ Π2 such that π1 ∧ π2 implies the agent and
adversary occupy the same region—then an example of a
game formula is

ϕgame = �¬πcapture ,

which is expressed in English as “never occupy the same
state as the adversary.” Other winning conditions can also be
expressed in this manner, such as “occupy the same state as
the adversary infinitely often.” Then, with ϕpers and ϕgame
thus defined, we can define the class of all formulas we
consider as

ϕ = ϕpers ∧ ϕgame .

These formulas then capture both the persistent tasks for the
agent with respect to the regions of the environment and the
restrictions on its movement with respect to the adversary.

D. Problem Formulation and Solution Outline

We have now presented the necessary preliminaries to
formally state the problem under consideration:

Problem 1: Given an agent modeled as transition system
T1 and an adversary modeled as transition system T0 with
unknown dynamics whose interactions are modeled with
a turn-based product T , and a mission specification ϕ,
synthesize a control policy such that the agent satisfies ϕ
in the limit if such a policy exists.

The solution can be summarized as follows. First, at each
time step, we infer a grammar based on any newly observed
behavior of the adversary, as presented in §III-A. Given an
inferred model for the behavior of the adversary, we construct
a control policy for the agent to satisfy the specification.
The synthesis of such a control policy is presented in §III-B.
When the grammar describing the behavior of the adversary
is updated, we update the control policy for the agent (§III-
C).

III. PROBLEM SOLUTION

A. Learning Agent Interaction

We will now present the method for learning the structure
of T0. There are many types of a priori knowledge that can
be assumed about the behavior of the adversary that lead to
successful learning [6]. To be concrete, we assume that the
adversary exhibits a behavior that can be expressed by a k-
Piecewise formal language. Informally, a language L ⊆ Σ∗

2In general, it is possible to specify such conditions as formulas over Π,
but such specifications are more difficult to interpret. Hence, our definition
of ΠG to aid the reader.

is Strictly k-Piecewise if each word w’s membership in L
can be determined by checking each subsequence of length
k of w. A subsequence of w of length k is any sequence of k
symbols which appears in w (not necessarily contiguously).
For details on the formal definition of such languages, see
the Appendix.

We will assume here that k = 2. We thus can discover how
each single action of T0 may constrain its future actions. To
put things in perspective, if k > 2, we can discover how each
(non-contiguous) sequence of k − 1 actions may constrain
T0’s next move. Increasing k allows for encoding complex
constraints and specifications, which is in principle possible
but will not be attempted here for simplicity of exposition.

Following Gold [5], we imagine a learner as a function φ
that maps experience to grammars, i.e., φ : Tfin → G, where
Tfin is a finite sequence of words from Σ∗0 and G is a class
of grammars. An infinite sequence of words from Σ∗0 is a
text T for language L ⊆ Σ∗0 if every word of L occurs at
least once in T . For each i ∈ N, let T [i] denote the finite
initial portion of text T up to and including position i. We
say that a learner converges on a text T if there exists a
convergence point p ∈ N and a grammar G such that for all
i > p, φ

(
T [i]

)
= G. A learner φ identifies a language L in

the limit from text if for any text T for L, φ converges on
T to grammar G and L(G) = L. If a learner can identify in
the limit any language L belonging to a class of languages
L, then we say that φ identifies the class L in the limit.

In the case of Strictly k-Piecewise languages, one learner
takes a very simple and intuitive form [6]:

φk
(
T [i]

)
=

{
∅ i < 0

φk
(
T [i− 1]

)
∪ fk

(
T [i]

)
otherwise ,

where ∅ denotes the empty set and fk returns the k-long
subsequences of w (see Appendix). In other words, grammars
can be thought of as well-formed subsequences of length k
and learning proceeds by collecting observations of these k-
long subsequences.

Strictly k-Piecewise languages are identifiable in the limit
from positive presentation in time O(nk), where n is the
sum of lengths of all the strings in the presentation [15].

Example 1: To illustrate how a learner operates, we
present the following example. First, we assume the adver-
sary moves on a grid environment and Σ0 are the inputs
which would allow it to transition from one cell in this
environment to an adjacent one along any one of the four
compass directions. No diagonal cell transitions allowed, but
it may be possible to transition over several cells in one move
along a given compass direction. How many cells it can move
along a given direction is not known a priori. In fact, with
the exception of the impossibility of diagonal motion, and of
the inclusion of the language of T0 into the class of Strictly
2-Piecewise languages, no other prior knowledge about the
adversary is assumed. The learner’s initial hypothesis about
the language of the adversary is that L = ∅, essentially
implying that it does not move. As the adversary starts
moving, the learner’s hypothesis will be updated and refined

based on the observations of transitions between adjacent
cells. These transitions are associated with elements in Σ0.

We will denote the set of compass directions C =
{N,S,E,W}, and let Σ0 = C ×N, with the second element
expressing the number of cells that the agent moved in the
particular compass direction. Let the class of grammars G
be the finite powerset of Σ≤2

0 . For any G ∈ G, let L(G) be
the set of all and only those words w such that the 2-long
subsequences of w are all contained in G (see Appendix).
The language class {L(G) | G ∈ G} is a class that can be
identified in the limit from positive presentation [7].

As the learner φ observes a sequence w ∈ Σ∗0, it outputs
grammars from text T as follows.

φ
(
T
)

= {v | (∃w ∈ T)[v is a 2-long subsequence of w]}

For example, say that (E, 4)(E, 4) is not present in the
grammar of the adversary. This means that once it moves
four cells to the east once, it cannot do so again, as this 2-
subsequence is not allowed by its grammar. The learner will
never observe the subsequence (E, 4)(E, 4) in the sequence
of actions by the adversary, and thus its grammar will never
be updated to contain this subsequence.

The table below shows how the presence of a symbol in
Σ0 in an element of the grammar is interpreted in terms of
the transition system of the agent. In other words, if you
know σ ∈ w for some w ∈ G then you know something
about a number of transitions in the transition system, as
explained in the table below. If you observe the transition in
the left column, this implies the logical proposition in the
right column.

(N, n)
[
∀(x, y), (x, y + n) ∈ Q2;

(
(x, y), (x, y + n)

)
∈→2

]
(S, n)

[
∀(x, y), (x, y − n) ∈ Q2;

(
(x, y), (x, y − n)

)
∈→2

]
(E, n)

[
∀(x, y), (x + n, y) ∈ Q2;

(
(x, y), (x + n, y)

)
∈→2

]
(W, n)

[
∀(x, y), (x− n, y) ∈ Q2;

(
(x, y), (x− n, y)

)
∈→2

]
The grammar G can be used to learn the adversary’s

transitions system T0. The only unknown component in T0

is the transition relation→0. Define→s, a transition relation
that captures all transitions for the adversary in a grid world
obtained by executing actions in Σ0 from every grid square.
[7] provides a construction showing how grammar G can be
expressed as a transition relation →g . The transition relation
of the adversary→0 can be obtained as a product of→s and
→g .

→0=→s ⊗ →g (1)

This product operation ⊗ between transition relations is
analogous to product operation between two automata (see
[16] for details).

Although our example illustrates the case in which the
adversary can move in the four compass directions, this
method of learning applies equally well to other types of
movement, such as diagonal moves, or even moves that a
knight in chess can make.

B. Control Policy Synthesis
After observing the behavior of the adversary and inferring

a model for its behavior, we must synthesize a control

policy for the agent. To find behaviors satisfying an LTL
specification ϕ, we construct a Büchi automaton B that
accepts only those words which satisfy ϕ.

Definition 3: A Büchi automaton B is a tuple (SB, S̄B, Σ,
→B, FB) where

1) SB is a finite set of states;
2) S̄B ⊆ SB is a set of initial states;
3) Σ is the input alphabet;
4) →B: SB × Σ 7→ 2SB is a transition relation;
5) FB ⊆ SB is a set of accepting states.

A Büchi automaton accepts an infinite word over Σ if there
exists at least one corresponding run in B that intersects with
FB infinitely many times. There exist off-the-shelf tools such
as LTL2BA [17] which allow efficient construction of Büchi
automata from LTL formulas.

Given a turn-based product T =
(
Q, Q̄,→,Π, |=

)
and

a Büchi automaton B =
(
SB, S̄B,Σ,→B,FB

)
, we capture

how the behavior of the game may satisfy the specification
ϕ by constructing a product automaton A as follows.

Definition 4: The product automaton A is a tuple (SA,
S̄A, →A, FA) where

1) SA = Q× SB is a finite set of states;
2) S̄A = Q̄× S̄B is a set of intial states;
3) Π: an input alphabet
4) →A⊂ SA × Π × SA is a transition relation such that

(q, s)×π× (q′, s′) ∈→A if and only if (q, q′) ∈→ and
(q, σ) ∈|= and (s, σ, s′) ∈→B;

5) FA = Q×FB is a set of accepting states.
Using the product automaton, it is possible to find the

winning strategy, if one exists. First, we must define a cost
scheme to measure the agent’s progress towards satisfaction
of the LTL formula, and, by extension, winning the game.

Typically, the distance between a state s in the prod-
uct automaton and a state s′ ∈ FA is computed as the
shortest path on the automaton using Dijkstra’s algorithm
or another similar algeorithm. Because we are considering a
gam transition system, Dijkstra’s algorithm is insufficient,
since it does not account for the antagonistic behavior
of the adversary. We use a backward induction algorithm
(Algorithm 1) that incorporates elements of minimax [18],
in which the agent chooses the neighboring node that results
in the shortest path—as in the usual algorithm—while the
adversary chooses the neighboring node that results in the
longest path. Such an algorithm captures the competing
behavior of the agent and the adversary in the worst case
for the agent.

Progress will be captured by distance to acceptance, V (s)
which is an energy-like function defined on the states of the
product automaton as used in [19] to enforce satisfaction
of and LTL formula. For a set X ⊆ SA, we say that X
is self-reachable if all states in X can reach a state in X .
That is ∀x ∈ X , d (x,X) 6= ∞. We denote the largest
self-reachable subset of FA as FA∗. Function V (s) =
d (s,FA∗) is the distance to acceptance from state s in the
product automaton.Thus, V captures the minimum number
of transitions to reach a self-reachable accepting state. By
considering only paths to self-reachable accepting states, we

Algorithm 1: Backward Induction Algorithm
Input : Product automaton A, Set of final states F
Output: Distance d to final set
for s ∈ SA do

d (s,F)←−∞;

for s ∈ F do
d (s,F)←− 0;

Q←− SA;
while Q 6= ∅ do

q ←− arg mins∈Q d (s,F);
Q←− Q\ {q};
if Adversary move then

d (q,F)←− max{q′|(q,π,q′)∈→A} d (q′,F) + 1;

else
if d (q,F) > min{q′|(q,π,q′)∈→A} d (q′,F) + 1
then

d (q,F)← min{q′|(q,π,q′)∈→A} d (q′,F) + 1

ensure that we do not consider accepting states from which
repeated satisfaction is impossible.

Once we have computed the distance to acceptance, we
can find a control policy µ : SA → SA that will guarantee
to lead to satisfaction of ϕ from any state in the product
automaton, should one exist. This policy is constructed by
simply choosing the transition from the current state s that
leads to a state s′ with the lowest value of V (s′). For
efficiency during execution of the control policy, the agent
utilizes a control policy µT : Q→ Q. This policy is obtained
from µ by considering only those (q, sB) such that sB is the
current Büchi state. When a transition is enabled to a state s′B
in the Büchi automaton, the agent is given the policy for the
new Büchi state. The control policy synthesis is summarized
in Algorithm 2.

C. Control Policy Update

The product automaton A constructed in §III-B is guar-
anteed to accept strings that satisfy the specification ϕ.
However, until the learner φ converges to the grammar G
that describes exactly the behavior of the adversary, strategies
devised in this way may be subject to preemption by this
player. This is because there may exist actions of this
adversary that have not been observed yet, and hence the
available model T0 may not be complete. The adversary may
thus be in position to utilize one of these actions to block the
run prescribed by the strategy. What can therefore be said
about the outcome of the control synthesis process that takes
place while the learner continues to identify the dynamics of
the adversary, is that whenever feasible the control strategies
will always satisfy the specification. The learning module, on
its side, can guarantee that the model it provides for synthesis
is the most complete one based on the history of observations
of the adversary’s behavior.

Once the learner φ converges to the true model T0 of

Algorithm 2: Control Policy Synthesis
Input : Turn-based product T , Büchi automaton B
Output: Product automaton A, control policy µ
Construct A from T and B;
Compute d (s,FA) for all s in SA;
FA∗ ←− FA;
for s ∈ FA∗ do

if min{s′|(s,π,s′)∈→A} d (s′,FA) =∞ then
FA∗ ←− FA∗/s;

Compute d (s,FA∗) for all s in SA;
for s ∈ SA do

if V (s) <∞ then
µ (s) = arg min{s′|(s,π,s′)∈→A} V (s′);

else
µ (s) is undefined;

for s = (q, sB) ∈ SA do
if sB ∈ SB is current Büchi state then

µT (q) = {q′ | µ (s) = (q′, sB)}

the adversary, we know that all accepting runs in A are
also feasible. At this time, the synthesis algorithm becomes
complete. The control synthesis essentially functions as it
would if the dynamics of the adversary were known a priori.
Until this stage is reached, the control synthesis module
operates based on the best available model for the adversary.
Whenever this model is refined by the learner φ as a result
of some new capability of the adversary being observed,
then the control synthesis module must update the control
strategy. This process can, in general, be computationally
intense; fortunately, for the classes of systems considered in
this paper it can be performed incrementally, and thus faster.

To incrementally update the product automaton, we use
an algorithm first presented in Vasile and Belta [20]. For
each new transition (q, q′) that φ adds to →0, the algorithm
considers all q ∈ Q0 from which such a transition may
be made. For each of those states, a set of states in the
product containing that state is maintained. Further, a set of
transitions in →A from those states to states containing q′

is created. From these two sets, the product automaton can
be efficiently updated. For complete details of the algorithm,
the reader is directed to Vasile and Belta [20].

IV. SIMULATIONS AND RESULTS

To test our algorithm, a game simulation with two agents
and adversary operating in a grid environment3 was devel-
oped (Fig. 1). The agents (shown as red and blue circles)
must carry out the specification

ϕ = �♦π1 ∧�♦π2 ∧�¬πcapture , (2)

which translates into English as “visit regions π1 (shown in
violet) and π2 (shown in yellow) infinitely often and always

3The grid structure is adopted here for illustration purposes only. The
method is applicable to workspaces with arbitrary graph structures.

avoid capture by the adversary (shown in green)” The agents’
motion primitives

Σ1 = Σ2 = {(N, 1), (S, 1), (E, 1), (W, 1), (NE, 1),

(NW, 1), (SE, 1), (SW, 1), (O, 0)} (3)

allow them to transition one grid square in north, south,
east, west, north-east, north-west, south-east, and south-west
directions or just continue to stay in place respectively. In
this example, the adversary’s has same motion primitives as
the agents, Σ0 = Σ1 = Σ2. The difference between the
agent and the adversary here is that the sequence of moves
played by the adversary during the game or in technical
terms, the language of the adversary belongs to a class of
Strictly 2-Piecewise languages where the adversary is forbid-
den to move along the four compass directions more than
once. In other words, the adversary’s actions cannot have
2-subsequences (N, 1)(N, 1), (S, 1)(S, 1), (E, 1)(E, 1) or
(W, 1)(W, 1). In this case, the Strictly 2-Piecewise grammar
G of the adversary’s language L(G) is

G = (Σ0 × Σ0)\Gf . (4a)

Gf = {(N, 1)(N, 1), (S, 1)(S, 1), (E, 1)(E, 1),

(W, 1)(W, 1)} (4b)

However there are no restrictions on the stay in place
or diagonal moves for the adversary. Initially, the agents
only knows that the adversary’s language belongs to a class
of Strictly 2-Piecewise language but have no knowledge
of the adversary’s transition relation →0 or the forbidden
subsequences in the grammar of the adversary’s language.
By observing the actions of the adversary, the agents incre-
mentally build a model of the adversary and devise a strategy
to satisfy their specification.

Fig. 1: Image of the 5×5 grid simulation game showing the agent
(red circle), adversary (green circle) and the regions π1 and π2

shown labeled by violet and yellow circles, respectively.

During the game, adversary and agents take turns to
play. Each move comprises an adversary’s turn followed
by turn of agent ag1 and then turn of agent ag2. A move
mi = (σadi , σ

ag1
i , σag2i) consists of a tuple of an adversary

action σadi , agent ag1 action σag1i and agent ag2 action
σag2i , where σadi ∈ Σ0, σag1 ∈ Σ1, σag2 ∈ Σ2 and i
refers to move number. We assume that at each move, the
agents are able to observe the action of the adversary. After
observing the adversary’s action σadi in each move, the agents
update a single centralized policy µT . During their respective
turns, the agents then use the updated policy to determine
a target state q′ to transition to from the current state q,
where µT (q) = q′ and q, q′ ∈ Q. If no winning policy
exists from the current state, the agents continue to stay in
place by executing the action (O, 0). During each move, the
adversary’s action σadi is uniformly sampled from a subset
of motion primitives ΣLi

⊆ Σ0. If the adversary needs to
choose an action for pth move (move number mi = p) then
ΣLp

is given as,

ΣLp
= {x : x ∈ Σ0, w = σad1 σad2 . . . σadp−1x, f2(w) ∈ G}

(5)
where fk is a function that generates all possible subse-
quences of length k that can be found in the word w. (see
Appendix)

Using the observed positive presentations of adversary’s
actions, the agent’s Strictly 2-Piecewise learner φ2 incre-
mentally learns the grammar G corresponding to language of
adversary’s actions L in the limit (see §III-A for details). In
other words, we can show that, if µ̄T is the policy computed
when full knowledge about the adversary is available to the
agent and µTi is the policy computed at move i, then

µTii→∞ = µ̄T . (6)

Define Dpd, a numerical distance measure that captures the
difference between two policies.

Dpd(µTi, µ̄T) = Σq∈Qdq (7a)

dq =

{
1, if µT (q) 6= µ̄T (q)

0, otherwise
(7b)

Using (6) and (7), the convergence in grammar G corre-
sponding to language of adversary’s actions L in the limit
can be written as,

Dpd(µTi, µ̄T)i→∞ = 0 (8)

To validate the result in (8), we run a series of 10
trials. Multiple runs of the game are required per trial as
a single game can only produce a small subset of the 77
subsequences (|G| = 77, see (4a)). Furthermore, since the
adversary’s language belongs to the class of Strictly 2-
Piecewise languages, each action of the adversary constrains
its future actions. It was often observed that after a large
number of moves (move number mi > 15) in a game run, all
future moves for the adversary led to the learner φ2 acquiring
minimal or no new knowledge about the adversary. Hence

length of a game was fixed as 15 and 20 game runs were
included in each trial. During each move of a game trial,
indexed by mi, Dpd is computed. Curves of color in Figure 2
show the variation in Dpd with number of moves seen by the
learner (cumulatively added across multiple game runs) in a
trial. The mean of Dpd over all trials, shown as a thick black
line, demonstrates the convergence of Dpd to 0 as number
of moves increases. The initial value of Dpd was 77 in this
scenario, compared to over 45,000 states in Q.

From game simulations results (shown in Fig. 2), we
can see that the policy µT incrementally learned by the
agent through observations of adversary actions eventually
converges to policy µ̄T , the policy that would be computed
if full knowledge of the adversary is available to the agent.
Thus the grammar G learned by the Strictly 2-Piecewise
learner φ2 converges to the grammar of the adversary’s
action language L as the agent observes the behavior of
the adversary for a sufficiently large number of moves. The
control policy learned here would correspond to a strategy
that would enable the agent to satisfy the game specification,
provided such a strategy exists.

0 50 100 150 200 250
0

20

40

60

80

Number of moves

P
o

lic
y
 d

is
ta

n
c
e

 D
p

d

Fig. 2: The curves in color denote the evolution of Dpd w.r.t. the
number of moves, for different game trial runs. The solid thick
black curve represents the average of Dpd over all trials.

The particular implementation shown for this example is
developed in Python. In this form, it can interface directly
with physical hardware (e.g., quadrotors) in the same way
as in Ulusoy and Belta [21].

V. CONCLUSION

Provably correct symbolic control synthesis can be feasible
even in cases where the regulated system interacts with
an unknown, but rule-governed adversary. In this setting,
the system and the adversary are modeled as deterministic
transition systems, and a model for the unknown adversary
dynamics is constructed incrementally based on observations
of its motion. Control synthesis can be performed using stan-
dard model checking tools, based on an evolving hypothesis
about the dynamics of the adversary—the best hypothesis
that can be formulated based on specific prior knowledge
about the class of models the adversary model can belong to,
and available data. The evolving model model can be shown
to converge to the true dynamics in the limit, once a sufficient
sample of adversary behavior has been observed, in which
case control policies become as effective as those constructed

with full knowledge of the adversary dynamics. The paper
demonstrates this idea with an small-scale example in which
the adversary dynamics are captured by a formal language
belonging in a subcategory of regular languages known as
Strictly k-Piecewise languages. The latter class of languages
is merely one of a very rich family of formal (subregular)
language classes that can be treated within this framework of
identification in the limit [6], [22]. Additional learning results
along these lines are available in the context of grammatical
inference [10].

APPENDIX

Strictly k-Piecewise Languages

The class of languages we consider forms a proper subset
of regular languages and can be understood as follows.
Different characterizations of this class exist [7], [15]. First
let Pfin(A) denote the set of all finite subsets of some other
set A. Let |w| denote the length of a string w. Recall that Σ≤k

denotes the set of all strings of length no more than k made
of symbols from Σ. A string v = σ1σ2...σk is a subsequence
of a string w, written v v w, if there exists a sequence of
strings v0, v1, ..., vk such that w = v0σ1v1σ2...σkvk.

For all w ∈ Σ∗, define fk(w) = {v ∈ Σ≤k | v v w}.
The image of a string w under fk is called the set of k-
subsequences of w. The domain of f is lifted to sets of
strings in the usual way: fk(L) =

⋃
w∈L fk(w).

Henceforth, we will introduce the necessary notation in
the context of transition system T0 with the alphabet Σ0. A
language L is Strictly k-Piecewise if for all w ∈ L, there
exist a set G ⊆ fk(Σ∗0) such that

w ∈ L ⇐⇒ fk(w) ⊆ G .

In other words, the set G is a grammar which contains the
well-formed k-subsequences. Note G is necessarily finite.
The words in L can be also given as follows.

L(G) = {w ∈ Σ∗0 | fk(w) ⊆ G}

The notation L(G) emphasizes that the above expression
represents a mechanism for generating a (possibly infinite)
language from a (finite) grammar.

REFERENCES

[1] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata logics, and infinite games: a guide to current research.
Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[2] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of
stochastic ω-regular games. Journal of Computer and System Sciences,
78:394–413, 2012.

[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: a survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996.

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[5] M. E. Gold. Language identification in the limit. Information and
control, 10(5):447–474, 1967.

[6] J. Heinz. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 897–
906, Uppsala, Sweden, July 2010. Association for Computational
Linguistics.

[7] James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Viss-
cher, David Wellcome, and Sean Wibel. On languages piecewise
testable in the strict sense. In Christian Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Language, volume 6149
of Lecture Notes in Artifical Intelligence, pages 255–265. Springer,
2010.

[8] David H. Wolpert. The lack of a priori distinctions between learning
algorithms. Neural Computation, 8(7):1341–1390, 1996.

[9] David H. Wolpert and William G. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation,
1(1):67–82, 1997.

[10] Colin de la Higuera. Grammatical Inference: Learning Automata and
Grammars. Cambridge University Press, 2010.

[11] Y. Chen, J. Tumova, A. Ulusoy, and C. Belta. Temporal logic robot
control based on automata learning of environmental dynamics. The
International Journal of Robotics Research, 32(5):547–565, 2013.

[12] J. Fu, H. G. Tanner, J. N. Heinz, K. Karydis, J. Chandlee, and
C. Koirala. Symbolic planning and control using game theory
and grammatical inference. Engineering Applications of Artificial
Intelligence, 37:378–391, 2015.

[13] J. Chandlee, J. Fu, K. Karydis, C. Koirala, J. Heinz, and H. G.
Tanner. Integrating grammatical inference into robotic planning. In
Proceedings of the 11th International Conference on Grammatical
Inference, number 21 in JMLR: Proceedings Track, pages 69–83,
2012.

[14] C. Baier and J.P. Katoen. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

[15] Jeffrey Heinz. String extension learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics,
pages 897–906, Uppsala, Sweden, July 2010.

[16] Christos G. Cassandras. Introduction to discrete event systems.
Springer Science and Business Media, 2008.

[17] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings
of the 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages
53–65, Paris, France, July 2001. Springer.

[18] T.H. Cormen. Introduction to Algorithms. MIT Press, 2009.
[19] X. Ding, M. Lazar, and C. Belta. Ltl receding horizon control for

finite deterministic systems. Automatica, 50(2):399–408, 2014.
[20] C. I. Vasile and C. Belta. Sampling-based temporal logic path

planning. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan, November 3-7, 2013, pages 4817–
4822, 2013.

[21] Alphan Ulusoy and Calin Belta. Receding horizon temporal logic
control in dynamic environments. The International Journal of
Robotics Research, 33(12):1593–1607, 2014.

[22] James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah
Lambert, and Sean Wibel. Cognitive and sub-regular complexity.
In Glyn Morrill and Mark-Jan Nederhof, editors, Formal Grammar,
volume 8036 of Lecture Notes in Computer Science, pages 90–108.
Springer, 2013.

